Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,078)

Search Parameters:
Keywords = shoots and roots length

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2301 KiB  
Article
Haustorium Formation and Specialized Metabolites Biosynthesis Using Co-Culture of Castilleja tenuiflora Benth. and Baccharis conferta Kunth
by Annel Lizeth Leyva-Peralta, José Luis Trejo-Espino, Guadalupe Salcedo-Morales, Daniel Tapia-Maruri, Virginia Medina-Pérez, Alma Rosa López-Laredo and Gabriela Trejo-Tapia
Biology 2025, 14(8), 990; https://doi.org/10.3390/biology14080990 (registering DOI) - 4 Aug 2025
Abstract
In this study, an in vitro co-culture system of Castilleja tenuiflora and its host, Baccharis conferta, was used, and the impact of their interaction on specialized metabolite content was analyzed. After 4 weeks of co-culture, haustoria formation was verified through environmental scanning [...] Read more.
In this study, an in vitro co-culture system of Castilleja tenuiflora and its host, Baccharis conferta, was used, and the impact of their interaction on specialized metabolite content was analyzed. After 4 weeks of co-culture, haustoria formation was verified through environmental scanning electron and confocal microscopy, confirming the successful establishment of the plant–plant interaction. Shoot height and biomass of the aerial part of the hemiparasite were not affected significantly by co-culture. However, root biomass increased by 53% compared to individually grown plants. Co-culture significantly reduced the host’s root length without negatively affecting its overall growth or survival. Phytochemical profile alterations were observed in both species. For C. tenuiflora, the lignans sesamin and eudesmin are proposed as differentially accumulated metabolites, while in B. conferta, the caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid, and the flavonoid acacetin were expressed differently. The development and chemical profiles of B. conferta and C. tenuiflora change when they grow in a co-culture because of the host–parasite interaction. Here, we report the feasibility of using a hemiparasite–host system to investigate more profound research questions. Future biotechnological applications of this system include elucidating the genetic regulators involved in haustorium formation, as well as optimizing environmental and physiological conditions to enhance its biosynthetic capacity for the production of specialized metabolites with therapeutic value. Full article
(This article belongs to the Section Plant Science)
Show Figures

Graphical abstract

21 pages, 3085 KiB  
Article
Poultry Manure-Derived Biochar Synthesis, Characterization, and Valorization in Agriculture: Effect of Pyrolysis Temperature and Metal-Salt Modification
by Samar Hadroug, Leila El-Bassi, Salah Jellali, Ahmed Amine Azzaz, Mejdi Jeguirim, Helmi Hamdi, James J. Leahy, Amine Aymen Assadi and Witold Kwapinski
Soil Syst. 2025, 9(3), 85; https://doi.org/10.3390/soilsystems9030085 (registering DOI) - 4 Aug 2025
Abstract
In the present work, six biochars were produced from the pyrolysis of poultry manure at 400 °C and 600 °C (PM-B-400 and PM-B-600), and their post-modification with, respectively, iron chloride (PM-B-400-Fe and PM-B-600-Fe) and potassium permanganate (PM-B-400-Mn and PM-B-600-Mn). First, these biochars were [...] Read more.
In the present work, six biochars were produced from the pyrolysis of poultry manure at 400 °C and 600 °C (PM-B-400 and PM-B-600), and their post-modification with, respectively, iron chloride (PM-B-400-Fe and PM-B-600-Fe) and potassium permanganate (PM-B-400-Mn and PM-B-600-Mn). First, these biochars were deeply characterized through the assessment of their particle size distribution, pH, electrical conductivity, pH at point-zero charge, mineral composition, morphological structure, and surface functionality and crystallinity, and then valorized as biofertilizer to grow spring barley at pot-scale for 40 days. Characterization results showed that Fe- and Mn-based nanoparticles were successfully loaded onto the surface of the post-modified biochars, which significantly enhanced their structural and surface chemical properties. Moreover, compared to the control treatment, both raw and post-modified biochars significantly improved the growth parameters of spring barley plants (shoot and root length, biomass weight, and nutrient content). The highest biomass production was obtained for the treatment with PM-B-400-Fe, owing to its enhanced physico-chemical properties and its higher ability in releasing nutrients and immobilizing heavy metals. These results highlight the potential use of Fe-modified poultry manure-derived biochar produced at low temperatures as a sustainable biofertilizer for soil enhancement and crop yield improvement, while addressing manure management issues. Full article
Show Figures

