Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = shielding over chemical bonds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4032 KiB  
Article
The Effect of Microstructural Changes Produced by Heat Treatment on the Electromagnetic Interference Shielding Properties of Ti-Based MXenes
by Xue Han, Jae Jeong Lee, Ji Soo Kyoung and Yun Sung Woo
Nanomaterials 2025, 15(9), 676; https://doi.org/10.3390/nano15090676 - 29 Apr 2025
Viewed by 491
Abstract
Ti-based MXenes such as Ti3C2TX and Ti2CTX have attracted considerable attention because of their superior electromagnetic interference (EMI) shielding effectiveness compared to other EMI shielding materials, especially for high electromagnetic (EM) wave absorption. In this [...] Read more.
Ti-based MXenes such as Ti3C2TX and Ti2CTX have attracted considerable attention because of their superior electromagnetic interference (EMI) shielding effectiveness compared to other EMI shielding materials, especially for high electromagnetic (EM) wave absorption. In this study, we investigated the microstructural changes produced by heat treatment and their effect on the EMI shielding properties of Ti-based MXenes. Ti3C2TX and Ti2CTX films were prepared using vacuum filtration and annealed at temperatures up to 300 °C. The microstructures and chemical bonding properties of these heat-treated Ti3C2TX and Ti2CTX films were analyzed, and the EMI shielding effectiveness was measured in the X-band and THz frequency range. The porous Ti3C2TX film showed higher EM absorption than that calculated using the transfer matrix method. On the other hand, the Ti2CTX films had a more densely stacked structure and lower EM absorption. As the heat treatment temperature increased, Ti3C2TX developed a more porous structure without significant changes in its chemical bonding. Its EM absorption per unit of thickness increased up to 6 dB/μm, while the reflectance remained constant at less than 1 dB/μm after heat treatment. This suggested that the heat treatment of Ti-based MXenes can increase the porosity of the film by removing residual organics without changing the chemical bonds, thereby increasing electromagnetic shielding through absorption. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

17 pages, 3763 KiB  
Article
Bio-Based and Solvent-Free Epoxy Vitrimers Based on Dynamic Imine Bonds with High Mechanical Performance
by Lei Chen, Na Ning, Gang Zhou, Yan Li, Shicheng Feng, Zhengyan Guo and Yi Wei
Polymers 2025, 17(5), 571; https://doi.org/10.3390/polym17050571 - 21 Feb 2025
Viewed by 1458
Abstract
Conventional epoxy thermosets, with irreversible crosslinking networks, cannot be reprocessed and recycled. Furthermore, the utilization of petroleum-based materials accelerates the depletion of non-renewable resources. The introduction of dynamic covalent bonds and the use of bio-based materials for thermosets can effectively address the above [...] Read more.
Conventional epoxy thermosets, with irreversible crosslinking networks, cannot be reprocessed and recycled. Furthermore, the utilization of petroleum-based materials accelerates the depletion of non-renewable resources. The introduction of dynamic covalent bonds and the use of bio-based materials for thermosets can effectively address the above issues. Herein, a series of bio-based epoxy vitrimers with dynamic covalent imine bonds were synthesized via a simple solvent-free, one-pot method using vanillin-derived aldehyde monomers, 4,4-diaminodiphenylsulfone (DDS) and bisphenol F diglycidyl ether (BFDGE) as raw materials. The effect of crosslinking density, crosslinking structure and imine bond content on the resulting bio-based vitrimers was studied, demonstrating their excellent thermal properties, UV shielding and solvent resistance, as well as outstanding mechanical properties compared to those of the previously reported vitrimers. In particular, the cured neat resin of vitrimer had a maximum tensile strength of 109 MPa and Young’s modulus of 6257 MPa, which are higher than those of previously reported imine-based vitrimers. The dynamic imine bonds endow these vitrimers with good reprocessability upon heating (over 70% recovery) and degradation under acidic conditions, enabling recycling by physical routes and gentle degradation by chemical routes. This study demonstrates a simple and effective process to prepare high-performance bio-based and recycled epoxy thermosets. Full article
Show Figures

