Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (341)

Search Parameters:
Keywords = short-life composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 391 KiB  
Systematic Review
High-Protein Dietary Interventions in Heart Failure: A Systematic Review of Clinical and Functional Outcomes
by Lorraine S. Evangelista, Rebecca Meraz, Kelly L. Wierenga, Angelina P. Nguyen, Alona D. Angosta and Jennifer Kawi
Nutrients 2025, 17(14), 2361; https://doi.org/10.3390/nu17142361 - 18 Jul 2025
Viewed by 429
Abstract
Background: Heart failure (HF) is frequently associated with skeletal muscle wasting, reduced functional capacity, and malnutrition. High-protein diets offer a promising nutritional intervention to improve these outcomes in individuals with HF. Objective: This systematic review evaluated randomized controlled trials of high-protein dietary interventions [...] Read more.
Background: Heart failure (HF) is frequently associated with skeletal muscle wasting, reduced functional capacity, and malnutrition. High-protein diets offer a promising nutritional intervention to improve these outcomes in individuals with HF. Objective: This systematic review evaluated randomized controlled trials of high-protein dietary interventions in HF populations, with emphasis on intervention characteristics, quantitative benefits, and risk of bias. Methods: We conducted a comprehensive search in PubMed, MEDLINE, Embase, and Cochrane CENTRAL from inception to June 2025. Eligible studies enrolled adults (≥18 years) with HF, implemented high-protein regimens (≥1.1 g/kg/day or ~25–30% of energy), and reported on functional capacity, body composition, muscle strength, clinical outcomes, or biochemical markers. Two reviewers independently screened, extracted data, and assessed bias (Cochrane RoB 2). Heterogeneity in dosing, duration, and outcomes precluded meta-analysis; we therefore provide a narrative synthesis. Results: Ten trials (nine randomized controlled trials, one pilot) involving 1080 patients (median n = 38; range 21–652) were included. High-protein interventions yielded mean improvements in six-minute walk distance of +32 ± 14 m, lean body mass gain of +1.6 ± 0.9 kg, and 9 ± 4% enhancement in quality-of-life scores; muscle strength effects varied from −2% to +11%. Two studies reported an 18% reduction in HF readmissions (p < 0.05). The risk-of-bias assessment identified two low-risk, three moderate-risk, and one high-risk study. Key limitations include small sample sizes, varied protein dosing (1.1–1.5 g/kg/day), short follow-up (2–6 months), and outcome heterogeneity. Conclusions: High-protein dietary strategies appear to confer modest, clinically relevant gains in functional capacity, nutritional status, and HF readmission risk. Larger, well-powered trials with standardized dosing and longer follow-up are necessary to establish optimal protein targets, long-term efficacy, and safety. Full article
Show Figures

Figure 1

31 pages, 1549 KiB  
Systematic Review
Impact of Early-Life Brain Injury on Gut Microbiota Composition in Rodents: Systematic Review with Implications for Neurodevelopment
by Vanessa da Silva Souza, Raul Manhães-de-Castro, Sabrina da Conceição Pereira, Beatriz Souza de Silveira, Caio Matheus Santos da Silva Calado, Henrique José Cavalcanti Bezerra Gouveia, Jacques-Olivier Coq and Ana Elisa Toscano
Cells 2025, 14(14), 1063; https://doi.org/10.3390/cells14141063 - 11 Jul 2025
Viewed by 493
Abstract
Early-life brain injuries are major causes of long-term neurodevelopmental disorders such as cerebral palsy. Emerging evidence suggests these injuries can alter the gut microbiota composition, intestinal integrity, and neuroinflammatory responses. This systematic review evaluated the impact of early-life brain injuries on the gut [...] Read more.
Early-life brain injuries are major causes of long-term neurodevelopmental disorders such as cerebral palsy. Emerging evidence suggests these injuries can alter the gut microbiota composition, intestinal integrity, and neuroinflammatory responses. This systematic review evaluated the impact of early-life brain injuries on the gut microbiota in rodent models. A scientific literature search was conducted across Medline/PubMed, Web of Science, Scopus, and Embase. Initially, 7419 records were identified, and 21 eligible studies were included. Eligible studies focused on evaluating the microbiota alterations and related gut–brain axis markers at the neonatal or post-weaning stages. The data extraction and synthesis followed PRISMA guidelines. Most studies reported gut dysbiosis characterized by a decreased abundance of Bacteroidetes, and Lactobacillus. Alterations were associated with an increased gut permeability, reduced tight junction proteins, and elevated pro-inflammatory cytokines. Several studies showed reduced levels of short-chain fatty acids and metabolic pathway disruptions. Brain outcomes included neuroinflammation, white matter injury, altered gene expression, and impaired structural integrity. These results suggest that early-life brain injury induces complex alterations in the gut microbiota and its metabolic products, which may contribute to systemic and neuroinflammatory processes. Understanding these interactions offers insights into the pathophysiology of neurodevelopmental disorders and highlights the gut–brain axis as a potential target for early interventions. Full article
Show Figures