Figure 1

15 pages, 3854 KiB  
Article
PVC Inhibits Radish (Raphanus sativus L.) Seedling Growth by Interfering with Plant Hormone Signal Transduction and Phenylpropanoid Biosynthesis
by Lisi Jiang, Zirui Liu, Wenyuan Li, Yangwendi Yang, Zirui Yu, Jiajun Fan, Lixin Guo, Chang Guo and Wei Fu
Horticulturae 2025, 11(8), 896; https://doi.org/10.3390/horticulturae11080896 (registering DOI) - 3 Aug 2025
Viewed by 169
Abstract
Polyvinyl chloride (PVC) is commonly employed as mulch in agriculture to boost crop yields. However, its toxicity is often overlooked. Due to its chemical stability, resistance to degradation, and the inadequacy of the recycling system, PVC tends to persist in farm environments, where [...] Read more.
Polyvinyl chloride (PVC) is commonly employed as mulch in agriculture to boost crop yields. However, its toxicity is often overlooked. Due to its chemical stability, resistance to degradation, and the inadequacy of the recycling system, PVC tends to persist in farm environments, where it can decompose into microplastics (MPs) or nanoplastics (NPs). The radish (Raphanus sativus L.) was chosen as the model plant for this study to evaluate the underlying toxic mechanisms of PVC NPs on seedling growth through the integration of multi-omics approaches with oxidative stress evaluations. The results indicated that, compared with the control group, the shoot lengths in the 5 mg/L and 150 mg/L treatment groups decreased by 33.7% and 18.0%, respectively, and the root lengths decreased by 28.3% and 11.3%, respectively. However, there was no observable effect on seed germination rates. Except for the peroxidase (POD) activity in the 150 mg/L group, all antioxidant enzyme activities and malondialdehyde (MDA) levels were higher in the treated root tips than in the control group. Both transcriptome and metabolomic analysis profiles showed 2075 and 4635 differentially expressed genes (DEGs) in the high- and low-concentration groups, respectively, and 1961 metabolites under each treatment. PVC NPs predominantly influenced seedling growth by interfering with plant hormone signaling pathways and phenylpropanoid production. Notably, the reported toxicity was more evident at lower concentrations. This can be accounted for by the plant’s “growth-defense trade-off” strategy and the manner in which nanoparticles aggregate. By clarifying how PVC NPs coordinately regulate plant stress responses via hormone signaling and phenylpropanoid biosynthesis pathways, this research offers a scientific basis for assessing environmental concerns related to nanoplastics in agricultural systems. Full article
(This article belongs to the Special Issue Stress Physiology and Molecular Biology of Vegetable Crops)
Show Figures

Figure 1

22 pages, 5283 KiB  
Article
Transcriptome Analysis Reveals Candidate Pathways and Genes Involved in Wheat (Triticum aestivum L.) Response to Zinc Deficiency
by Shoujing Zhu, Shiqi Zhang, Wen Wang, Nengbing Hu and Wenjuan Shi
Biology 2025, 14(8), 985; https://doi.org/10.3390/biology14080985 (registering DOI) - 2 Aug 2025
Viewed by 281
Abstract
Zinc (Zn) deficiency poses a major global health challenge, and wheat grains generally contain low Zn concentrations. In this study, the wheat cultivar ‘Zhongmai 175’ was identified as zinc-efficient. Hydroponic experiments demonstrated that Zn deficiency induced the secretion of oxalic acid and malic [...] Read more.
Zinc (Zn) deficiency poses a major global health challenge, and wheat grains generally contain low Zn concentrations. In this study, the wheat cultivar ‘Zhongmai 175’ was identified as zinc-efficient. Hydroponic experiments demonstrated that Zn deficiency induced the secretion of oxalic acid and malic acid in root exudates and significantly increased total root length in ‘Zhongmai 175’. To elucidate the underlying regulatory mechanisms, transcriptome profiling via RNA sequencing was conducted under Zn-deficient conditions. A total of 2287 and 1935 differentially expressed genes (DEGs) were identified in roots and shoots, respectively. Gene Ontology enrichment analysis revealed that these DEGs were primarily associated with Zn ion transport, homeostasis, transmembrane transport, and hormone signaling. Key DEGs belonged to gene families including VIT, NAS, DMAS, ZIP, tDT, HMA, and NAAT. KEGG pathway analysis indicated that phenylpropanoid biosynthesis, particularly lignin synthesis genes, was significantly downregulated in Zn-deficient roots. In shoots, cysteine and methionine metabolism, along with plant hormone signal transduction, were the most enriched pathways. Notably, most DEGs in shoots were associated with the biosynthesis of phytosiderophores (MAs, NA) and ethylene. Overall, genes involved in Zn ion transport, phytosiderophore biosynthesis, dicarboxylate transport, and ethylene biosynthesis appear to play central roles in wheat’s adaptive response to Zn deficiency. These findings provide a valuable foundation for understanding the molecular basis of Zn efficiency in wheat and for breeding Zn-enriched varieties. Full article
Show Figures