Figure 1

13 pages, 1634 KiB  
Article
Nuclear Magnetic Resonance (NMR) and Density Functional Theory (DFT) Study of Water Clusters of Hydrogen-Rich Water (HRW)
by Nikolay Vassilev, Ignat Ignatov, Teodora P. Popova, Fabio Huether, Alexander I. Ignatov, Mario T. Iliev and Yordan Marinov
Water 2024, 16(22), 3261; https://doi.org/10.3390/w16223261 - 13 Nov 2024
Cited by 4 | Viewed by 1931
Abstract
The present study investigated the 1H Nuclear Magnetic Resonance (NMR) spectra of hydrogen-rich water (HRW) produced using the EVObooster device. The analyzed HRW has pH = 7.1 ± 0.11, oxidation–reduction potential (ORP) of (−450 ± 11) mV, and a dissolved hydrogen concentration [...] Read more.
The present study investigated the 1H Nuclear Magnetic Resonance (NMR) spectra of hydrogen-rich water (HRW) produced using the EVObooster device. The analyzed HRW has pH = 7.1 ± 0.11, oxidation–reduction potential (ORP) of (−450 ± 11) mV, and a dissolved hydrogen concentration of 1.2 ppm. The control sample was tap water filtered by patented technology. A 600 NMR spectrometer was used to measure NMR spectra. Isotropic 1H nuclear magnetic shielding constants of the most stable clusters (H2O)n with n from 3 to 28 have been calculated by employing the gauge-including-atomic-orbital (GIAO) method at the MPW1PW91/6-311+G(2d,p) density function level of theory (DFT). The HRW chemical shift is downfield (higher chemical shifts) due to increased hydrogen bonding. More extensive formations were formed in HRW than in control filtered tap water. The exchange of protons between water molecules is rapid in HRW, and the 1H NMR spectra are in fast exchange mode. Therefore, we averaged the calculated chemical shifts of the investigated water clusters. As the size of the clusters increases, the number of hydrogen bonds increases, which leads to an increase in the chemical shift. The dependence is an exponential saturation that occurs at about N = 10. The modeled clusters in HRW are structurally stabilized, suggesting well-ordered hydrogen bonds. In the article, different processes are described for the transport of water molecules and clusters. These processes are with aquaporins, fusion pores, gap-junction channels, and WAT FOUR model. The exponential trend of saturation shows the dynamics of water molecules in clusters. In our research, the chemical shift of 4.257 ppm indicates stable water clusters of 4–5 water molecules. The pentagonal rings in dodecahedron cage H3O+(H2O)20 allow for an optimal arrangement of hydrogen bonds that minimizes the potential energy. Full article
(This article belongs to the Section Water and One Health)
Show Figures

Figure 1

12 pages, 2359 KiB  
Article
Polyacetylene Prepared by Chemical Dehydration of Poly(Vinyl Alcohol)
by Gianfranco Carotenuto and Luigi Nicolais
Coatings 2024, 14(9), 1216; https://doi.org/10.3390/coatings14091216 - 20 Sep 2024
Viewed by 1766
Abstract
Recently, polyacetylene (PA) has been receiving renewed scientific attention due to its electrical properties, potentially useful for energy applications (e.g., fabrication of electrodes for rechargeable batteries and supercapacitors), and unique functional characteristics (e.g., gas trap, oxygen scavenger, EMI shielding, etc.). This chemical compound [...] Read more.
Recently, polyacetylene (PA) has been receiving renewed scientific attention due to its electrical properties, potentially useful for energy applications (e.g., fabrication of electrodes for rechargeable batteries and supercapacitors), and unique functional characteristics (e.g., gas trap, oxygen scavenger, EMI shielding, etc.). This chemical compound can be obtained in the form of polyacetylene–PVOH copolymers simply through the chemical dehydration of poly(vinyl alcohol) (PVOH), which is a very common type of polymer, widely used in packaging and other technological areas. This very inexpensive chemical reaction for the large-scale synthesis of PA/polyvinylenes is investigated by reacting PVOH with sulfuric acid at room temperature. In this process, PVOH, shaped in the form of a film, is dipped in sulfuric acid (i.e., H2SO4 at 95%–97%) and, after complete chemical dehydration, it is mechanically removed from the liquid phase by using a nylon sieve. The reduction process leads to a substantial PVOH film conversion into PA, as demonstrated by infrared spectroscopy (ATR mode). Indeed, the ATR spectrum of the reaction product includes all the characteristic absorption bands of PA. The reaction product is also characterized through the use of UV–Vis spectroscopy in order to evidence the presence in the structure of conjugated carbon–carbon double bonds of various lengths. Differential scanning calorimetry (DSC) and thermogravimetric analysis are used to investigate the PA solid-state cis–trans isomerization and thermal stability in air and nitrogen, respectively. XRD is used to verify the polymer amorphous nature. Full article
Show Figures