Figure 1

36 pages, 2504 KiB  
Article
Long-Term Durability of CFRP Strips Used in Infrastructure Rehabilitation
by Karunya Kanagavel and Vistasp M. Karbhari
Polymers 2025, 17(13), 1886; https://doi.org/10.3390/polym17131886 - 7 Jul 2025
Viewed by 470
Abstract
Prefabricated unidirectional carbon fiber reinforced polymer (CFRP) composite strips are extensively used as a means of infrastructure rehabilitation through adhesive bonding to the external surface of structural concrete elements. Most data to date are from laboratory tests ranging from a few months to [...] Read more.
Prefabricated unidirectional carbon fiber reinforced polymer (CFRP) composite strips are extensively used as a means of infrastructure rehabilitation through adhesive bonding to the external surface of structural concrete elements. Most data to date are from laboratory tests ranging from a few months to 1–2 years providing an insufficient dataset for prediction of long-term durability. This investigation focuses on the assessment of the response of three different prefabricated CFRP systems exposed to water, seawater, and alkaline solutions for 5 years of immersion in deionized water conducted at three temperatures of 23, 37.8 and 60 °C, all well below the glass transition temperature levels. Overall response is characterized through tensile and short beam shear (SBS) testing at periodic intervals. It is noted that while the three systems are similar, with the dominant mechanisms of deterioration being related to matrix plasticization followed by fiber–matrix debonding with levels of matrix and interface deterioration being accelerated at elevated temperatures, their baseline characteristics and distributions are different emphasizing the need for greater standardization. While tensile modulus does not degrade appreciably over the 5-year period of exposure with final levels of deterioration being between 7.3 and 11.9%, both tensile strength and SBS strength degrade substantially with increasing levels based on temperature and time of immersion. Levels of tensile strength retention can be as low as 61.8–66.6% when immersed in deionized water at 60 °C, those for SBS strength can be 38.4–48.7% at the same immersion condition for the three FRP systems. Differences due to solution type are wider in the short-term and start approaching asymptotic levels within FRP systems at longer periods of exposure. The very high levels of deterioration in SBS strength indicate the breakdown of the materials at the fiber–matrix bond and interfacial levels. It is shown that the level of deterioration exceeds that presumed through design thresholds set by specific codes/standards and that new safety factors are warranted in addition to expanding the set of characteristics studied to include SBS or similar interface-level tests. Alkali solutions are also shown to have the highest deteriorative effects with deionized water having the least. Simple equations are developed to enable extrapolation of test data to predict long term durability and to develop design thresholds based on expectations of service life with an environmental factor of between 0.56 and 0.69 for a 50-year expected service life. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