Figure 1

16 pages, 1526 KiB  
Article
Effects of Different Phosphorus Addition Levels on Physiological and Growth Traits of Pinus massoniana (Masson Pine) Seedlings
by Zhenya Yang and Hui Wang
Forests 2025, 16(8), 1265; https://doi.org/10.3390/f16081265 - 2 Aug 2025
Viewed by 125
Abstract
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive [...] Read more.
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive strategies of Masson pine to different soil P levels, focusing on root morphological–architectural plasticity and the allocation dynamics of nutrient elements and photosynthetic assimilates. One-year-old potted Masson pine seedlings were exposed to four P addition treatments for one year: P0 (0 mg kg−1), P1 (25 mg kg−1), P2 (50 mg·kg−1), and P3 (100 mg kg−1). In July and December, measurements were conducted on seedling organ biomass, root morphological indices [root length (RL), root surface area (RSA), root diameter (RD), specific root length (SRL), and root length ratio (RLR) for each diameter grade], root architectural indices [number of root tips (RTs), fractal dimension (FD), root branching angle (RBA), and root topological index (TI)], as well as the content of nitrogen (N), phosphorus (P), carbon (C), and non-structural carbohydrates (NSCs) in roots, stems, and leaves. Compared with the P0 treatment, P2 and P3 significantly increased root biomass, root–shoot ratio, RL, RSA, RTs, RLR of finer roots (diameter ≤ 0.4 mm), nutrient accumulation ratio in roots, and starch (ST) content in roots, stems and leaves. Meanwhile, they decreased soluble sugar (SS) content, SS/ST ratio, C and N content, and N/P and C/P ratios in stems and leaves, as well as nutrient accumulation ratio in leaves. The P3 treatment significantly reduced RBA and increased FD and SRL. Our results indicated that Masson pine adapts to low P by developing shallower roots with a reduced branching intensity and promoting the conversion of ST to SS. P’s addition effectively alleviates growth limitations imposed by low P, stimulating root growth, branching, and gravitropism. Although a sole P addition promotes short-term growth and P uptake, it triggers a substantial consumption of N, C, and SS, leading to significant decreases in N/P and C/P ratios and exacerbating N’s limitation, which is detrimental to long-term growth. Under high-P conditions, Masson pine strategically prioritizes allocating limited N and SS to roots, facilitating the formation of thinner roots with low C costs. Full article
Show Figures

