Effect of Geopolymerization Reaction on the Flexural Strength of Kaolin-Based Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization
3. Results and Discussion
3.1. Microstructure and FTIR Spectra of Geopolymers
3.2. Effect of Si/Al Molar Ratio on Geopolymerization Reaction
3.3. Effect of Reaction Time on Geopolymerization Reaction
3.4. Mechanical Property of Kaolin-Based Geopolymers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhong, H.; Zhang, M. 3D printing geopolymers: A review. Cem. Concr. Compos. 2022, 128, 104455. [Google Scholar] [CrossRef]
- Pasupathy, K.; Berndt, M.; Sanjayan, J.; Pathmanathan, R. Durability performance of concrete structures built with low carbon construction materials. Energy Procedia 2016, 88, 794–799. [Google Scholar] [CrossRef]
- Guo, X.; Yang, J.; Xiong, G. Influence of supplementary cementitious materials on rheological properties of 3D printed fly ash based geopolymer. Cem. Concr. Compos. 2020, 114, 103820. [Google Scholar] [CrossRef]
- Xia, M.; Nematollahi, B.; Sanjayan, J. Printability, accuracy and strength of geopolymer made using powder-based 3D printing for construction applications. Autom. Constr. 2019, 101, 179–189. [Google Scholar] [CrossRef]
- Ordoñez, E.; Monteiro, S.N.; Colorado, H.A. Valorization of a hazardous waste with 3D-printing: Combination of kaolin clay and electric arc furnace dust from the steel making industry. Mater. Des. 2022, 217, 110617. [Google Scholar] [CrossRef]
- Meskhi, B.; Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Shilov, A.A.; El’shaeva, D.; Shilova, K.; Karalar, M.; Aksoylu, C.; et al. Analytical review of geopolymer concrete: Retrospective and current issues. Materials 2023, 16, 3792. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Yang, Z.; Pi, Z.; Wu, Y.; Bai, T.; Jin, W. Preparation and performance study of a novel conductive geopolymer. Constr. Build. Mater. 2024, 411, 134388. [Google Scholar] [CrossRef]
- Burciaga-Diaz, O.; Escalante-Garcia, J.I.; Gorokhovsky, A. Geopolymers based on a coarse low-purity kaolin mineral: Mechanical strength as a function of the chemical composition and temperature. Cem. Concr. Compos. 2012, 34, 18–24. [Google Scholar] [CrossRef]
- Hamidi, R.M.; Man, Z.; Azizli, K.A. Concentration of NaOH and the effect on the properties of fly ash based geopolymer. Procedia Eng. 2016, 148, 189–193. [Google Scholar] [CrossRef]
- Komnitsas, K.; Zaharaki, D.; Perdikatsis, V. Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers. J. Hazard. Mater. 2009, 161, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Dinh, H.L.; Liu, J.; Doh, J.-H.; Ong, D.E. Influence of Si/Al molar ratio and ca content on the performance of fly ash-based geopolymer incorporating waste glass and GGBFS. Constr. Build. Mater. 2024, 411, 134741. [Google Scholar] [CrossRef]
- Tran, Y.T.; Lee, J.; Kumar, P.; Kim, K.-H.; Lee, S.S. Natural zeolite and its application in concrete composite production. Compos. B Eng. 2019, 165, 354–364. [Google Scholar] [CrossRef]
- Heah, C.Y.; Kamarudin, H.; Al Bakri, A.M.; Bnhussain, M.; Luqman, M.; Nizar, I.K.; Ruzaidi, C.M.; Liew, Y.M. Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Constr. Build. Mater. 2012, 35, 912–922. [Google Scholar] [CrossRef]
- Hounsi, A.D.; Lecomte-Nana, G.L.; Djétéli, G.; Blanchart, P. Kaolin-based geopolymers: Effect of mechanical activation and curing process. Constr. Build. Mater. 2013, 42, 105–113. [Google Scholar] [CrossRef]
- Li, J.; Mailhiot, S.; Kantola, A.M.; Niu, H.; Sreenivasan, H.; Telkki, V.-V.; Kinnunen, P. Longitudinal single-sided NMR study: Silica-to-alumina ratio changes the reaction mechanism of geopolymer. Cem. Concr. Res. 2022, 160, 106921. [Google Scholar] [CrossRef]
- Singh, P.S.; Bastow, T.; Trigg, M. Structural studies of geopolymers by 29 Si and 27 Al MAS-NMR. J. Mater. Sci. 2005, 40, 3951–3961. [Google Scholar] [CrossRef]
- Greiser, S.; Sturm, P.; Gluth, G.J.; Hunger, M.; Jäger, C. Differentiation of the solid-state NMR signals of gel, zeolite phases and water species in geopolymer-zeolite composites. Ceram. Int. 2017, 43, 2202–2208. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Provis, J.L.; Bullen, F.; Reid, A.; Zhu, Y. Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide. Thermochim. Acta 2012, 539, 23–33. [Google Scholar] [CrossRef]
- Rovnaník, P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 2010, 24, 1176–1183. [Google Scholar] [CrossRef]
- ASTM F394-78; Standard Test Method for Biaxial Flexure Strength (Modulus of Rupture) of Ceramic Substrates. American Society for Testing and Materials: Philadelphia, PA, USA, 1996.