25 pages, 3710 KiB  
Article
Lactobacillus rhamnosus LRa05 Alleviates Constipation via Triaxial Modulation of Gut Motility, Microbiota Dynamics, and SCFA Metabolism
by Jingxin Zhang, Qian Li, Shanshan Liu, Ning Wang, Yu Song, Tao Wu and Min Zhang
Foods 2025, 14(13), 2293; https://doi.org/10.3390/foods14132293 - 28 Jun 2025
Viewed by 580
Abstract
Constipation, a widespread gastrointestinal disorder, imposes significant burdens on healthcare systems the and global health-related quality of life, yet current options remain suboptimal due to limited mechanistic understanding and efficacy limitations. Given the pivotal significance of the interactions between the gut microbiota and [...] Read more.
Constipation, a widespread gastrointestinal disorder, imposes significant burdens on healthcare systems the and global health-related quality of life, yet current options remain suboptimal due to limited mechanistic understanding and efficacy limitations. Given the pivotal significance of the interactions between the gut microbiota and the host on governing bowel movement, we employed a multi-modal approach integrating animal experiments, ELISA, histopathology, qRT-PCR, GC-MS, and 16S rRNA metagenomics to evaluate the functional potential of Lactobacillus rhamnosus LRa05 against loperamide-induced constipation in mice. LRa05 treatment markedly alleviated constipation symptoms, as evidenced by reduced first black stool expulsion time, increased fecal moisture, and enhanced intestinal motility. Mechanistic investigations revealed that LRa05 balanced gastrointestinal regulatory peptides. It also downregulated aquaporin (AQP4/AQP8) mRNA levels and activated the SCF/C-Kit signaling pathway. These effects contributed to the restoration of intestinal peristalsis. Furthermore, LRa05 rebalanced gut microbiota composition by enriching beneficial, including Alloprevotella and Lachnospiraceae NK4A136, key SCFA producers. Thus, LRa05 could boost short chain fatty acid (SCFA) production, which is vital for stimulating intestinal motility, improving mucosal function, and relieving constipation. These findings demonstrated that LRa05 could mitigate constipation through a multi-target mechanism: regulating motility-related gene transcription, restructuring the microbial community, balancing gastrointestinal peptides, repairing the colonic mucosa, and promoting SCFAs for fecal hydration. Our study positions LRa05 as a promising probiotic candidate for constipation management. Full article
Show Figures

Figure 1

26 pages, 34695 KiB  
Article
Super Resolution Reconstruction of Mars Thermal Infrared Remote Sensing Images Integrating Multi-Source Data
by Chenyan Lu and Cheng Su
Remote Sens. 2025, 17(13), 2115; https://doi.org/10.3390/rs17132115 - 20 Jun 2025
Viewed by 392
Abstract
As the planet most similar to Earth in the solar system, Mars holds an important role in exploring significant scientific problems, such as the evolution of the solar system and the origins of life. Research on Mars mainly rely on planetary remote sensing [...] Read more.
As the planet most similar to Earth in the solar system, Mars holds an important role in exploring significant scientific problems, such as the evolution of the solar system and the origins of life. Research on Mars mainly rely on planetary remote sensing technology, among which thermal infrared remote sensing is of great studying significance. This technology enables the recording of Martian thermal radiation properties. However, the current spatial resolution of Mars thermal infrared remote sensing images remains relatively low, limiting the detection of fine-scale thermal anomalies and the generation of higher-precision surface compositional maps. While updating extraterrestrial exploration satellites can help enhancing the spatial resolution of thermal infrared images, this method entails high cost and long update cycles, making improvement difficult to conduct in the short term. To address this issue, this paper proposes a super-resolution reconstruction method for Mars thermal infrared remote sensing images integrating multi-source data. First, based on the principle of domain adaptation, we introduced a method using highly correlated visible light images as auxiliary to enhance the spatial resolution of thermal infrared images. Then, a multi-sources data integration method is designed to constrain the thermal radiation flux of resulting images, ensuring the radiation distribution remains consistent with the original low-resolution thermal infrared images. Through both subjective and objective evaluations, our method is demonstrated to significantly enhance the spatial resolution of existing Mars thermal infrared images. It optimizes the quality of existing data, increasing the resolution of the original thermal infrared images by four times. In doing so, it not only recovers finer texture details to produce better visual effects than typical super-resolution methods, but also maintains the consistency of thermal radiation flux, with the error after applying the consistency constraint reduced by nearly tenfold, ensuring the applicability of the results for scientific research. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

