The Characterization of a Chitosan Coating Enriched with Bamboo-Leaf Flavonoids and Its Effect on Postharvest Preservation of Three Horticultural Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Composite Films
2.3. Mechanical Properties of Coatings
2.4. DPPH Radical Scavenging Assay
2.5. Application of Chitosan/BLFs in the Preservation of Strawberries, Blueberries, and Bamboo Shoots
2.5.1. Appearance Assessment of Strawberries, Blueberries, and Bamboo Shoots
2.5.2. Weight Loss and Spoilage Percentage of Strawberries, Blueberries, and Bamboo Shoots
2.5.3. Vitamin C Content of Strawberries, Blueberries, and Bamboo Shoots
2.5.4. Titratable Acid and Soluble Solid Content of Strawberries and Blueberries
2.5.5. Soluble Protein Content of Bamboo Shoots
2.5.6. Crude Fiber Content of Bamboo Shoots
2.6. Statistical Analysis
3. Results and Discussions
3.1. Optimization of Chitosan/BLFs Composite Films
3.1.1. Mechanical Properties
3.1.2. DPPH Radical Scavenging Ability
3.2. Application of Chitosan/BLFs in the Preservation of Strawberries and Blueberries
3.2.1. Appearance of Strawberries and Blueberries
3.2.2. Weight Loss and Spoilage Percentage of Strawberries and Blueberries
3.2.3. Vitamin C, Titratable Acid, and Soluble Solid Content
3.3. Application of Chitosan/BLFs in the Preservation of Bamboo Shoots
3.3.1. Appearance of Bamboo Shoots
3.3.2. Weight Loss and Spoilage Percentage of Bamboo Shoots
3.3.3. Vitamin C, Soluble Protein, and Crude Fiber Content
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kalt, W.; Forney, C.F.; Martin, A.; Prior, R.L. Antioxidant Capacity, Vitamin C, Phenolics, and Anthocyanins after Fresh Storage of Small Fruits. J. Agric. Food Chem. 1999, 47, 4638–4644. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshi, R.; Jayakumar, A.; de Souza, C.K.; Rhim, J.W.; Kim, J.T. Advances in Strawberry Postharvest Preservation and Packaging: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13417. [Google Scholar] [CrossRef]
- Priyadarshi, R.; El-Araby, A.; Rhim, J.W. Chitosan-Based Sustainable Packaging and Coating Technologies for Strawberry Preservation: A Review. Int. J. Biol. Macromol. 2024, 278, 134859. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.Y.; Xu, L.J.; Yang, Z.W.; Liu, L.B.; Qiu, D. Antibacterial and Antioxidative Biogenic Films for Room-Temperature Strawberry Preservation. Food Chem. 2023, 405, 134893. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, Y.; Li, J.B.; Lei, H.Y.; Zhen, X.Y.; Gou, D.X.; Liu, T. Preparation of Chitosan/Enoki Mushroom Foot Polysaccharide Composite Cling Film and Its Application in Blueberry Preservation. Int. J. Biol. Macromol. 2023, 246, 125567. [Google Scholar] [CrossRef]
- Liu, M.Y.; Zou, X.; Wu, X.N.; Li, X.X.; Chen, H.L.; Pan, F.; Zhang, Y.; Fang, X.M.; Tian, W.L.; Peng, W.J. Preparation of Chitosan/ Tenebrio Molitor Larvae Protein/Curcumin Active Packaging Film and Its Application in Blueberry Preservation. Int. J. Biol. Macromol. 2024, 275, 133675. [Google Scholar] [CrossRef]
- Luo, Z.S.; Xu, X.L.; Yan, B.F. Accumulation of Lignin and Involvement of Enzymes in Bamboo Shoot during Storage. Eur. Food Res. Technol. 2008, 226, 635–640. [Google Scholar] [CrossRef]
- Huang, X.J.; Zhang, Y.L.; Huang, N.J.; Li, Y.L.; Yu, F.; Zhang, W.E.; Guo, C.C. Lignification and Gene Expression Pattern in Postharvest Moso Bamboo Shoots. Forests 2025, 16, 81. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Wang, D.; Ye, F.; He, Y.; Hu, Z.; Zhao, G. A Systematic Review on the Composition, Storage, Processing of Bamboo Shoots: Focusing the Nutritional and Functional Benefits. J. Funct. Foods 2020, 71, 104015. [Google Scholar] [CrossRef]
