Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (699)

Search Parameters:
Keywords = shelf-life determination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1876 KiB  
Article
Evaluation of Clean-Label Additives to Inhibit Molds and Extend the Shelf Life of Preservative-Free Bread
by Ricardo H. Hernández-Figueroa, Aurelio López-Malo, Beatriz Mejía-Garibay, Nelly Ramírez-Corona and Emma Mani-López
Microbiol. Res. 2025, 16(8), 179; https://doi.org/10.3390/microbiolres16080179 - 1 Aug 2025
Viewed by 84
Abstract
This study evaluates the efficacy of commercial clean-label additives, specifically fermentates, in inhibiting mold growth in vitro and extending the shelf life of preservative-free bread. The mold growth on selected bread was modeled using the time-to-growth approach. The pH, aw, and [...] Read more.
This study evaluates the efficacy of commercial clean-label additives, specifically fermentates, in inhibiting mold growth in vitro and extending the shelf life of preservative-free bread. The mold growth on selected bread was modeled using the time-to-growth approach. The pH, aw, and moisture content of fresh bread were determined. In addition, selected fermentates were characterized physicochemically. Fermentates, defined as liquid or powdered preparations containing microorganisms, their metabolites, and culture supernatants, were tested at varying concentrations (1% to 12%) to assess their antimicrobial performance and impact on bread quality parameters, including moisture content, water activity, and pH. The results showed significant differences in fermentate efficacy, with Product A as the best mold growth inhibitor in vitro and a clear dose-dependent response. For Penicillium corylophilum, inhibition increased from 51.90% at 1% to 62.60% at 4%, while P. chrysogenum had an inhibition ranging from 32.26% to 34.49%. Product F exhibited moderate activity on both molds at 4%, inhibiting between 28.48% and 46.27%. The two molds exhibited differing sensitivities to the fermentates, with P. corylophilum consistently more susceptible to inhibition. Product A displayed a low pH (2.61) and high levels of lactic acid (1053.6 mmol/L) and acetic acid (1061.3 mmol/L). Product F presented a similar pH but lower levels of lactic and acetic acid. A time-to-growth model, validated by significant coefficients (p < 0.05) and high predictive accuracy (R2 > 0.95), was employed to predict the appearance of mold on bread loaves. The model revealed that higher concentrations of fermentates A and F delayed mold growth, with fermentate A demonstrating superior efficacy. At 2% concentration, fermentate A delayed mold growth for 8 days, compared to 6 days for fermentate F. At 8% concentration, fermentate A prevented mold growth for over 25 days, significantly outperforming the control (4 days). Additionally, fermentates influenced bread quality parameters, with fermentate A improving crust moisture retention and reducing water activity at higher concentrations. These findings highlight the potential of fermentates as sustainable, consumer-friendly alternatives to synthetic preservatives, offering a viable solution to the challenge of bread spoilage while maintaining product quality. Full article
(This article belongs to the Collection Microbiology and Technology of Fermented Foods)
Show Figures

Figure 1

18 pages, 2433 KiB  
Article
Effect of Preharvest Aluminum-Coated Paper Bagging on Postharvest Quality, Storability, and Browning Behavior of ‘Afrata Volou’ Quince
by Triantafyllia Georgoudaki, Persefoni Maletsika and George D. Nanos
Horticulturae 2025, 11(8), 881; https://doi.org/10.3390/horticulturae11080881 - 30 Jul 2025
Viewed by 278
Abstract
As consumer preferences tend toward safer, chemical residue-free, and nutritionally rich fruits, preharvest bagging has gained attention as a sustainable method for improving fruit quality and protecting produce from environmental and biological stressors and pesticide residues. This study assessed the impact of preharvest [...] Read more.
As consumer preferences tend toward safer, chemical residue-free, and nutritionally rich fruits, preharvest bagging has gained attention as a sustainable method for improving fruit quality and protecting produce from environmental and biological stressors and pesticide residues. This study assessed the impact of preharvest bagging using paper bags with inner aluminum coating on the physicochemical traits, storability, and browning susceptibility after cutting or bruising of ‘Afrata Volou’ quince (Cydonia oblonga Mill.) fruit grown in central Greece. Fruits were either bagged or left unbagged approximately 60 days before harvest, and evaluations were conducted at harvest and after three months of cold storage, plus two days of shelf-life. Fruit bagging reduced the quince’s flesh temperature on the tree crown. Bagging had minor effects on fruit and nutritional quality, except for more yellow skin and higher titratable acidity (TA). Also, at harvest, bagging did not significantly affect fruit flesh browning after cutting or bruising. After three months of storage, unbagged and bagged quince fruit developed more yellow skin color, without significant alterations in most quality characteristics and nutritional value, but increased total tannin content (TTC). After three months of storage, the quince flesh color determined immediately after cutting or bruising was brighter and more yellowish compared to that at harvest, due to continuation of fruit ripening, but it darkened faster with time after cutting or skin removal. Therefore, fruit bagging appears to be a sustainable practice for improving the aesthetic and some chemical quality characteristics of quince, particularly after storage, without negative impacts on other characteristics such as texture and phenolic content. Full article
(This article belongs to the Special Issue Advances in Tree Crop Cultivation and Fruit Quality Assessment)
Show Figures