25 pages, 2375 KiB  
Article
Analysis of Sushi Rice: Preparation Techniques, Physicochemical Properties and Quality Attributes
by Wondyfraw Tadele Wonbebo, Piotr Kulawik, Andrzej Szymkowiak and Eskindir Endalew Tadesse
Appl. Sci. 2025, 15(12), 6540; https://doi.org/10.3390/app15126540 - 10 Jun 2025
Viewed by 726
Abstract
This study explores the multifaceted aspects of sushi rice preparation, including the washing, soaking, and cooking processes and their impact on the texture, microbial, colour, and sensory properties of rice. Selenio rice, a premium short-grain rice of the Japonica variety, was analyzed for [...] Read more.
This study explores the multifaceted aspects of sushi rice preparation, including the washing, soaking, and cooking processes and their impact on the texture, microbial, colour, and sensory properties of rice. Selenio rice, a premium short-grain rice of the Japonica variety, was analyzed for variations in amylose content and viscosity profiles. The study highlights how the rice’s compositional characteristics, particularly the amylose-to-amylopectin ratio, influence gelatinisation and cooling behaviour. The study examined washing duration, water-to-rice ratios, soaking times, and seasoning effects on product quality. The results demonstrated that washing rice for 230 s was optimal for the nigiri-forming process, while extending soaking beyond 3 min provided no additional water absorption benefits. Water temperature during soaking (10–50 °C) had minimal impact on water absorption. The addition of a vinegar mix reduced the pH to below 4.5, improving shelf life and sensory properties. During storage, textural profile analysis revealed that hardness and chewiness increased while adhesiveness decreased across all samples, with lower water-to-rice ratios resulting in firmer rice that maintained structural integrity better during storage. Sensory evaluation showed declining scores for odour, taste, texture, and overall acceptability over the 10-day storage period, though colour and appearance were less affected. Microbial loads remained relatively low across all samples during storage, and rice colour showed minimal changes over time. These findings contribute significantly to optimizing sushi rice production processes, ensuring consistent quality and desirable textural attributes throughout storage while advancing the broader fields of rice research and culinary science. Full article
Show Figures

Figure 1

30 pages, 1845 KiB  
Review
Early Life Stress and Gut Microbiome Dysbiosis: A Narrative Review
by Alejandro Borrego-Ruiz and Juan J. Borrego
Stresses 2025, 5(2), 38; https://doi.org/10.3390/stresses5020038 - 5 Jun 2025
Cited by 1 | Viewed by 2216
Abstract
Background: Exposure to early life stress significantly increases the risk of psychopathology later in life. However, the impact of early life stress on the gut microbiome and its potential role in mental health outcomes remains insufficiently understood. This narrative review examines the current [...] Read more.
Background: Exposure to early life stress significantly increases the risk of psychopathology later in life. However, the impact of early life stress on the gut microbiome and its potential role in mental health outcomes remains insufficiently understood. This narrative review examines the current knowledge on how early life stress and its associated consequences may affect the gut microbiome, with a particular focus on conditions such as anxiety, depression, and post-traumatic stress disorder. Method: A comprehensive literature search was conducted in the PubMed and Web of Science databases between January and February 2025, covering studies published between 2015 and 2025. Results: Early life stress can profoundly impact cognitive function and neurodevelopment, with maternal early-life nutrition playing a significant role in modulating the effects of prenatal and postnatal stress. Early life stress influences the gut microbiome, disrupting its composition and function by altering the synthesis of microbial metabolites, neurotransmitters, and the activation of key metabolic pathways. However, the precise role of the gut microbiome in modulating stress responses during childhood and adolescence has not yet been fully elucidated. Conclusions: Several studies have demonstrated an association between early life stress and the gut microbiome. However, causality has not yet been established due to the numerous intrinsic and extrinsic factors influencing the microbiome-gut–brain axis. In the coming years, research on key microbial regulators, such as short-chain fatty acids, amino acids, and psychobiotics, may represent a promising approach for addressing central nervous system alterations linked to early life stress. Thus, further studies will be necessary to evaluate their potential as therapeutic agents. Full article
(This article belongs to the Collection Feature Papers in Human and Animal Stresses)
Show Figures