Figure 1

12 pages, 3124 KiB  
Article
Effect of Geopolymerization Reaction on the Flexural Strength of Kaolin-Based Systems
by Binghuan Gao, Yangyang Li, Seongwan Jang, Hyeonjin Son, Heesoo Lee and Chang-Jun Bae
Materials 2024, 17(10), 2223; https://doi.org/10.3390/ma17102223 - 8 May 2024
Cited by 2 | Viewed by 1485
Abstract
Geopolymers exhibit broad application prospects, including construction and radiation shielding, which require excellent mechanical performances. However, investigations on the nature of geopolymerization reactions and their consequential impact on mechanical performance are still vague. In this study, the effect of the major factors of [...] Read more.
Geopolymers exhibit broad application prospects, including construction and radiation shielding, which require excellent mechanical performances. However, investigations on the nature of geopolymerization reactions and their consequential impact on mechanical performance are still vague. In this study, the effect of the major factors of Si/Al ratio and curing time on the geopolymerization reaction and flexural strength were studied based on the microstructure evolution and chemical bonding formation analyzed using the SEM, FTIR, peak deconvolution, and XRD methods. The microstructure of geopolymers was transferred from initially layered smooth particles of kaolinite to a 3D network porous structure, corresponding to sodalite. A spectrum exclusive to the geopolymer structure occurred at 973 cm−1, corresponding to the sodium aluminum silicate hydrate (N-A-S-H) links, the integral area of which represents the degree of geopolymerization reaction. Furthermore, a controllable reaction degree was achieved by adjusting the Si/Al ratio and curing time, where the maximum reaction degree of 55% was achieved at a Si/Al ratio of 1.94 when cured for 7 d. The correlation between the flexural strength and reaction degree was found to follow a proportional relationship, achieving a flexural strength of 21.11 MPa with a degree of 45%. This study provides insight into the development of mechanical strength through controlling the reaction process. Full article
Show Figures