Figure 1

17 pages, 1448 KiB  
Article
Nursery Propagation Systems for High-Quality Strawberry (Fragaria × ananassa Duch.) Plug Plant Production from Micropropagated, Soilless-Grown Mother Plants
by Valentina Morresi, Franco Capocasa, Francesca Balducci, Jacopo Diamanti and Bruno Mezzetti
Horticulturae 2025, 11(8), 888; https://doi.org/10.3390/horticulturae11080888 (registering DOI) - 1 Aug 2025
Viewed by 163
Abstract
The commercial propagation of strawberries is increasingly constrained by the incidence of both established and emerging soilborne pathogens, particularly under soil cultivation systems. Micropropagation represents an effective strategy to ensure the production of virus-free, true-to-type mother plants suitable for high-efficiency propagation. In this [...] Read more.
The commercial propagation of strawberries is increasingly constrained by the incidence of both established and emerging soilborne pathogens, particularly under soil cultivation systems. Micropropagation represents an effective strategy to ensure the production of virus-free, true-to-type mother plants suitable for high-efficiency propagation. In this study, micropropagated mother plants of four short-day cultivars (‘Francesca’, ‘Silvia’, ‘Lauretta’, and ‘Dina’) and one ever-bearing advanced selection (‘AN12,13,58’) were cultivated under a controlled soilless system. Quantitative parameters including number of runners per plant, runner length, and number of tips per runner and per plant were assessed to evaluate propagation performance. Micropropagated mother plants exhibited a significantly higher stoloniferous potential compared to in vivo-derived mother plants (frigo plants type A), with the latter producing approximately 50% fewer propagules. Rooted tips of ‘Dina’ were further assessed under different fertigation regimes. The NPK 20–20–20 nutrient solution enhanced photosynthetic activity and shoot and root biomass (length, diameter, and volume via WinRHIZO analysis). These results confirm the suitability of micropropagated mother plants grown in soilless conditions for efficient, high-quality clonal propagation and support the integration of such systems into certified nursery production schemes. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Graphical abstract

21 pages, 6231 KiB  
Article
Integrating In Vitro Propagation and Machine Learning Modeling for Efficient Shoot and Root Development in Aronia melanocarpa
by Mehmet Yaman, Esra Bulunuz Palaz, Musab A. Isak, Serap Demirel, Tolga İzgü, Sümeyye Adalı, Fatih Demirel, Özhan Şimşek, Gheorghe Cristian Popescu and Monica Popescu
Horticulturae 2025, 11(8), 886; https://doi.org/10.3390/horticulturae11080886 (registering DOI) - 1 Aug 2025
Viewed by 178
Abstract
Aronia melanocarpa (black chokeberry) is a medicinally valuable small fruit species, yet its commercial propagation remains limited by low rooting and genotype-specific responses. This study developed an efficient, callus-free micropropagation and rooting protocol using a Shrub Plant Medium (SPM) supplemented with 5 mg/L [...] Read more.
Aronia melanocarpa (black chokeberry) is a medicinally valuable small fruit species, yet its commercial propagation remains limited by low rooting and genotype-specific responses. This study developed an efficient, callus-free micropropagation and rooting protocol using a Shrub Plant Medium (SPM) supplemented with 5 mg/L BAP in large 660 mL jars, which yielded up to 27 shoots per explant. Optimal rooting (100%) was achieved with 0.5 mg/L NAA + 0.25 mg/L IBA in half-strength SPM. In the second phase, supervised machine learning models, including Random Forest (RF), XGBoost, Gaussian Process (GP), and Multilayer Perceptron (MLP), were employed to predict morphogenic traits based on culture conditions. XGBoost and RF outperformed other models, achieving R2 values exceeding 0.95 for key variables such as shoot number and root length. These results demonstrate that data-driven modeling can enhance protocol precision and reduce experimental workload in plant tissue culture. The study also highlights the potential for combining physiological understanding with artificial intelligence to streamline future in vitro applications in woody species. Full article
(This article belongs to the Special Issue Tissue Culture and Micropropagation Techniques of Horticultural Crops)
Show Figures