Figure 1

14 pages, 2125 KiB  
Article
Fermented Apple Juice Reduces the Susceptibility of Offspring Mice to Food Allergy Exacerbated by Maternal High-Fat Diet
by Jing Ma, Jian Yu, Yining Jia, Zining Luo, Xin Yang, Huzhong Li and Fangyu Long
Nutrients 2025, 17(11), 1927; https://doi.org/10.3390/nu17111927 - 4 Jun 2025
Viewed by 656
Abstract
Background: Food allergy (FA) is associated with dietary habits, antibiotic use, living environment, and delivery method. Pregnancy and lactation represent critical periods for neonatal immune system development. Methods: This study investigated the relationship between maternal dietary habits and FA risk in offspring. [...] Read more.
Background: Food allergy (FA) is associated with dietary habits, antibiotic use, living environment, and delivery method. Pregnancy and lactation represent critical periods for neonatal immune system development. Methods: This study investigated the relationship between maternal dietary habits and FA risk in offspring. Pregnant C57BL/6J mice (8-week-old males and females) were fed either a high-fat diet (HFD) or HFD supplemented with fermented apple juice (FAJ) during pregnancy and lactation. Offspring were nursed by their respective dams until weaning at 21 days postpartum, followed by ovalbumin (OVA) sensitization. Lipid profiles, acylcarnitines, immunological, and histopathological analyses were performed. Gut microbiota composition and serum markers were also assessed. Results: The findings indicated that maternal HFD had a negative impact on OVA-sensitized offspring mice. Early-life FAJ intervention modulated gut microbiota alterations and alleviated maternal HFD-worsened allergic symptoms through Th1/Th2 and Th17/Treg immunity balance and intestinal barrier repair. Maternal serum triglyceride and total cholesterol levels, along with gut microbiota profiles, significantly influenced offspring gut microbiota composition. Moreover, reduced short-chain and medium-chain acylcarnitines in offspring may be associated with increased allergy risk. Conclusions: Maternal HFD during pregnancy and lactation disrupted gut microbiota balance and exacerbated offspring FA susceptibility. These findings provide a scientific foundation for developing early-life FA prevention strategies. Full article
Show Figures

Graphical abstract

17 pages, 2188 KiB  
Article
Employment of Biodegradable, Short-Life Mulching Film on High-Density Cropping Lettuce in a Mediterranean Environment: Potentials and Prospects
by Marco Pittarello, Maria Teresa Rodinò, Rossana Sidari, Maria Rosaria Panuccio, Francesca Cozzi, Valentino Branca, Beatrix Petrovičová and Antonio Gelsomino
Agriculture 2025, 15(11), 1219; https://doi.org/10.3390/agriculture15111219 - 3 Jun 2025
Viewed by 539
Abstract
Biodegradable mulch films were developed over the last decades to replace polyethylene, but their short durability and higher costs still limit their diffusion. This work aimed to test an innovative composite mulching film constituted by a mixture of carboxylmethyl cellulose, chitosan and sodium [...] Read more.
Biodegradable mulch films were developed over the last decades to replace polyethylene, but their short durability and higher costs still limit their diffusion. This work aimed to test an innovative composite mulching film constituted by a mixture of carboxylmethyl cellulose, chitosan and sodium alginate, enriched or not with an inorganic N- and P-source to help the microbial breakdown in soil. The trial was carried out using outdoor mesocosms cultivated with lettuce plants with high-density planting. Commercial Mater-Bi® and a polyethylene film were taken as control treatments. Air temperature and humidity monitored daily during the 51 d cropping cycle remained within the ideal range for lettuce growth with no mildew or fungi infection. Visible mechanical degradation of the experimental biopolymers occurred after 3 weeks; however, Mater-Bi® and polyethylene remained unaltered until harvest. Chemical soil variables (TOC, TN, CEC, EC) remained unchanged in all theses, whereas the pH varied. The yield, pigments, total phenols, flavonoids and ROS scavenging activity of lettuce were similar among treatments. Despite their shorter life service (~3 weeks), polysaccharide-based mulching films showed their potential to protect lettuce plants at an early stage and provide yield and nutraceutical values similar to conventionally mulched plants, while allowing a reduced environmental impact and disposal operations. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