Figure 1

22 pages, 5297 KiB  
Article
Development and Evaluation of a Water-Free In Situ Depot Gel Formulation for Long-Acting and Stable Delivery of Peptide Drug ACTY116
by Yingxin Xiong, Zhirui Liu, Yuanqiang Wang, Jiawei Wang, Xing Zhou and Xiaohui Li
Pharmaceutics 2024, 16(5), 620; https://doi.org/10.3390/pharmaceutics16050620 - 5 May 2024
Viewed by 2592
Abstract
In situ depot gel is a type of polymeric long-acting injectable (pLAI) drug delivery system; compared to microsphere technology, its preparation process is simpler and more conducive to industrialization. To ensure the chemical stability of peptide ACTY116, we avoided the use of harsh [...] Read more.
In situ depot gel is a type of polymeric long-acting injectable (pLAI) drug delivery system; compared to microsphere technology, its preparation process is simpler and more conducive to industrialization. To ensure the chemical stability of peptide ACTY116, we avoided the use of harsh conditions such as high temperatures, high shear mixing, or homogenization; maintaining a water-free and oxygen-free environment was also critical to prevent hydrolysis and oxidation. Molecular dynamics (MDs) simulations were employed to assess the stability mechanism between ACTY116 and the pLAI system. The initial structure of ACTY116 with an alpha helix conformation was constructed using SYBYL-X, and the copolymer PLGA was generated by AMBER 16; results showed that PLGA-based in situ depot gel improved conformational stability of ACTY116 through hydrogen bonds formed between peptide ACTY116 and the components of the pLAI formulation, while PLGA (Poly(DL-lactide-co-glycolide)) also created steric hindrance and shielding effects to prevent conformational changes. As a result, the chemical and conformational stability and in vivo long-acting characteristics of ACTY116 ensure its enhanced efficacy. In summary, we successfully achieved our objective of developing a highly stable peptide-loaded long-acting injectable (LAI) in situ depot gel formulation that is stable for at least 3 months under harsh conditions (40 °C, above body temperature), elucidating the underlying stabilisation mechanism, and the high stability of the ACTY116 pLAI formulation creates favourable conditions for its in vivo pharmacological activity lasting for weeks or even months. Full article
Show Figures

Figure 1

23 pages, 15079 KiB  
Article
Optoelectronic Response to the Fluor Ion Bond on 4-(4,4,5,5-Tetramethyl-1,3,2-dioxoborolan-2-yl)benzaldehyde
by Ulises J. Guevara, Jesús Núñez, Laura M. Pérez, Anton Tiutiunnyk, Neudo Urdaneta, Eduardo Cisternas and David Laroze
Int. J. Mol. Sci. 2024, 25(9), 5000; https://doi.org/10.3390/ijms25095000 - 3 May 2024
Cited by 1 | Viewed by 1312
Abstract
Boronate esters are a class of compounds containing a boron atom bonded to two oxygen atoms in an ester group, often being used as precursors in the synthesis of other materials. The characterization of the structure and properties of esters is usually carried [...] Read more.
Boronate esters are a class of compounds containing a boron atom bonded to two oxygen atoms in an ester group, often being used as precursors in the synthesis of other materials. The characterization of the structure and properties of esters is usually carried out by UV-visible, infrared, and nuclear magnetic resonance (NMR) spectroscopic techniques. With the aim to better understand our experimental data, in this article, the density functional theory (DFT) is used to analyze the UV-visible and infrared spectra, as well as the isotropic shielding and chemical shifts of the hydrogen atoms 1H, carbon 13C and boron 11B in the compound 4-(4,4,5,5-tetramethyl-1,3,2-dioxoborolan-2-yl)benzaldehyde. Furthermore, this study considers the change in its electronic and spectroscopic properties of this particular ester, when its boron atom is coordinated with a fluoride anion. The calculations were carried out using the LSDA and B3LYP functionals in Gaussian-16, and PBE in CASTEP. The results show that the B3LYP functional gives the best approximation to the experimental data. The formation of a coordinated covalent B–F bond highlights the remarkable sensitivity of the NMR chemical shifts of carbon, oxygen, and boron atoms and their surroundings. Furthermore, this bond also highlights the changes in the electron transitions bands nπ* and ππ* during the absorption and emission of a photon in the UV-vis, and in the stretching bands of the C=C bonds, and bending of BO2 in the infrared spectrum. This study not only contributes to the understanding of the properties of boronate esters but also provides important information on the interactions and responses optoelectronic of the compound when is bonded to a fluorine atom. Full article
Show Figures