- ISO 604:2002; Plastics—Determination of Compressive Properties. International Organization for Standardization: Geneva, Switzerland, 2002.
- Rees, C.A.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S. In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir 2007, 23, 9076–9082. [Google Scholar] [CrossRef]
- Pahlevi, N.D.; Guo, B.; Sasaki, K. Immobilization of selenate in cancrinite using a hydrothermal method. Ceram. Int. 2018, 44, 8635–8642. [Google Scholar] [CrossRef]
- Gao, B.; Jang, S.; Son, H.; Park, S.; Lee, H.-S.; Bae, C.-J. Phase transformation and microstructure evolution of a kaolin-based precursor. Ceram. Int. 2022, 48, 36066–36075. [Google Scholar] [CrossRef]
- García-Lodeiro, I.; Maltseva, O.; Palomo, Á.; Fernández-Jiménez, A. Cimenturi hibride alcaline. Partea I: Fundamente*/hybrid alkaline cements. Part I: Fundamentals. Rev. Romana Mater. 2012, 42, 330–335. [Google Scholar]
- Niu, X.; Elakneswaran, Y.; Islam, C.R.; Provis, J.L.; Sato, T. Adsorption behaviour of simulant radionuclide cations and anions in metakaolin-based geopolymer. J. Hazard. Mater. 2022, 429, 128373. [Google Scholar] [CrossRef] [PubMed]
- Torres-Carrasco, M.; Puertas, F. Alkaline activation of different aluminosilicates as an alternative to Portland cement: Alkali activated cements or geopolymers. Rev. Ing. Constr. 2017, 32, 5–12. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, W.; Li, Z. Infrared spectroscopy study of structural nature of geopolymeric products. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2008, 23, 522–527. [Google Scholar] [CrossRef]
- Król, M.; Minkiewicz, J.; Mozgawa, W. IR spectroscopy studies of zeolites in geopolymeric materials derived from kaolinite. J. Mol. Struct. 2016, 1126, 200–206. [Google Scholar] [CrossRef]
- Zawrah, M.; Sawan, S.A.; Khattab, R.; A Abdel-Shafi, A. Effect of nano sand on the properties of metakaolin-based geopolymer: Study on its low rate sintering. Constr. Build. Mater. 2020, 246, 118486. [Google Scholar] [CrossRef]
- Hajimohammadi, A.; Provis, J.L.; Van Deventer, J.S. Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation. J. Colloid Interface Sci. 2011, 357, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wu, Z.; Niu, M.; Xie, Y.; Wang, X. Effect of Si–Al molar ratio on microstructure and mechanical properties of ultra-low density fiberboard. Eur. J. Wood Wood Prod. 2016, 74, 151–160. [Google Scholar] [CrossRef]
- Duxson, P.; Lukey, G.C.; van Deventer, J.S. Evolution of gel structure during thermal processing of Na-geopolymer gels. Langmuir 2006, 22, 8750–8757. [Google Scholar] [CrossRef]
- Hajimohammadi, A.; Masoumi, S.; Kim, T.; McCaslin, E.; Alnahhal, M.F.; Almer, J.D.; White, C.E. Chemo-mechanical properties of carbon fiber reinforced geopolymer interphase. J. Am. Ceram. Soc. 2022, 105, 1519–1532. [Google Scholar] [CrossRef]