Figure 1

15 pages, 2412 KiB  
Article
Postharvest Application of Myo-Inositol Extends the Shelf-Life of Banana Fruit by Delaying Ethylene Biosynthesis and Improving Antioxidant Activity
by Lingyu Hu, Yi Li, Kun Zhou, Kaili Shi, Yi Niu, Feng Qu, Shenglin Zhang, Weidi He and Yuanli Wu
Foods 2025, 14(15), 2638; https://doi.org/10.3390/foods14152638 - 28 Jul 2025
Viewed by 312
Abstract
Banana fruits are harvested and then undergo rapid ripening and senescence, sharply limiting their shelf-life and marketability. Myo-inositol (MI) is an important regulator in ethylene production and reactive oxygen species (ROS) accumulation; however, its involvement in the postharvest ripening process of banana [...] Read more.
Banana fruits are harvested and then undergo rapid ripening and senescence, sharply limiting their shelf-life and marketability. Myo-inositol (MI) is an important regulator in ethylene production and reactive oxygen species (ROS) accumulation; however, its involvement in the postharvest ripening process of banana remains to be determined. This study found that postharvest application of MI could efficiently delay the fruit ripening and extend the time in which the luster, color, and hardness were maintained in two cultivars with contrasting storage characteristics, storable ‘Brazil’ and unstorable ‘Fenza No. 1’, when stored at room temperature (23 °C ± 2 °C). Moreover, physiological, metabolic, and gene expression analyses indicated that MI application improved MI metabolism and postponed ethylene biosynthesis and cell wall loosening. The decrease in ethylene production was associated with a reduction in the expression of ACS1 and ACO1 genes. MI treatment decreased the expressions of PL1/2, PG, and EXP1/7/8, which may account for the delay in softening. In addition, the application of MI could alleviate ROS-mediated senescence and cell membrane damage by promoting the activities of SOD, POD, and anti-O2 and decreasing PPO activity. This study shed light on the function of MI in regulating the postharvest ripening and senescence of bananas and provided an efficient strategy for extending shelf-life and reduce losses. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

20 pages, 6490 KiB  
Article
Impact of Chitooligosaccharide Conjugated Epigallocatechin Gallate and Non-Thermal High-Voltage Atmospheric Cold Plasma on Vibrio parahaemolyticus: An In Vitro Study and the Use in Blood Clam Meat
by Mruganxi Harshad Sharma, Avtar Singh, Ankita Singh, Soottawat Benjakul, Suriya Palamae, Ajay Mittal and Jirayu Buatong
Foods 2025, 14(15), 2577; https://doi.org/10.3390/foods14152577 - 23 Jul 2025
Viewed by 271
Abstract
Vibrio parahaemolyticus is the leading cause of bacterial diarrhea in humans from shellfish consumption. In Thailand, blood clam is a popular shellfish, but homemade cooking often results in insufficient heating. Therefore, consumers may suffer from food poisoning due to Vibrio infection. This study [...] Read more.
Vibrio parahaemolyticus is the leading cause of bacterial diarrhea in humans from shellfish consumption. In Thailand, blood clam is a popular shellfish, but homemade cooking often results in insufficient heating. Therefore, consumers may suffer from food poisoning due to Vibrio infection. This study aimed to determine the effect of chitooligosaccharide conjugated with epigallocatechin gallate (COS-EGCG) at different concentrations (200 and 400 ppm) combined with high-voltage atmospheric cold plasma (HVACP) on inhibiting V. parahaemolyticus in vitro and in challenged blood clam meat. Firstly, HVACP conditions were optimized for gas composition and treatment time (20 and 60 s); a 70% Ar and 30% O2 gas mixture resulted in the highest ozone formation and a treatment time of 60 s was used for further study. COS-EGCG conjugate at 400 ppm with HVACP (ACP-CE400) completely killed V. parahaemolyticus after incubation at 37 °C for 6 h. Furthermore, an antibacterial ability of ACP-CE400 treatment against bacterial cells was advocated due to the increased cell membrane damage, permeability, and leakage of proteins and nucleic acids. Scanning electron microscopy (SEM) showed cell elongation and pore formation, while confocal microscopy revealed disrupted biofilm formation. Additionally, the shelf life of challenged blood clam meat treated with ACP-CE400 was extended to nine days. SEM analysis revealed damaged bacterial cells on the meat surface after ACP-CE400 treatment, indicating the antibacterial activity of the combined treatment. Thus, HVACP combined with COS-EGCG conjugate, especially at a highest concentration (400 ppm), effectively inhibited microbial growth and extended the shelf life of contaminated blood clam meat. Full article
(This article belongs to the Special Issue Research on Aquatic Product Processing and Quality Control)
Show Figures