Figure 1

55 pages, 5589 KiB  
Review
The Aging of Polymers under Electromagnetic Radiation
by Chrysanthos Maraveas, Ioannis Vasileios Kyrtopoulos, Konstantinos G. Arvanitis and Thomas Bartzanas
Polymers 2024, 16(5), 689; https://doi.org/10.3390/polym16050689 - 3 Mar 2024
Cited by 24 | Viewed by 4153
Abstract
Polymeric materials degrade as they react with environmental conditions such as temperature, light, and humidity. Electromagnetic radiation from the Sun’s ultraviolet rays weakens the mechanical properties of polymers, causing them to degrade. This study examined the phenomenon of polymer aging due to exposure [...] Read more.
Polymeric materials degrade as they react with environmental conditions such as temperature, light, and humidity. Electromagnetic radiation from the Sun’s ultraviolet rays weakens the mechanical properties of polymers, causing them to degrade. This study examined the phenomenon of polymer aging due to exposure to ultraviolet radiation. The study examined three specific objectives, including the key theories explaining ultraviolet (UV) radiation’s impact on polymer decomposition, the underlying testing procedures for determining the aging properties of polymeric materials, and appraising the current technical methods for enhancing the UV resistance of polymers. The study utilized a literature review methodology to understand the aging effect of electromagnetic radiation on polymers. Thus, the study concluded that using additives and UV absorbers on polymers and polymer composites can elongate the lifespan of polymers by shielding them from the aging effects of UV radiation. The findings from the study suggest that thermal conditions contribute to polymer degradation by breaking down their physical and chemical bonds. Thermal oxidative environments accelerate aging due to the presence of UV radiation and temperatures that foster a quicker degradation of plastics. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

12 pages, 1689 KiB  
Article
Multiple Intramolecular Hydrogen Bonding in Large Biomolecules: DFT Calculations and Deuterium Isotope Effects on 13C Chemical Shifts as a Tool in Structural Studies
by Poul Erik Hansen and Fadhil S. Kamounah
Chemistry 2023, 5(2), 1317-1328; https://doi.org/10.3390/chemistry5020089 - 23 May 2023
Cited by 1 | Viewed by 2163
Abstract
Large biomolecules often have multiple intramolecular hydrogen bonds. In the cases where these interact, it requires special tools to disentangle the patterns. Such a tool could be deuterium isotope effects on chemical shifts. The use of theoretical calculations is an indispensable tool in [...] Read more.
Large biomolecules often have multiple intramolecular hydrogen bonds. In the cases where these interact, it requires special tools to disentangle the patterns. Such a tool could be deuterium isotope effects on chemical shifts. The use of theoretical calculations is an indispensable tool in such studies. The present paper illustrates how DFT calculations of chemical shifts and deuterium isotope effects on chemical shifts in combination with measurements of these effects can establish the complex intramolecular hydrogen bond patterns of rifampicin as an example) The structures were calculated using DFT theoretical calculations, performed with the Gaussian 16 software. The geometries were optimized using the B3LYP functional and the Pople basis set 6-31G(d) and the solvent (DMSO) was taken into account in the PCM approach. Besides the 6-31G(d) basis set, the 6-31 G(d,p) and the 6-3111G(d,p) basis sets were also tested. The nuclear shieldings were calculated using the GIAO approach. Deuteriation was simulated by shortening the X-H bond lengths by 0.01 Å. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Graphical abstract

10 pages, 1688 KiB  
Article
Sc@B28, Ti@B28, V@B28+, and V@B292−: Spherically Aromatic Endohedral Seashell-like Metallo-Borospherenes
by Ting Zhang, Min Zhang, Xiao-Qin Lu, Qiao-Qiao Yan, Xiao-Ni Zhao and Si-Dian Li
Molecules 2023, 28(9), 3892; https://doi.org/10.3390/molecules28093892 - 5 May 2023
Cited by 5 | Viewed by 1722
Abstract
Transition-metal-doped boron nanoclusters exhibit unique structures and bonding in chemistry. Using the experimentally observed seashell-like borospherenes C2 B28−/0 and Cs B29 as ligands and based on extensive first-principles theory calculations, we predict herein a series of novel [...] Read more.
Transition-metal-doped boron nanoclusters exhibit unique structures and bonding in chemistry. Using the experimentally observed seashell-like borospherenes C2 B28−/0 and Cs B29 as ligands and based on extensive first-principles theory calculations, we predict herein a series of novel transition-metal-centered endohedral seashell-like metallo-borospherenes C2 Sc@B28 (1), C2 Ti@B28 (2), C2 V@B28+ (3), and Cs V@B292− (4) which, as the global minima of the complex systems, turn out to be the boron analogues of dibenzenechromium D6h Cr(C6H6)2 with two B12 ligands on the top and bottom interconnected by four or five corner boron atoms on the waist and one transition-metal “pearl” sandwiched at the center in between. Detailed molecular orbital, adaptive natural density partitioning (AdNDP), and iso−chemical shielding surface (ICSS) analyses indicate that, similar to Cr(C6H6)2, these endohedral seashell-like complexes follow the 18-electron rule in bonding patterns (1S21P61D10), rendering spherical aromaticity and extra stability to the systems. Full article
(This article belongs to the Special Issue Aromatic Inorganic and Metallic Compounds)
Show Figures