Figure 1

20 pages, 1379 KiB  
Article
Combined Effects of Polyethylene and Bordeaux Mixture on the Soil–Plant System: Phytotoxicity, Copper Accumulation and Changes in Microbial Abundance
by Silvia Romeo-Río, Huguette Meta Foguieng, Antía Gómez-Armesto, Manuel Conde-Cid, David Fernández-Calviño and Andrés Rodríguez-Seijo
Agriculture 2025, 15(15), 1657; https://doi.org/10.3390/agriculture15151657 - 1 Aug 2025
Viewed by 271
Abstract
Greenhouses have positively impacted plant production by allowing the cultivation of different crops per year. However, the accumulation of agricultural plastics, potentially contaminated with agrochemicals, raises environmental concerns. This work evaluates the combined effect of Bordeaux mixture and low-density polyethylene (LDPE) microplastics (<5 [...] Read more.
Greenhouses have positively impacted plant production by allowing the cultivation of different crops per year. However, the accumulation of agricultural plastics, potentially contaminated with agrochemicals, raises environmental concerns. This work evaluates the combined effect of Bordeaux mixture and low-density polyethylene (LDPE) microplastics (<5 mm) on the growth of lettuce (Lactuca sativa L.) and soil microbial communities. Different levels of Bordeaux mixture (0, 100 and 500 mg kg−1), equivalent to Cu(II) concentrations (0, 17 and 83 mg kg−1), LDPE microplastics (0, 1% and 5%) and their combination were selected. After 28 days of growth, biometric and photosynthetic parameters, Cu uptake, and soil microbial responses were evaluated. Plant germination and growth were not significantly affected by the combination of Cu and plastics. However, individual Cu treatments influenced root and shoot length and biomass. Chlorophyll and carotenoid concentrations increased with Cu addition, although the differences were not statistically significant. Phospholipid fatty acid (PLFA) analysis revealed a reduction in microbial biomass at the highest Cu dose, whereas LDPE alone showed limited effects and may reduce Cu bioavailability. These results suggest that even at the highest concentration added, Cu can act as a plant nutrient, while the combination of Cu–plastics showed varying effects on plant growth and soil microbial communities. Full article
(This article belongs to the Special Issue Impacts of Emerging Agricultural Pollutants on Environmental Health)
Show Figures

Figure 1

18 pages, 3095 KiB  
Article
Investigating Seed Germination, Seedling Growth, and Enzymatic Activity in Onion (Allium cepa) Under the Influence of Plasma-Treated Water
by Sabnaj Khanam, Young June Hong, Eun Ha Choi and Ihn Han
Int. J. Mol. Sci. 2025, 26(15), 7256; https://doi.org/10.3390/ijms26157256 - 27 Jul 2025
Viewed by 323
Abstract
Seed germination and early seedling growth are pivotal stages that define crop establishment and yield potential. Conventional agrochemicals used to improve these processes often raise environmental concerns, highlighting the need for sustainable alternatives. In this study, we demonstrated that water treated with cylindrical [...] Read more.
Seed germination and early seedling growth are pivotal stages that define crop establishment and yield potential. Conventional agrochemicals used to improve these processes often raise environmental concerns, highlighting the need for sustainable alternatives. In this study, we demonstrated that water treated with cylindrical dielectric barrier discharge (c-DBD) plasma, enriched with nitric oxide (NO) and reactive nitrogen species (RNS), markedly enhanced onion (Allium cepa) seed germination and seedling vigor. The plasma-treated water (PTW) promoted rapid imbibition, broke dormancy, and accelerated germination rates beyond 98%. Seedlings irrigated with PTW exhibited significantly increased biomass, root and shoot length, chlorophyll content, and antioxidant enzyme activities, accompanied by reduced lipid peroxidation. Transcriptomic profiling revealed that PTW orchestrated a multifaceted regulatory network by upregulating gibberellin biosynthesis genes (GA3OX1/2), suppressing abscisic acid signaling components (ABI5), and activating phenylpropanoid metabolic pathways (PAL, 4CL) and antioxidant defense genes (RBOH1, SOD). These molecular changes coincided with elevated NO2 and NO3 levels and finely tuned hydrogen peroxide dynamics, underpinning redox signaling crucial for seed activation and stress resilience. Our findings establish plasma-generated NO-enriched water as an innovative, eco-friendly technology that leverages redox and hormone crosstalk to stimulate germination and early growth, offering promising applications in sustainable agriculture. Full article
(This article belongs to the Special Issue Plasma-Based Technologies for Food Safety and Health Enhancement)
Show Figures