- Duxson, P.; Lukey, G.C.; Van De Venter, J.S.; Mallicoat, S.W.; Kriven, W.M. Microstructural characterisation of metakaolin-based geopolymers. Ceram. Trans. 2005, 165, 71–85. [Google Scholar]
- Mo, B.-H.; Zhu, H.; Cui, X.-M.; He, Y.; Gong, S.-Y. Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Appl. Clay Sci. 2014, 99, 144–148. [Google Scholar] [CrossRef]
- Djobo, J.N.Y.; Moustapha; Ndjonnou, L.P.T.; Etame, K.K.; Stephan, D. The role of curing temperature and reactive aluminum species on characteristics of phosphate geopolymer. RSC Adv. 2022, 12, 29653–29665. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, N.; Nuruddin, M.F.; Khan, S.U.; Ayub, T. Calcined kaolin as cement replacing material and its use in high strength concrete. Constr. Build. Mater. 2015, 81, 313–323. [Google Scholar] [CrossRef]
- Ma, W.; Yi, Y.; Fang, M.; Li, C.; Li, J.; Liu, W. Study on the synthesis mechanism of sodalite, gismondine, and zeolite-P1 zeolite materials from ladle furnace slag and fly ash. Sci. Rep. 2023, 13, 3232. [Google Scholar] [CrossRef] [PubMed]
Compound | Value | Unit |
---|---|---|
SiO2 | 59.7429 | wt.% |
Al2O3 | 36.2849 | wt.% |
TiO2 | 2.1513 | wt.% |
Fe2O3 | 1.1347 | wt.% |
K2O | 0.2057 | wt.% |
P2O5 | 0.1356 | wt.% |
SO3 | 0.1055 | wt.% |
CaO | 0.0741 | wt.% |
Na2O | 0.0736 | wt.% |
Cr2O3 | 0.0291 | wt.% |
Ga2O3 | 0.0138 | wt.% |
ZnO | 0.0123 | wt.% |
NiO | 0.0115 | wt.% |
ZrO2 | 0.0098 | wt.% |
SrO | 0.0093 | wt.% |
CuO | 0.0059 | wt.% |
Powder | dm | d10 | d50 | d90 |
---|---|---|---|---|
Kaolin | 0.902 | 0.213 | 0.494 | 2.075 |
SiO2 | 1.719 | 0.281 | 1.186 | 4.149 |
Si/Al Ratio | Curing Time (h) | Curing Temperature (°C) |
---|---|---|
1.40 | 2, 24, 72, 168 | 80 |
1.67 | 2, 24, 72, 168 | 80 |
1.94 | 2, 24, 72, 168 | 80 |
2.22 | 2, 24, 72, 168 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, B.; Li, Y.; Jang, S.; Son, H.; Lee, H.; Bae, C.-J. Effect of Geopolymerization Reaction on the Flexural Strength of Kaolin-Based Systems. Materials 2024, 17, 2223. https://doi.org/10.3390/ma17102223
Gao B, Li Y, Jang S, Son H, Lee H, Bae C-J. Effect of Geopolymerization Reaction on the Flexural Strength of Kaolin-Based Systems. Materials. 2024; 17(10):2223. https://doi.org/10.3390/ma17102223
Chicago/Turabian StyleGao, Binghuan, Yangyang Li, Seongwan Jang, Hyeonjin Son, Heesoo Lee, and Chang-Jun Bae. 2024. "Effect of Geopolymerization Reaction on the Flexural Strength of Kaolin-Based Systems" Materials 17, no. 10: 2223. https://doi.org/10.3390/ma17102223
APA StyleGao, B., Li, Y., Jang, S., Son, H., Lee, H., & Bae, C.-J. (2024). Effect of Geopolymerization Reaction on the Flexural Strength of Kaolin-Based Systems. Materials, 17(10), 2223. https://doi.org/10.3390/ma17102223