- Cazón, P.; Velazquez, G.; Ramírez, J.A.; Vázquez, M. Polysaccharide-Based Films and Coatings for Food Packaging: A Review. Food Hydrocoll. 2017, 68, 136–148. [Google Scholar] [CrossRef]
- Elsabee, M.Z.; Abdou, E.S. Chitosan Based Edible Films and Coatings: A Review. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 1819–1841. [Google Scholar] [CrossRef]
- Devlieghere, F.; Vermeulen, A.; Debevere, J. Chitosan: Antimicrobial Activity, Interactions with Food Components and Applicability as a Coating on Fruit and Vegetables. Food Microbiol. 2004, 21, 703–714. [Google Scholar] [CrossRef]
- Dutta, P.K.; Tripathi, S.; Mehrotra, G.K.; Dutta, J. Perspectives for Chitosan Based Antimicrobial Films in Food Applications. Food Chem. 2009, 114, 1173–1182. [Google Scholar] [CrossRef]
- Romanazzi, G.; Feliziani, E.; Banos, S.B.; Sivakumar, D. Shelf Life Extension of Fresh Fruit and Vegetables by Chitosan Treatment. Crit. Rev. Food Sci. Nutr. 2017, 57, 579–601. [Google Scholar] [CrossRef]
- Chettri, S.; Sharma, N.; Mohite, A.M. Edible Coatings and Films for Shelf-Life Extension of Fruit and Vegetables. Biomater. Adv. 2023, 154, 213632. [Google Scholar] [CrossRef] [PubMed]
- Kerch, G.; Korkhov, V. Effect of Storage Time and Temperature on Structure, Mechanical and Barrier Properties of Chitosan-Based Films. Eur. Food Res. Technol. 2011, 232, 17–22. [Google Scholar] [CrossRef]
- Shi, B.; Hao, Z.; Du, Y.; Jia, M.; Xie, S. Mechanical and Barrier Properties of Chitosan-Based Composite Film as Food Packaging: A Review. Bioresources 2024, 19, 4001–4014. [Google Scholar] [CrossRef]
- Cazon, P.; Vazquez, M. Mechanical and Barrier Properties of Chitosan Combined with Other Components as Food Packaging Film. Environ. Chem. Lett. 2020, 18, 257–267. [Google Scholar] [CrossRef]
- Mujtaba, M.; Morsi, R.E.; Kerch, G.; Elsabee, M.Z.; Kaya, M.; Labidi, J.; Khawar, K.M. Current Advancements in Chitosan-Based Film Production for Food Technology; A Review. Int. J. Biol. Macromol. 2019, 121, 889–904. [Google Scholar] [CrossRef]
- Hassan, B.; Chatha, S.A.S.; Hussain, A.I.; Zia, K.M.; Akhtar, N. Recent Advances on Polysaccharides, Lipids and Protein Based Edible Films and Coatings: A Review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. [Google Scholar] [CrossRef]
- Tripathi, P.; Dubey, N.K. Exploitation of Natural Products as an Alternative Strategy to Control Postharvest Fungal Rotting of Fruit and Vegetables. Postharvest. Biol. Technol. 2004, 32, 235–245. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Wan, S.Q.; Yao, L.N.; Lin, D.; Wu, T.; Chen, Y.J.; Zhang, A.L.; Lu, C.F. Bamboo Leaf: A Review of Traditional Medicinal Property, Phytochemistry, Pharmacology, and Purification Technology. J. Ethnopharmacol. 2023, 306, 116166. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.H.; Pan, F.P.; Yao, L.N.; Fang, H.L.; Cheng, Y.Q.; Zhang, Z.X.; Chen, Y.J.; Zhang, A.L. Isolation, Characterization of Bamboo Leaf Flavonoids by Size Exclusion Chromatography and Their Antioxidant Properties. Chem. Biodivers. 2022, 19, e202200506. [Google Scholar] [CrossRef]
- GB 2760-2024; National Food Safety Standard—Standard for the Use of Food Additives. China Standard Press: Beijing, China, 2024.