Graphical abstract

20 pages, 1316 KiB  
Article
The Effect of Osmotic Dehydration Conditions on the Magnesium Content in Beetroot (Beta vulgaris L.)
by Bartosz Kulczyński, Joanna Suliburska, Anna Gramza-Michałowska, Andrzej Sidor, Przemysław Łukasz Kowalczewski and Anna Brzozowska
Molecules 2025, 30(14), 3051; https://doi.org/10.3390/molecules30143051 - 21 Jul 2025
Viewed by 211
Abstract
Osmotic dehydration is a process involving a two-way mass transfer, during which water and substances dissolved in it are removed from the product and, at the same time, substances dissolved in a hypertonic solution penetrate into the tissues. This process has a significant [...] Read more.
Osmotic dehydration is a process involving a two-way mass transfer, during which water and substances dissolved in it are removed from the product and, at the same time, substances dissolved in a hypertonic solution penetrate into the tissues. This process has a significant effect on, among other things, the nutritional and sensory parameters, as well as the texture and shelf life of the dehydrated product. This study analyzed the effect of osmotic dehydration of beet on magnesium content following the addition of various chemical forms of magnesium (magnesium oxide, magnesium citrate, magnesium chloride) to a hypertonic solution. Magnesium was added in concentrations of 2.5 or 5.0% relative to the mass of the solution. The following compounds were used to prepare hypertonic solutions (25 and 50%): inulin, xylitol, erythritol, and sucrose. The control sample was water. A significant increase in magnesium content in the dehydrated material was confirmed. This effect was determined by many factors, among which the most important were the chemical form of magnesium, the type of osmotically active substance, magnesium concentration, and process time. The highest magnesium content was found in samples dehydrated in a 50% inulin solution with a 5.0% addition of magnesium chloride under the following conditions: 120 min/30 °C. It was also demonstrated that osmotically dehydrated samples exhibited approximately 3–5 times lower antioxidant activity in DPPH, ABTS, and ORAC tests. Full article
Show Figures

Figure 1

25 pages, 6467 KiB  
Article
Integrating Sensor Data, Laboratory Analysis, and Computer Vision in Machine Learning-Driven E-Nose Systems for Predicting Tomato Shelf Life
by Julia Marie Senge, Florian Kaltenecker and Christian Krupitzer
Chemosensors 2025, 13(7), 255; https://doi.org/10.3390/chemosensors13070255 - 12 Jul 2025
Viewed by 374
Abstract
Assessing the quality of fresh produce is essential to ensure a safe and satisfactory product. Methods to monitor the quality of fresh produce exist; however, they are often expensive, time-consuming, and sometimes require the destruction of the sample. Electronic Nose (E-Nose) technology has [...] Read more.
Assessing the quality of fresh produce is essential to ensure a safe and satisfactory product. Methods to monitor the quality of fresh produce exist; however, they are often expensive, time-consuming, and sometimes require the destruction of the sample. Electronic Nose (E-Nose) technology has been established to track the ripeness, spoilage, and quality of fresh produce. Our study developed a freshness monitoring system for tomatoes, combining E-Nose technology with storage condition monitoring, color analysis, and weight-loss tracking. Different post-purchase scenarios were investigated, focusing on the influence of temperature and mechanical damage on shelf life. Support Vector Classifier (SVC) and k-Nearest Neighbor (kNN) were applied to classify storage scenarios and storage days, while Support Vector Regression (SVR) and kNN regression were used for predicting storage days. By using a data fusion approach with Linear Discriminant Analysis (LDA), the SVC achieved an accuracy of 72.91% in predicting storage days and an accuracy of 86.73% in distinguishing between storage scenarios. The kNN yielded the best regression results, with a Mean Absolute Error (MAE) of 0.841 days and a coefficient of determination of 0.867. The results highlight the method’s potential to predict storage scenarios and storage days, providing insight into the product’s remaining shelf life. Full article
Show Figures