20 pages, 5211 KiB  
Review
Unveiling the Potential of Bioactive Glass in Volumetric Muscle Loss Regeneration
by Andreea-Alina Zăvoi, Alexandra Dreancă, Klara Magyari, Lucian Baia, Ciprian Ober and Liviu Oana
Materials 2025, 18(11), 2529; https://doi.org/10.3390/ma18112529 - 27 May 2025
Viewed by 453
Abstract
Injuries characterized by significant loss of skeletal muscle tissue volume, known as volumetric muscle loss (VML), lead to substantial impairment in functional capabilities. Natural repair processes and existing medical interventions fall short of fully restoring function post-VML. Despite progress in the VML field, [...] Read more.
Injuries characterized by significant loss of skeletal muscle tissue volume, known as volumetric muscle loss (VML), lead to substantial impairment in functional capabilities. Natural repair processes and existing medical interventions fall short of fully restoring function post-VML. Despite progress in the VML field, there is an unsatisfactory success rate, donor site morbidity, and inefficient reconstruction of lost muscle tissue. This leads to persistent strength and functional deficits, impacting the quality of life for VML patients. In recent years, studies have explored the potential of bioactive glasses (BGs) as crucial materials in regenerating tissues beyond the skeletal system. BG, used mainly in bone engineering, can aid muscle repair by releasing ions like calcium and phosphate to stimulate cellular response. However, current BG composites struggle to match the mechanical properties of soft tissues, limiting seamless healing. This review summarizes recent advances in various BG structures studied for skeletal muscle tissue regeneration. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

18 pages, 2211 KiB  
Article
Early Fermentation Dynamics and Aerobic Stability of Maize Silage Improved by Dual-Strain Lactic Acid Bacteria Inoculation
by Jonas Jatkauskas, Rafael Camargo do Amaral, Kristian Lybek Witt, Jens Noesgaard Joergensen, Ivan Eisner and Vilma Vrotniakiene
Fermentation 2025, 11(5), 293; https://doi.org/10.3390/fermentation11050293 - 21 May 2025
Viewed by 652
Abstract
This study aimed to provide deeper insights into fermentation dynamics, aerobic stability, and bacterial community composition during the short-term ensiling of maize forage with lactic acid bacteria-based inoculants. A 50:50 combination of Lentilactobacillus buchneri DSM2250 and Lactococcus lactis DSM11037 (LBL target application: 150,000 [...] Read more.
This study aimed to provide deeper insights into fermentation dynamics, aerobic stability, and bacterial community composition during the short-term ensiling of maize forage with lactic acid bacteria-based inoculants. A 50:50 combination of Lentilactobacillus buchneri DSM2250 and Lactococcus lactis DSM11037 (LBL target application: 150,000 CFU per 1 g forage) was tested alongside an untreated control (C) over fermentation periods of 2, 4, 8, 16, and 32 days. A total of 50 3 L mini-silos were filled with 2 kg of fresh maize each and stored at 20 °C. The pH, dry matter, nutrient profiles, volatile fatty acids, lactic acid, alcohols, ammonia-N, microbiological counts (yeast and mold), and aerobic stability of all samples were analyzed after seven days of air exposure. LBL silage showed higher average dry matter content (DMc) and crude protein (CP) levels by 1.5%, p < 0.001, and 10.8%, p < 0.001, respectively, as well as reduced average dry matter (DM) losses by half (p < 0.001) compared to pure silage. The beneficial effects of inoculation became more pronounced with prolonged storage, particularly by day 32 of fermentation. LBL silage showed increased production of lactic and acetic acids by an average of 55.5% and 5.0%, respectively, (p < 0.01) and significantly reduced butyric acid formation by approximately 14 times. Ethanol and ammonia-N concentrations were also reduced by 55.4% and 25.6%, respectively (p < 0.001), while the pH value remained 0.17 units lower (p < 0.001) compared to the control. The combination of the two strains improved silage aerobic stability by 2.4 days (p < 0.001) and extended shelf life by reducing yeast counts (8.02 vs. 7.35 log10CFU g−1 FM, p < 0.001), while maintaining the pH value close to its initial level. Therefore, compared to the untreated control, the inoculated silage exhibited higher nutritional value, reduced fermentation losses, and suppressed undesirable microbial activity. The positive effects of inoculation became increasingly evident over time, particularly by day 32, highlighting the synergistic benefits of using mixed-strain lactic acid bacteria. These findings support the use of LBL inoculants as an effective strategy to enhance short-term silage quality and stability. Full article
Show Figures