Figure 1

25 pages, 4954 KiB  
Article
Local Fungi Promote Plant Growth by Positively Affecting Rhizosphere Metabolites to Drive Beneficial Microbial Assembly
by Deyu Dong, Zhanling Xie, Jing Guo, Bao Wang, Qingqing Peng, Jiabao Yang, Baojie Deng, Yuan Gao, Yuting Guo, Xueting Fa and Jianing Yu
Microorganisms 2025, 13(8), 1752; https://doi.org/10.3390/microorganisms13081752 - 26 Jul 2025
Viewed by 366
Abstract
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi [...] Read more.
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi (DK; F18-3) and commercially available bacteria (B0) were used as materials to explore their regulatory mechanisms for plant growth, soil physicochemical factors, microbial communities, and metabolic profiles in the field. Compared to bacterial treatments, local fungi treatments exhibited stronger ecological restoration efficacy. In addition, the DK and F18-3 strains, respectively, increased shoot and root biomass by 23.43% and 195.58% and significantly enhanced soil nutrient content and enzyme activity. Microbiome analysis further implied that, compared with the CK, DK treatment could significantly improve the α-diversity of fungi in the rhizosphere soil (the Shannon index increased by 14.27%) and increased the amount of unique bacterial genera in the rhizosphere soil of plants, totaling fourteen genera. Meanwhile, this aggregated the most biomarkers and beneficial microorganisms and strengthened the interactions among beneficial microorganisms. After DK treatment, twenty of the positively accumulated differential metabolites (DMs) in the plant rhizosphere were highly positively associated with six plant traits such as shoot length and root length, as well as beneficial microorganisms (e.g., Apodus and Pseudogymnoascus), but two DMs were highly negatively related to plant pathogenic fungi (including Cistella and Alternaria). Specifically, DK mainly inhibited the growth of pathogenic fungi through regulating the accumulation of D-(+)-Malic acid and Gamma-Aminobutyric acid (Cistella and Alternaria decreased by 84.20% and 58.53%, respectively). In contrast, the F18-3 strain mainly exerted its antibacterial effect by enriching Acidovorax genus microorganisms. This study verified the core role of local fungi in the restoration of mining areas in the Qinghai–Tibet Plateau and provided a new direction for the development of microbial agents for ecological restoration in the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

18 pages, 1367 KiB  
Article
Intensification of Pea (Pisum sativum L.) Production in Organic Farming: Effects of Biological Treatments on Plant Growth, Seed Yield, and Protein Content
by Thi Giang Nguyen, Petr Konvalina, Ivana Capouchová, Petr Dvořák, Kristýna Perná, Marek Kopecký, Trong Nghia Hoang, Jana Lencová, Andrea Bohatá, Miloslava Kavková, Yves Theoneste Murindangabo, David Kabelka and Dang Khoa Tran
Agronomy 2025, 15(8), 1792; https://doi.org/10.3390/agronomy15081792 - 25 Jul 2025
Viewed by 208
Abstract
The adoption of biological control strategies plays a crucial role in ensuring the sustainability of organic agricultural practices. A field experiment was conducted in 2023 and 2024 to evaluate the impact of biological treatments using lactic acid bacteria (LAB) Lactiplantibacillus plantarum and mycoparasitic [...] Read more.
The adoption of biological control strategies plays a crucial role in ensuring the sustainability of organic agricultural practices. A field experiment was conducted in 2023 and 2024 to evaluate the impact of biological treatments using lactic acid bacteria (LAB) Lactiplantibacillus plantarum and mycoparasitic fungus (MPF) Trichoderma virens applied through seed treatment and foliar application separately and in combination on agronomic characteristics and pea yield in organic cultivation. Seed treatment with LAB and MPF resulted in a notable improvement in shoot length and root dry weight, while an increase in root nodule number was observed exclusively with LAB. The combined application of MPF as a seed treatment and LAB as a foliar application at the flowering stage significantly enhanced pod weight per plant, seed number per pod and per plant, and seed weight compared to treatments with LAB applied as either a foliar or seed treatment separately, as well as the untreated control. However, the yield responses to individual and combined treatments under field conditions demonstrated variability and inconsistency. Protein content ranged from 21.24% to 21.61%, and no significant differences observed between treatments. This is the first field report directly comparing the effectiveness of treatments on organic pea production. The findings offer promising avenues for assessing the long-term impacts of these treatments on the sustainable intensification of pea cultivation. Full article
(This article belongs to the Special Issue Cereal–Legume Cropping Systems)
Show Figures