Figure 1

21 pages, 9604 KiB  
Article
Probing the E1o-E2o and E1a-E2o Interactions in Binary Subcomplexes of the Human 2-Oxoglutarate Dehydrogenase and 2-Oxoadipate Dehydrogenase Complexes by Chemical Cross-Linking Mass Spectrometry and Molecular Dynamics Simulation
by Oliver Ozohanics, Xu Zhang, Natalia S. Nemeria, Attila Ambrus and Frank Jordan
Int. J. Mol. Sci. 2023, 24(5), 4555; https://doi.org/10.3390/ijms24054555 - 25 Feb 2023
Cited by 6 | Viewed by 2187
Abstract
The human 2-oxoglutarate dehydrogenase complex (hOGDHc) is a key enzyme in the tricarboxylic acid cycle and is one of the main regulators of mitochondrial metabolism through NADH and reactive oxygen species levels. Evidence was obtained for formation of a hybrid complex between the [...] Read more.
The human 2-oxoglutarate dehydrogenase complex (hOGDHc) is a key enzyme in the tricarboxylic acid cycle and is one of the main regulators of mitochondrial metabolism through NADH and reactive oxygen species levels. Evidence was obtained for formation of a hybrid complex between the hOGDHc and its homologue the 2-oxoadipate dehydrogenase complex (hOADHc) in the L-lysine metabolic pathway, suggesting a crosstalk between the two distinct pathways. Findings raised fundamental questions about the assembly of hE1a (2-oxoadipate-dependent E1 component) and hE1o (2-oxoglutarate-dependent E1) to the common hE2o core component. Here we report chemical cross-linking mass spectrometry (CL-MS) and molecular dynamics (MD) simulation analyses to understand assembly in binary subcomplexes. The CL-MS studies revealed the most prominent loci for hE1o-hE2o and hE1a-hE2o interactions and suggested different binding modes. The MD simulation studies led to the following conclusions: (i) The N-terminal regions in E1s are shielded by, but do not interact directly with hE2o. (ii) The hE2o linker region exhibits the highest number of H-bonds with the N-terminus and α/β1 helix of hE1o, yet with the interdomain linker and α/β1 helix of hE1a. (iii) The C-termini are involved in dynamic interactions in complexes, suggesting the presence of at least two conformations in solution. Full article
Show Figures