Figure 1

15 pages, 2395 KiB  
Article
The Characterization of a Chitosan Coating Enriched with Bamboo-Leaf Flavonoids and Its Effect on Postharvest Preservation of Three Horticultural Products
by Haoran Wu, Feng Tang and Xi Yao
Foods 2025, 14(13), 2364; https://doi.org/10.3390/foods14132364 - 3 Jul 2025
Viewed by 352
Abstract
Chitosan coatings have been demonstrated to be a highly effective and safe approach to extending the shelf life of food. This study, for the first time, evaluates the effectiveness of bamboo-leaf flavonoids (BLFs) added to a chitosan coating to delay the spoilage of [...] Read more.
Chitosan coatings have been demonstrated to be a highly effective and safe approach to extending the shelf life of food. This study, for the first time, evaluates the effectiveness of bamboo-leaf flavonoids (BLFs) added to a chitosan coating to delay the spoilage of strawberries, blueberries, and bamboo shoots. The addition of BLFs improved the tensile strength of the coatings. Chitosan coating incorporated with 0.1% BLFs had the highest tensile strength (36.38 ± 2.69 MPa). BLFs conferred antioxidant properties to chitosan coatings as determined by DPPH radical scavenging activity. Key quality parameters were measured over the storage period of strawberries, blueberries, and bamboo shoots. The coating significantly affected the impact of storage time on some variables. Chitosan/BLF coatings were particularly effective in limiting changes over time in weight loss, spoilage percentage, and vitamin C content (strawberries and blueberries), as well as crude fiber content (bamboo shoots), although their effect on titratable acid, soluble solids, and soluble protein content was less pronounced. The chitosan/BLFs composite coating demonstrated superior efficacy over pure chitosan in delaying spoilage. In conclusion, the chitosan/BLF coating could be useful for maintaining the quality of strawberries, blueberries, and bamboo shoots. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

18 pages, 2866 KiB  
Article
Mechanisms of Exogenous L-Lysine in Influencing the Quality of Low-Sodium Marinated Braised Beef
by Chongxian Zheng, Pengsen Wang, Mingming Huang, Tong Jiang, Jianying Zhao, Yanwei Mao and Huixin Zuo
Foods 2025, 14(13), 2302; https://doi.org/10.3390/foods14132302 - 28 Jun 2025
Viewed by 281
Abstract
During the processing of marinated braised beef, excessive sodium intake is likely to occur, which can lead to various health issues. Exogenous L-lysine (L-Lys), as an essential amino acid for the human body, has the capability to enhance the quality of low-sodium meat [...] Read more.
During the processing of marinated braised beef, excessive sodium intake is likely to occur, which can lead to various health issues. Exogenous L-lysine (L-Lys), as an essential amino acid for the human body, has the capability to enhance the quality of low-sodium meat products. This study aimed to investigate the effects of exogenous L-Lys on the quality of low-sodium plain boiled beef and marinated braised beef, as well as its underlying mechanisms of action. Among them, the substitution rate of KCl was 60%. This study was conducted with three batches of experiments, each batch serving as an independent parallel. For low-sodium plain boiled beef, the optimal addition level of L-Lys was screened out through the research on the effects on meat quality indicators, water distribution, microstructure, and sensory evaluation. For the quality of low-sodium plain boiled beef, in terms of microstructure, the addition of L-Lys reduced muscle fiber breakage and voids, thereby improving its microstructural characteristics. Combined with quantitative descriptive analysis (QDA), the optimal level of additional L-Lys was subsequently determined to be 0.6%. It was further processed into marinated braised beef in soy sauce, and a comparative analysis was conducted with low-sodium marinated braised beef in soy sauce without L-Lys addition for shear force, meat color, thiobarbituric acid reactive substances (TBARS), and total viable count (TVC) during the storage periods of 0, 3, 6, 9, and 12 d. The results show that the redness (a*) value significantly increased within 0–12 d (p < 0.05), leading to a more stable meat color. Moreover, the addition of L-Lys significantly reduced the shear force and thiobarbituric acid reactive species (TBARS) values in the marinated braised beef (p < 0.05), thereby optimizing the tenderness of the marinated braised beef and inhibiting lipid oxidation. Although the total viable count (TVC) of the L-Lys group was higher than that of conventional low-sodium marinated braised beef in soy sauce from 9 to 12 d, both groups of products had undergone spoilage by day 12; therefore, the addition of L-Lys had no effect on the shelf life of the products. Comprehensive analysis suggested that the addition of exogenous L-Lys could optimize beef quality by enhancing hydration, improving muscle structural properties, and exerting antioxidant synergistic effects. Full article
(This article belongs to the Special Issue Animal Source Food Processing and Quality Control)
Show Figures