Figure 1

15 pages, 2113 KiB  
Article
Form Factor and Chemistry Agnostic Battery Deactivation Using Electrically Conductive Gel for Safe Transportation
by Gordon Henry Waller, Connor Jacob, Annabelle Green, Rachel Ashmore Carter and Corey Thomas Love
Batteries 2025, 11(5), 201; https://doi.org/10.3390/batteries11050201 - 21 May 2025
Viewed by 736
Abstract
Removing residual energy from end-of-life batteries prior to transportation requires some method of deactivation. While many methods have been proposed, very few have been implemented due to limitations of cost, safety, and efficacy. In this work, multiple cell and battery types (e.g., lithium-polymer [...] Read more.
Removing residual energy from end-of-life batteries prior to transportation requires some method of deactivation. While many methods have been proposed, very few have been implemented due to limitations of cost, safety, and efficacy. In this work, multiple cell and battery types (e.g., lithium-polymer pouch cells, 18650 lithium-ion cell, alkaline batteries, and lithium-ion power-tool batteries) were deactivated using a low-cost and easily applied gel consisting of borax cross-linked polyvinyl alcohol and carbon. The PVA–carbon composite creates an external short-circuit pathway of moderate resistance that enables the complete discharge of batteries. Abusive testing conducted after deactivation demonstrates that hazards are largely eliminated, including a complete avoidance of thermal runaway from lithium-ion cells and a reduction in flammable and toxic gases by several orders of magnitude. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Figure 1

19 pages, 721 KiB  
Review
A Review on Harnessing the Invasive Water Hyacinth (Eichhornia crassipes) for Use as an Agricultural Soil Amendment
by Adam Canning
Land 2025, 14(5), 1116; https://doi.org/10.3390/land14051116 - 20 May 2025
Cited by 1 | Viewed by 1087
Abstract
Water hyacinth (Eichhornia crassipes) is a globally invasive aquatic weed with high biomass productivity and nutrient content, offering potential as a low-cost organic soil amendment. This review synthesizes findings from 35 studies identified through a structured Web of Science search, examining [...] Read more.
Water hyacinth (Eichhornia crassipes) is a globally invasive aquatic weed with high biomass productivity and nutrient content, offering potential as a low-cost organic soil amendment. This review synthesizes findings from 35 studies identified through a structured Web of Science search, examining its use as mulch, compost, biochar, and foliar extract. Reported agronomic benefits include improvements in soil organic carbon, nutrient availability (particularly nitrogen and potassium), microbial activity, and crop yields. However, most studies are short-term and conducted under greenhouse or pot conditions, limiting field-scale generalizability. Additionally, reporting of compost composition and contaminant levels is inconsistent, raising concerns about food safety. While logistical and economic feasibility remain underexplored, emerging evidence suggests that with proper processing, water hyacinth amendments could reduce fertilizer dependence and contribute to circular bioeconomy goals. Future research should prioritize field trials, standardized production protocols, and life cycle assessments to evaluate long-term performance, risks, and climate benefits. Full article
(This article belongs to the Special Issue Sustainable Agricultural Land Management towards a Net-Zero Pathway)
Show Figures