Figure 1

19 pages, 5749 KiB  
Article
Investigating the Effect of Gamma and Neutron Irradiation on Portland Cement Provided with Waste Silicate Glass
by Mohanad S. Eid, Ibrahim I. Bondouk, Hosam M. Saleh, Khaled M. Omar and Hassan M. Diab
Sustainability 2023, 15(1), 763; https://doi.org/10.3390/su15010763 - 31 Dec 2022
Cited by 16 | Viewed by 2607
Abstract
In this study, samples of commercial Portland cement mixed with 30% weight of crushed waste silicate glass were prepared in the shape of well-dried cylinders. Then, their physical and mechanical properties were investigated for two types of samples: samples without exposure and samples [...] Read more.
In this study, samples of commercial Portland cement mixed with 30% weight of crushed waste silicate glass were prepared in the shape of well-dried cylinders. Then, their physical and mechanical properties were investigated for two types of samples: samples without exposure and samples with exposure to gamma-ray and neutron irradiation. A notable deterioration of the physical properties of the irradiated samples relative to the non-irradiated ones was recorded. All the spectroscopic analyses were performed for the samples with exposure and without exposure to gamma-ray and neutron irradiation. The XRD emerging peaks of irradiated samples were studied to estimate the presence and stabilities of major peaks indicating the presence of the main compositions of cement with the amorphous nature of glass. FT-IR transmittance spectra were identified and the bonds were located close to those of identical glasses. Moreover, SEM images and EDX analysis were conducted on the two types of composite samples (without exposure and with exposure to gamma and neutron irradiation) to specify the change in the physical appearance and the chemical composition after irradiation. The attenuation parameters were computed theoretically with the assistance of Phy-X/PSD software to evaluate the gamma-ray and neutron shielding properties by defining the composition and the density of the samples. The irradiation was found to have a negative impact on the shielding ability of the prepared samples where there was an over-reduction in the parameters calculated with the probability that the damage may increase with longer exposure to the radiation. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

22 pages, 1072 KiB  
Article
Electron Correlation or Basis Set Quality: How to Obtain Converged and Accurate NMR Shieldings for the Third-Row Elements?
by Kacper Rzepiela, Jakub Kaminský, Aneta Buczek, Małgorzata A. Broda and Teobald Kupka
Molecules 2022, 27(23), 8230; https://doi.org/10.3390/molecules27238230 - 25 Nov 2022
Cited by 10 | Viewed by 2703
Abstract
The quality of theoretical NMR shieldings calculated at the quantum-chemical level depends on various theoretical aspects, of which the basis set type and size are among the most important factors. Nevertheless, not much information is available on the basis set effect on theoretical [...] Read more.
The quality of theoretical NMR shieldings calculated at the quantum-chemical level depends on various theoretical aspects, of which the basis set type and size are among the most important factors. Nevertheless, not much information is available on the basis set effect on theoretical shieldings of the NMR-active nuclei of the third row. Here, we report on the importance of proper basis set selection to obtain accurate and reliable NMR shielding parameters for nuclei from the third row of the periodic table. All calculations were performed on a set of eleven compounds containing the elements Na, Mg, Al, Si, P, S, or Cl. NMR shielding tensors were calculated using the SCF-HF, DFT-B3LYP, and CCSD(T) methods, combined with the Dunning valence aug-cc-pVXZ, core-valence aug-cc-pCVXZ, Jensen polarized-convergent aug-pcSseg-n and Karlsruhe x2c-Def2 basis set families. We also estimated the complete basis set limit (CBS) values of the NMR parameters. Widely scattered nuclear shieldings were observed for the Dunning polarized-valence basis set, which provides irregular convergence. We show that the use of Dunning core-valence or Jensen basis sets effectively reduces the scatter of theoretical NMR results and leads to their exponential-like convergence to CBS. We also assessed the effect of vibrational, temperature, and relativistic corrections on the predicted shieldings. For systems with single bonds, all corrections are relatively small, amounting to less than 4% of the CCSD(T)/CBS value. Vibrational and temperature corrections were less reliable for H3PO and HSiCH due to the high anharmonicity of the molecules. An abnormally high relativistic correction was observed for phosphorus in PN, reaching ~20% of the CCSD(T)/CBS value, while the correction was less than 7% for other tested molecules. Full article
(This article belongs to the Special Issue Advances in Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