Figure 1

18 pages, 6158 KiB  
Article
Poly(butylene succinate) Film Coated with Hydroxypropyl Methylcellulose with Sea Buckthorn Extract and Its Ethosomes—Examination of Physicochemical and Antimicrobial Properties Before and After Accelerated UV Aging
by Szymon Macieja, Magdalena Zdanowicz, Małgorzata Mizielińska, Wojciech Jankowski and Artur Bartkowiak
Polymers 2025, 17(13), 1784; https://doi.org/10.3390/polym17131784 - 27 Jun 2025
Viewed by 367
Abstract
The new generation of food packaging should not only be biodegradable, but also provide additional protective properties for packaged products, extending their shelf life. In this paper, we present the results of research on cast-extruded poly(butylene succinate) (PBS) films coated with hydroxypropyl methylcellulose [...] Read more.
The new generation of food packaging should not only be biodegradable, but also provide additional protective properties for packaged products, extending their shelf life. In this paper, we present the results of research on cast-extruded poly(butylene succinate) (PBS) films coated with hydroxypropyl methylcellulose (HPMC) modified with CO2 extract from sea buckthorn (ES) or its ethosomes (ET) at amounts of 1 or 5 pph per HPMC. In addition, the developed films were exposed to accelerated aging (UV radiation and elevated temperature) to determine its effect on the films’ properties. Based on SEM, it can be concluded that accelerated aging results in the uncovering of the extract and ethosomes from the coating’s bulk. GPC showed a decrease in the molecular weight of PBS after treatment, additionally amplified by the presence of HPMC. However, the addition of ES or ET in low concentrations reduced the level of polyester degradation. The presence of the modified coating and its treatment increased the oxygen barrier (a decrease from 324 cm3/m2 × 24 h for neat PBS to 208 cm3/m2 × 24 h for the coated and modified PBS ET5). Despite the presence of colored extract or ethosomes in the coating, the color differences compared with neat PBS were imperceptible (ΔE < 1). The addition of 5 pph of sea buckthorn extract or its ethosomes in combination with accelerated aging resulted in the complete inhibition of the growth of E. coli and S. aureus, which was not observed in non-aged samples. The results obtained demonstrate an improvement in bioactive properties and protection against the negative effects of UV radiation on the film due to the presence of ET or ES in the coating. The developed systems could be used in the food industry as active packaging. Full article
Show Figures