Figure 1

12 pages, 1597 KiB  
Article
Effects of Anthropogenic Vibratory Noise on Plant Development and Herbivory
by Estefania Velilla, Laura Bellato, Eleanor Collinson and Wouter Halfwerk
Acoustics 2025, 7(3), 45; https://doi.org/10.3390/acoustics7030045 - 25 Jul 2025
Viewed by 275
Abstract
Anthropogenic infrastructure, such as inland wind turbines commonly found in agricultural fields, has substantially increased subterranean vibratory noise in the past decades. Plants, being rooted in soil, are continuously exposed to these vibrations, yet we have little understanding of how vibrational noise affects [...] Read more.
Anthropogenic infrastructure, such as inland wind turbines commonly found in agricultural fields, has substantially increased subterranean vibratory noise in the past decades. Plants, being rooted in soil, are continuously exposed to these vibrations, yet we have little understanding of how vibrational noise affects plant development and, consequently, plant–insect interactions. Here, we examine the impact of windmill-like vibrational noise on the growth of Pisum sativum and its full-factorial interaction with the generalist herbivore Spodoptera exigua. Plants were exposed to either high or low vibrational noise from seed germination to the seed production stage. We recorded germination, flowering, fruiting time, and daily shoot length. Additionally, we measured herbivory intensity by Spodoptera exigua caterpillars placed on a subset of plants. Plants exposed to high vibrational noise grew significantly faster and taller than those in the low-noise treatment. Additionally, we found a marginally significant trend for earlier flowering in plants exposed to high noise. We did not find a significant effect of vibrational noise on herbivory. Our results suggest that underground vibrational noise can influence plant growth rates, which may potentially have ecological and agricultural implications. Faster growth may alter interspecific competition and shift trade-offs between growth and defense. Understanding these effects is important in assessing the broader ecological consequences of renewable energy infrastructure. Full article
Show Figures

Figure 1

19 pages, 2186 KiB  
Article
Optimizing Rooting and Growth of Salvia rosmarinus Cuttings in Soilless Systems Affected by Growth Regulators
by Georgios Lykokanellos, Ioannis Lagogiannis, Aglaia Liopa-Tsakalidi, Sofia Anna Barla and Georgios Salachas
Plants 2025, 14(14), 2210; https://doi.org/10.3390/plants14142210 - 17 Jul 2025
Viewed by 326
Abstract
This study investigated how propagation systems, growth regulators, and hormone formulations interactively affect the rooting and subsequent growth of rosemary (Salvia rosmarinus Spenn) cuttings. A three factorial (3 × 2 × 7) experiment was conducted under a fully controlled greenhouse environment, incorporating [...] Read more.
This study investigated how propagation systems, growth regulators, and hormone formulations interactively affect the rooting and subsequent growth of rosemary (Salvia rosmarinus Spenn) cuttings. A three factorial (3 × 2 × 7) experiment was conducted under a fully controlled greenhouse environment, incorporating three soilless propagation systems (mist, float, aeroponics), two rooting hormone formulations (powder and gel-based IBA), and two growth regulators (paclobutrazol and daminozide) at three concentrations each. Significant differences (p < 0.001) were found in shoot height, root length, and number of lateral roots. The float system combined with powder hormone and no retardants achieved the highest shoot height (mean = 16.7 cm), while aeroponics with powder hormone and daminozide 1000 ppm promoted the greatest root branching (mean = 12.2 lateral roots per cutting). Root length was maximized (mean = 15.9 cm) under float systems with daminozide 1000 ppm. High doses of both growth regulators negatively affected all parameters across systems. Post-transplantation monitoring confirmed that cuttings from float and mist systems treated with powder hormone and low or no growth retardants exhibited superior establishment and net growth over 60 days. These findings demonstrate the critical importance of pairing hormone type, regulator concentration, and propagation system, providing actionable protocols for nursery managers aiming to enhance Salvia rosmarinus propagation in commercial practice. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