14 pages, 5890 KiB  
Article
Effects of Chitosan on Loading and Releasing for Doxorubicin Loaded Porous Hydroxyapatite–Gelatin Composite Microspheres
by Meng-Ying Wu, Yu-Hsin Liang and Shiow-Kang Yen
Polymers 2022, 14(20), 4276; https://doi.org/10.3390/polym14204276 - 12 Oct 2022
Cited by 13 | Viewed by 3053
Abstract
Porous hydroxyapatite–gelatin (Hap–Gel) composite microspheres derived by wet chemical methods were used as carriers of doxorubicin (DOX) coupled with chitosan (Chi) for treating cancers. Through X-ray diffraction, specific surface area porosimetry, chemisorption analysis and inductively coupled plasma mass spectrometry, the crystalline phase, composition, [...] Read more.
Porous hydroxyapatite–gelatin (Hap–Gel) composite microspheres derived by wet chemical methods were used as carriers of doxorubicin (DOX) coupled with chitosan (Chi) for treating cancers. Through X-ray diffraction, specific surface area porosimetry, chemisorption analysis and inductively coupled plasma mass spectrometry, the crystalline phase, composition, morphology, and pore distribution of HAp–Gel microspheres were all characterized. HAp nanosized crystals and Gel polymers form porous microspheres after blending and exhibit a specific surface area of 158.64 m2/g, pore sizes from 3 to 150 nm, and pore volumes of 0.4915 cm3/g. These characteristics are suitable for carriers of DOX. Furthermore, by the addition of chitosan during drug loading, its drug-entrapment efficiency increases from 70% to 99% and the release duration increases from a 100% burst within a day to only 45% over half a year since the pores in the composite microspheres provide a shielding effect throughout the degradation period of the chitosan. According to the MTT tests, cell viability of DOX–Chi/HAp–Gel is 57.64% on day 5, similar to the result treated with DOX only. It is concluded that under the protection of pores in the microspheres, the chitosan abundant of hydroxyls combining HAp–Gel and DOX by forming hydrogen bonds indeed enhances the entrapment efficiency, prolongs the releasing period and maintains DOX’s ability to perform medicine functions unaffected after loading. Full article
Show Figures

Figure 1

12 pages, 1449 KiB  
Article
Significance of Ionic Character Induced by Ga-Doped γ-Al2O3 on Polyethylene Degradation to the Precursors of Gasoline and Diesel Oil with a Trace Amount of Wax
by Syed Kamran Haider, Amol Uttam Pawar, Don Keun Lee and Young Soo Kang
Nanomaterials 2022, 12(18), 3122; https://doi.org/10.3390/nano12183122 - 9 Sep 2022
Cited by 2 | Viewed by 2100
Abstract
Polyethylene degradation has a significant ecological impact but is also economically beneficial because it generates fuels and useful chemical products. Our study mainly describes the cleavage of C-C and C-H bonds when polyethylene (dispersed in 1-octadecene) was low-temperature heat-treated in two steps, at [...] Read more.
Polyethylene degradation has a significant ecological impact but is also economically beneficial because it generates fuels and useful chemical products. Our study mainly describes the cleavage of C-C and C-H bonds when polyethylene (dispersed in 1-octadecene) was low-temperature heat-treated in two steps, at 180 and 250 °C, for 24 h for each step. Finally, it was converted to a mixture of the precursors of gasoline and diesel oil with a trace amount of wax. A series of reactions resulted in cracking, dehydrogenation and oxidation, hence producing polycarboxylic acids and saturated and unsaturated hydrocarbons. ESI-MS analysis revealed that mixed oil consisted of low carbon number hydrocarbons and their derivatives of carboxylic acids, with the carbon number ranging from C-6 to C-18. In the trace amount of wax, complicated carboxylic acids and hydrocarbons with carbon number C-22 to C-58 were also identified. FT-IR analysis further confirmed the presence of carboxylic acid derivatives and double bonds in the degradation products. γ-Al2O3 nanorods effectively catalyzed the degradation process by enhancing the C-C chain length in the products. Lewis acid (Al) and Lewis base (oxygen) in the γ-Al2O3 induced ionic character of the C-C bond chain, which led to the efficient cracking of the C-C bond. Poor shielding effect, smaller atomic size and greater ionization energy made Ga a stronger Lewis acid compared to Al; hence, Ga-doped γ-Al2O3 catalyzed the degradation process even more effectively. Full article
Show Figures

Figure 1

Back to TopTop