Graphical abstract

43 pages, 856 KiB  
Review
Antioxidant Application of Clove (Syzygium aromaticum) Essential Oil in Meat and Meat Products: A Systematic Review
by Eduardo Valarezo, Guicela Ledesma-Monteros, Ximena Jaramillo-Fierro, Matteo Radice and Miguel Angel Meneses
Plants 2025, 14(13), 1958; https://doi.org/10.3390/plants14131958 - 26 Jun 2025
Viewed by 814
Abstract
The essential oil isolated from clove (Syzygium aromaticum) is used in food, medicine, cosmetics, agriculture, and aromatherapy for its antimicrobial, antioxidant, and analgesic properties. This systematic review, following the PRISMA 2020 methodology, evaluates the application of clove essential oil in meat [...] Read more.
The essential oil isolated from clove (Syzygium aromaticum) is used in food, medicine, cosmetics, agriculture, and aromatherapy for its antimicrobial, antioxidant, and analgesic properties. This systematic review, following the PRISMA 2020 methodology, evaluates the application of clove essential oil in meat and meat products to determine its effectiveness in preventing oxidative damage and improving product quality. A search was performed in various databases, obtaining 639 studies. After removing duplicates and applying inclusion and exclusion criteria, 43 relevant articles were selected. Studies published between 1999 and 2024 that evaluated clove essential oil in meat for human consumption were included, excluding research on extracts other than essential oil or supplements for animal feed. The studies suggest that clove essential oil improves parameters such as oxidative stability, colour preservation, and the reduction in reactive compounds such as thiobarbituric acid-reactive substances, thereby increasing the shelf life and safety of meat and meat products. Oxidation is reduced through free radical inhibition and lipid protection. The main variability detected includes the type of meat, application method and storage conditions. The concentrations used ranged from 2.65 mL/kg to 5%. Although variability in methodologies and concentrations used is a limitation for meta-analysis, the findings support the potential of clove essential oil as a natural alternative for preserving meat products, responding to consumer demand for safer foods free of synthetic preservatives. Full article
(This article belongs to the Special Issue Chemical Analysis and Biological Activities of Plant Essential Oils)
Show Figures

Figure 1

30 pages, 866 KiB  
Review
Natural Polymer-Based Coatings for Animal-Derived Products: A Review of Applications, Functionality, Characterization, and Challenges
by Márcio Vargas-Ramella, Noemí Echegaray, Paulo Cezar Bastianello Campagnol and José Manuel Lorenzo
Foods 2025, 14(13), 2255; https://doi.org/10.3390/foods14132255 - 26 Jun 2025
Viewed by 503
Abstract
The global demand for sustainable packaging and animal-derived products’ perishability emphasizes the urgent need for biodegradable alternatives to petroleum-based materials (i.e., synthetic polymers or plastic). This narrative review explores the recent advancements in natural polymer-based coatings, comprising ingredients such as polysaccharides, proteins, and [...] Read more.
The global demand for sustainable packaging and animal-derived products’ perishability emphasizes the urgent need for biodegradable alternatives to petroleum-based materials (i.e., synthetic polymers or plastic). This narrative review explores the recent advancements in natural polymer-based coatings, comprising ingredients such as polysaccharides, proteins, and lipids, as well as their combination as multifunctional strategies for preserving meat, dairy, seafood, and eggs. These coatings act as physical barriers and can carry bioactive compounds, enhancing oxidative and microbial stability. Particular attention is placed on the structure-function relationships of biopolymers, their characterization through advanced techniques (e.g., Fourier Transform Infrared spectroscopy—FTIR, Scanning Electron Microscope—SEM, Differential Scanning Calorimetry—DSC, and Thermogravimetric analysis—TGA), and their functional properties (e.g., antimicrobial and antioxidant efficacy). Notably, food matrix compatibility is pivotal in determining coating performance, as interactions with surface moisture, pH, and lipids can modulate preservation outcomes. While several formulations have demonstrated promising results in shelf-life extension and sensory quality preservation, challenges remain regarding coating uniformity, regulatory compliance, and scalability. This narrative review highlights current limitations and future directions for the industrial application of these sustainable materials, aiming to link the gap between laboratory success and commercial feasibility. Full article
(This article belongs to the Special Issue Application of Edible Coating in Food Preservation)
Show Figures

Graphical abstract

14 pages, 1605 KiB  
Article
Antimicrobial Effects of Tannic Acid Combined with Plasma-Activated Water and Their Application in Strawberry Preservation
by Zhixiang Hu, Zhenyang Hu, Huan Zhang, Zhilong Yu and Yunfei Xie
Foods 2025, 14(13), 2216; https://doi.org/10.3390/foods14132216 - 24 Jun 2025
Viewed by 321
Abstract
This study investigated the combined antibacterial effects of PAW with natural antimicrobial agents and further examined the impact of this technology on postharvest strawberry preservation. The optimal PAW preparation condition was determined at 50 min at 400 W, although PAW alone showed limited [...] Read more.
This study investigated the combined antibacterial effects of PAW with natural antimicrobial agents and further examined the impact of this technology on postharvest strawberry preservation. The optimal PAW preparation condition was determined at 50 min at 400 W, although PAW alone showed limited efficacy against Staphylococcus aureus and Escherichia coli. Among the five selected natural antimicrobial agents, the 1% tannic acid–PAW combined treatment demonstrated optimal bactericidal performance, achieving reductions of 3.62 log CFU/mL for S. aureus in 20 min and 5.13 log CFU/mL for E. coli in 8 min. The results revealed membrane damage in both S. aureus and E. coli, with leakage of intracellular proteins and nucleic acids, decreased membrane protein content, and cellular shrinkage and collapse observed morphologically. Increased MDA content indicated membrane lipid peroxidation, while elevated intracellular H2O2 and ROS levels resulted from oxidative stress induced by PAW’s reactive species. Tannic acid reduced SOD and CAT enzyme activities, impairing bacterial antioxidant capacity, and PAW further exacerbated the decline in SOD and CAT activities, intensifying oxidative stress and disrupting bacterial physiological balance. In strawberry preservation applications, the combined treatment reduced surface microbial loads, decreased mold incidence and weight loss, slowed the deterioration of color, firmness, and edible quality, and enhanced antioxidant capacity. The results suggest that the tannic acid–PAW combined treatment offers a promising strategy for enhancing microbial safety and extending the shelf life of strawberries. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