13 pages, 4687 KiB  
Article
Temporary Immersion Bioreactor for In Vitro Multiplication of Raspberry (Rubus idaeus L.)
by Bruno Reyes-Beristain, Eucario Mancilla-Álvarez, José Abel López-Buenfil and Jericó Jabín Bello-Bello
Horticulturae 2025, 11(7), 842; https://doi.org/10.3390/horticulturae11070842 - 17 Jul 2025
Viewed by 290
Abstract
Raspberry (Rubus idaeus L.) micropropagation is an alternative for obtaining plantlets with high genetic and phytosanitary quality. The objective of this study was to establish a protocol for the micropropagation of raspberry (Rubus idaeus L.) using the temporary immersion bioreactor, under [...] Read more.
Raspberry (Rubus idaeus L.) micropropagation is an alternative for obtaining plantlets with high genetic and phytosanitary quality. The objective of this study was to establish a protocol for the micropropagation of raspberry (Rubus idaeus L.) using the temporary immersion bioreactor, under intermittent immersion periods and different culture medium volumes. The effect of the liquid medium using the TIB and semisolid was evaluated. Different immersion frequencies and culture medium volumes per explant were evaluated in the TIB. In all treatments, the number of shoots per explant, shoot length, number of leaves per explant, percentage of hyperhydricity, and chlorophyll and β-carotene content at multiplication stage were evaluated. The generated shoots, without a root system, were transferred to the acclimatization stage. The results show that the TIB with an immersion frequency of 2 min every 8 h and a volume of 25 mL of culture medium per explant had the best developmental parameters, with 5.75 shoots per explant, a shoot length of 3.44 cm, and 2% hyperhydricity. The highest chlorophyll and β-carotene content was observed in the TIB at different immersion frequencies of 4, 8 and 12 h, with 25 and 50 mL per explant. Survival percentages higher than 96% were observed in all methods evaluated. In conclusion, the evaluated immersion system is an efficient alternative for R. idaeus micropropagation, without using a rooting stage. Full article
(This article belongs to the Special Issue Tissue Culture and Micropropagation Techniques of Horticultural Crops)
Show Figures

Figure 1

19 pages, 2405 KiB  
Article
Antifungal Activity of Quaternary Pyridinium Salts Against Fusarium culmorum in Wheat Seedlings
by Tamara Siber, Elena Petrović, Jasenka Ćosić, Valentina Bušić, Dajana Gašo-Sokač and Karolina Vrandečić
Appl. Sci. 2025, 15(14), 7889; https://doi.org/10.3390/app15147889 - 15 Jul 2025
Viewed by 232
Abstract
Wheat (Triticum aestivum L.) is a major cereal crop globally, but its production is increasingly threatened by fungal pathogens, particularly Fusarium culmorum (Wm. G. Sm.) Sacc., which causes seedling blight and root rot, leading to yield losses and mycotoxin contamination. Conventional control [...] Read more.
Wheat (Triticum aestivum L.) is a major cereal crop globally, but its production is increasingly threatened by fungal pathogens, particularly Fusarium culmorum (Wm. G. Sm.) Sacc., which causes seedling blight and root rot, leading to yield losses and mycotoxin contamination. Conventional control strategies, such as crop rotation and the use of fungicides, are often inadequate and contribute to the development of resistance, particularly with the overuse of similar modes of action. This study investigated quaternary pyridinium salts—nicotinamide and isonicotinamide derivatives—as potential sustainable antifungal agents. In vivo tests involved treating sterilized wheat seeds grown in sterile sand that had been inoculated with F. culmorum, using compounds previously confirmed to be active in vitro. Disease index, shoot and root length, and fresh and dry biomass were measured. Among the tested compounds, nicotinamide derivatives (2) and (3) showed the lowest disease index (0.9) at a concentration of 10 µg/mL. Most compounds promoted plant and root growth. Isonicotinamide derivatives (6) and (7) at 100 µg/mL increased root dry weight, while compound (6) at 10 µg/mL resulted in the most significant increase in plant length. These findings highlight the dual antifungal and growth-promoting potential of certain eco-friendly derivatives for managing F. culmorum and supporting wheat seedling development. Full article
Show Figures

Figure 1

Back to TopTop