Figure 1

49 pages, 7310 KiB  
Review
Progress of MXene-Based Materials in the Field of Rechargeable Batteries
by Jianfei Gao, Jing Li, Qian Wang and Cheng Zou
Materials 2025, 18(10), 2386; https://doi.org/10.3390/ma18102386 - 20 May 2025
Viewed by 594
Abstract
With the rapid development of electrical energy storage technologies, traditional battery systems are limited in practical applications by insufficient energy density and short cycle life. This review provides a comprehensive and critical summary of MXene or MXene-based composites as electrode materials for high-performance [...] Read more.
With the rapid development of electrical energy storage technologies, traditional battery systems are limited in practical applications by insufficient energy density and short cycle life. This review provides a comprehensive and critical summary of MXene or MXene-based composites as electrode materials for high-performance energy storage devices. By integrating the synthesis techniques of MXenes that have been studied, this paper systematically illustrates the physicochemical properties, synthesis strategies, and mechanisms of MXenes, and analyzes the bottlenecks in their large-scale preparation. Meanwhile, it collates the latest research achievements of MXenes in the field of metal–ion batteries in recent years, focusing on integrating their latest progress in lithium–ion, sodium–ion, lithium–sulfur, and multivalent ion (Zn2+, Mg2+, Al3+) batteries, and reveals their action mechanisms in different electrode material cases. Combining DFT analysis of the effects of surface functional groups on adsorption energy with experimental studies clarifies the structure–activity relationships of MXene-based composites. However, the development of energy storage electrode materials using MXenes and their hybrid compounds remains in its infancy. Future development directions for MXene-based batteries should focus on understanding and regulating surface chemistry, investigating specific energy storage mechanisms in electrodes, and exploring and developing electrode materials related to bimetallic MXenes. Full article
Show Figures

Graphical abstract

19 pages, 9097 KiB  
Article
Metabolic Markers Demonstrate the Heterogeneity of Walking Ability in Non-Disabled Community-Dwelling Older Adults
by Shanshan Yao, Ziling Mao, Megan M. Marron, Eleanor M. Simonsick, Venkatesh L. Murthy, Ravi V. Shah and Anne B. Newman
Metabolites 2025, 15(5), 334; https://doi.org/10.3390/metabo15050334 - 19 May 2025
Viewed by 550
Abstract
Background: Walking ability is important for the quality of life of older adults. A self-reported walking ability index (WAI) covering the difficulty and ease of walking captures a broader spectrum of walking ability in healthy older persons. Methods: Using metabolomics in [...] Read more.
Background: Walking ability is important for the quality of life of older adults. A self-reported walking ability index (WAI) covering the difficulty and ease of walking captures a broader spectrum of walking ability in healthy older persons. Methods: Using metabolomics in the Health, Aging and Body Composition study, we identified Year 2 metabolites cross-sectionally and longitudinally related to WAI (0–9, higher scores indicate better walking ability) using probabilistic index models and multinomial logistic models, respectively. Results: Among 2334 participants (mean age 74.6 years, 51% women, 37% Black), 27% scored 0–5, 36% scored 6–8, and 37% scored 9 at Year 2. Over 4 years, 52% maintained a stable WAI, 6% improved, while 42% declined (22% 1–2 points and 20% >2 points decline). We identified 81 metabolites significantly associated with both poorer concurrent WAI and faster decline, including higher acylcarnitine species, shorter-chain saturated diglycerides and triglycerides, and TCA cycle intermediates (cis-aconitic, fumaric, and malic acids), and lower phospholipids levels. Eighteen additional metabolites were only associated with faster WAI decline: higher short-chain saturated triglycerides and energy metabolism markers (ATP/ADP/AMP) and lower margaric acid and glycine levels. Notably, those with improved WAI, despite poorer baseline WAI and lifestyles, showed more favorable metabolic profiles than others. Conclusions: Metabolites linked to the TCA cycle and energy metabolism, as well as inflammation and protein catabolism, were related to mobility function. Some metabolites might be particularly important for the early detection of older adults at risk of mobility decline. Metabolic profiles may also help identify older individuals (i.e., with improving WAI) with greater metabolic resilience to lifestyle risk factors and health conditions. Full article
Show Figures

Figure 1

Back to TopTop