17 pages, 6457 KiB  
Article
Gene Expression and Enzyme Kinetics of Polyphenol Oxidases in Strawberry and Their Possible Involvement in Enzymatic Browning Reactions in Strawberry Nectar
by Alberto Zavarise, Ibrahim Rabeeah, Christian Molitor, Mahboubeh Davoudi Pahnekolayi, Viktoria Gruber-Schmidt, Andrea Winter, Klaus Olbricht, Christian Haselmair-Gosch, Karl Stich, Manfred Goessinger and Heidi Halbwirth
Foods 2025, 14(12), 2064; https://doi.org/10.3390/foods14122064 - 11 Jun 2025
Viewed by 1106
Abstract
The browning of fruit juices and nectars is a common issue in the beverage industry and is a particular problem in strawberry nectars, where it significantly reduces the shelf-life. Polyphenol oxidases (PPOs), which are multicopper enzymes responsible for the oxidation of a wide [...] Read more.
The browning of fruit juices and nectars is a common issue in the beverage industry and is a particular problem in strawberry nectars, where it significantly reduces the shelf-life. Polyphenol oxidases (PPOs), which are multicopper enzymes responsible for the oxidation of a wide plethora of polyphenols in plants, have been widely assumed to be involved in the enzymatic browning of strawberry nectar. To investigate the possible involvement of PPOs, the substrate specificity of four recombinant PPOs and their gene expression pattern in 10 cultivars of Fragaria × ananassa at five ripening stages were determined. This allowed us to obtain adequate amounts of enzymes to study them independently and without interfering matrix effects. All four PPOs possess monophenolase activity, which was particularly high for PPO4. PPO3 did not show sufficient stability for the kinetic studies. The other three showed a high preference for the flavan 3-ol catechin with a 2-fold higher catalytic efficiency compared to dopamine for PPO1 and PPO2. At a neutral pH, they also showed activity with cyanidin but not with pelargonidin, which is the prevalent anthocyanidin type in strawberry. The enzymes showed a high affinity but only low turnover rates for the dihydrochalcone phloretin, resulting in an inhibitory effect that was strong enough to extend the shelf-life of the strawberry nectar by one week if phloretin was added in high concentrations (600 µM). PPO1 and PPO2 were prevalently expressed in all fruit stages. The gene expression of the four PPOs did not correlate with the color stability of the nectars of the 10 varieties and also showed a random expression pattern during fruit development. The limited activity in acidic conditions and the low substrate specificity for pelargonidin does not point to a crucial role for PPOs in the browning of strawberry nectar, but the high catalytic efficiency with catechin as a substrate could contribute to anthocyanin degradation via mechanisms such as copolymerization. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

15 pages, 1720 KiB  
Article
Timing Matters, Not Just the Treatment: Phenological-Stage-Specific Effects of Seaweed and Ethanol Applications on Postharvest Quality of ‘Tarsus Beyazı’ Grapes
by Güzin Tarım, Sinem Karakus, Nurhan Keskin, Harlene Hatterman-Valenti and Ozkan Kaya
Horticulturae 2025, 11(6), 656; https://doi.org/10.3390/horticulturae11060656 - 10 Jun 2025
Viewed by 392
Abstract
In the context of increasing consumer demand for high-quality, residue-free fruits and the growing emphasis on sustainable postharvest technologies, identifying effective, eco-friendly treatments to maintain grape quality during storage has become a critical focus in modern viticulture. Over the course of this study, [...] Read more.
In the context of increasing consumer demand for high-quality, residue-free fruits and the growing emphasis on sustainable postharvest technologies, identifying effective, eco-friendly treatments to maintain grape quality during storage has become a critical focus in modern viticulture. Over the course of this study, we examined the influence of seaweed extract (derived from Ascophyllum nodosum) and ethanol-based postharvest treatments on the postharvest quality of the ‘Tarsus Beyazı’ grape. The seaweed extract was applied at six specific phenological stages according to the BBCH scale: BBCH 13 (3rd–4th leaf stage, 0.40%), BBCH 60 (first flower sheath opening, 0.50%), BBCH 71 (fruit set, 0.50%), BBCH 75 (chickpea-sized berries, 0.50%), BBCH 81 (start of ripening, 0.60%), and BBCH 89 (harvest maturity, 0.60%). After harvest, grape clusters were subjected to four different postharvest treatments: untreated control, control + ethanol (20% ethanol immersion for 10 s), seaweed extract alone (preharvest applications only), and seaweed extract + ethanol (combining both preharvest and postharvest treatments). Grapes were stored at 0–1 °C and 90–95% RH for three weeks, followed by a shelf-life evaluation period of three days at 20 °C and 60–65% RH. The findings revealed that seaweed treatments, especially when applied during cluster formation and berry development, effectively mitigated physiological deterioration, preserving stem turgidity and enhancing berry firmness. In contrast, ethanol showed variable responses, occasionally exerting negative effects, with only marginal benefits observed when applied at optimal developmental stages. Both the type and timing of application emerged as critical determinants of key quality attributes such as weight loss, decay incidence, and must properties (TSS, pH, TA). Correlation and heat map analyses indicated the interrelationships among these parameters and the differential impacts of treatments. These results suggest that phenological-stage-specific seaweed applications hold significant potential as a sustainable strategy to extend the storage life and maintain the market quality of ‘Tarsus Beyazı’ grapes. Full article
Show Figures

Figure 1

21 pages, 307 KiB  
Article
Effect of Dietary Addition of Blueberry (Vaccinium corymbosum) Powder on Fattening Performance, Meat Quality, Oxidative Stability and Storage Quality in Japanese Quails (Coturnix coturnix japonica)
by Shaistah Naimati, Sibel Canoğulları Doğan, Muhammad Umair Asghar and Qurat Ul Ain Sajid
Animals 2025, 15(11), 1633; https://doi.org/10.3390/ani15111633 - 2 Jun 2025
Viewed by 797
Abstract
This study was conducted to investigate the effects of dietary addition of blueberry (Vaccinium corymbosum) powder on the growth performance, meat quality, oxidative stability and cold storage quality of Japanese quails (Coturnix coturnix japonica). In this research, 480 quail [...] Read more.
This study was conducted to investigate the effects of dietary addition of blueberry (Vaccinium corymbosum) powder on the growth performance, meat quality, oxidative stability and cold storage quality of Japanese quails (Coturnix coturnix japonica). In this research, 480 quail chicks were divided into four experimental groups, and each experimental group was composed of four replicates, each containing 30 quail chicks. Commercial feed was used in the study, but BBP was added to the feed at levels of 0%, 1%, 2% and 4%. Results showed that dietary addition of blueberry powder did not affect body weight gain, feed consumption and feed conversion ratio (p > 0.05). No significant difference was observed between hot and cold carcass weights and carcass yield among carcass parameters (p > 0.05). However, significant differences were found among the blueberry-supplemented groups in terms of thigh, back and neck ratios (p < 0.05). In this study, it was determined that thiobarbituric acid (TBA), pH and peroxide values in breast meat samples kept at +4 °C for 1, 3, 5 and 7 days were lower in the blueberry-supplemented groups compared to the control group and these values decreased linearly as the supplement level increased (p < 0.05). The addition of blueberries to the quail diets resulted in similar L, a and b values in breast and thigh meat and skin among the groups (p > 0.05) except for the b value in thigh meat (p < 0.05). The findings obtained in this study revealed that although adding blueberries to the quail diet did not have a significant effect on performance, the antioxidant activity and phenolic substance content of the plant had a significant effect on increasing the shelf life of meat. It was concluded that blueberry could be used as a natural additive that may replace synthetic antioxidants. Full article
(This article belongs to the Special Issue Feed Additives in Animal Nutrition)
Back to TopTop