- Pasanphan, W.; Chirachanchai, S. Conjugation of Gallic Acid onto Chitosan: An Approach for Green and Water-Based Antioxidant. Carbohydr. Polym. 2008, 72, 169–177. [Google Scholar] [CrossRef]
- Curcio, M.; Puoci, F.; Iemma, F.; Parisi, O.I.; Cirillo, G.; Spizzirri, U.G.; Picci, N. Covalent Insertion of Antioxidant Molecules on Chitosan by a Free Radical Grafting Procedure. J. Agric. Food Chem. 2009, 57, 5933–5938. [Google Scholar] [CrossRef]
- Bozic, M.; Gorgieva, S.; Kokol, V. Laccase-Mediated Functionalization of Chitosan by Caffeic and Gallic Acids for Modulating Antioxidant and Antimicrobial Properties. Carbohydr. Polym. 2012, 87, 2388–2398. [Google Scholar] [CrossRef]
- Stalikas, C.D. Extraction, Separation, and Detection Methods for Phenolic Acids and Flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef]
- Sogut, E.; Seydim, A.C. Development of Chitosan and Polycaprolactone Based Active Bilayer Films Enhanced with Nanocellulose and Grape Seed Extract. Carbohydr. Polym. 2018, 195, 180–188. [Google Scholar] [CrossRef]
- Shan, P.; Wang, K.; Yu, F.Y.; Yi, L.Z.; Sun, L.P.; Li, H. Gelatin/Sodium Alginate Multilayer Composite Film Crosslinked with Green Tea Extract for Active Food Packaging Application. Colloids Surf. A Physicochem. Eng. Asp. 2023, 662, 131013. [Google Scholar] [CrossRef]
- Friesen, K.; Chang, C.; Nickerson, M. Incorporation of Phenolic Compounds, Rutin and Epicatechin, into Soy Protein Isolate Films: Mechanical, Barrier and Cross-Linking Properties. Food Chem. 2015, 172, 18–23. [Google Scholar] [CrossRef]
- Liu, W.; Xie, J.; Li, L.; Xue, B.; Li, X.; Gan, J.; Shao, Z.; Writing, T.S. Properties of Phenolic Acid-Chitosan Composite Films and Preservative Effect on Penaeus Vannamei. J. Mol. Struct. 2021, 1239, 130531. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Song, Q.W.; Mo, C.R.; Yu, W.W.; Hu, C.Y. Effect of Neutralization Treatment on Properties of Chitosan/Bamboo Leaf Flavonoids/Nano-Metal Oxide Composite Films and Application of Films in Antioxidation of Rapeseed Oil. Int. J. Biol. Macromol. 2023, 242, 124951. [Google Scholar] [CrossRef]
- ISO 527-3:2018; Plastics—Determination of Tensile Properties—Part 3: Test Conditions for Films and Sheets. The International Organization for Standardization: Geneva, Switzerland, 2018.
- Li, J.H.; Miao, J.; Wu, J.L.; Chen, S.F.; Zhang, Q.Q. Preparation and Characterization of Active Gelatin-Based Films Incorporated with Natural Antioxidants. Food Hydrocoll. 2014, 37, 166–173. [Google Scholar] [CrossRef]
- GB/T 5009.86-2016; National Food Safety Standard—Determination of Ascorbic acid in Food. China Standard Press: Beijing, China, 2016.
- GB/T 12456-2021; National Food Safety Standard—Determination of Total Acid in Food. China Standard Press: Beijing, China, 2021.
- NY/T 2637-2014; Agricultural Industry Standards of the People’s Republic of China—Refractometric Method for Determination of Total Soluble Solids in Fruits and Vegetables. China Standard Press: Beijing, China, 2014.
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- GB/T 5009.10-2003; China National Standards—Determination of Crude Fiber in Vegetable Foods. China Standard Press: Beijing, China, 2003.
- Ma, M.; Gu, M.; Zhang, S.; Yuan, Y. Effect of Tea Polyphenols on Chitosan Packaging for Food Preservation: Physicochemical Properties, Bioactivity, and Nutrition. Int. J. Biol. Macromol. 2024, 259, 129267. [Google Scholar] [CrossRef] [PubMed]
- Kanatt, S.R.; Rao, M.S.; Chawla, S.P.; Sharma, A. Active Chitosan-Polyvinyl Alcohol Films with Natural Extracts. Food Hydrocoll. 2012, 29, 290–297. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Harte, B.R. Physical Properties and Antioxidant Activity of an Active Film from Chitosan Incorporated with Green Tea Extract. Food Hydrocoll. 2010, 24, 770–775. [Google Scholar] [CrossRef]
- Sivarooban, T.; Hettiarachchy, N.S.; Johnson, M.G. Physical and Antimicrobial Properties of Grape Seed Extract, Nisin, and EDTA Incorporated Soy Protein Edible Films. Food Res. Int. 2008, 41, 781–785. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, K.; Huang, S.; Wang, H.; Mu, X.; He, C.; Ji, X.; Zhang, J.; Huang, F. Antioxidant Activity of Microwave-Assisted Extract of Longan (Dimocarpus Longan Lour.) Peel. Food Chem. 2008, 106, 1264–1270. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Chander, R.; Sharma, A. Chitosan and Mint Mixture: A New Preservative for Meat and Meat Products. Food Chem. 2008, 107, 845–852. [Google Scholar] [CrossRef]
- Nirmala, C.; Bisht, M.S.; Bajwa, H.K.; Santosh, O. Bamboo: A Rich Source of Natural Antioxidants and Its Applications in the Food and Pharmaceutical Industry. Trends Food Sci. Technol. 2018, 77, 91–99. [Google Scholar] [CrossRef]
- Lu, B.Y.; Wu, X.Q.; Tie, X.W.; Zhang, Y.; Zhang, Y. Toxicology and Safety of Anti-Oxidant of Bamboo Leaves. Part 1: Acute and Subchronic Toxicity Studies on Anti-Oxidant of Bamboo Leaves. Food Chem. Toxicol. 2005, 43, 783–792. [Google Scholar] [CrossRef]
- Li, H.; Tan, X.; Huang, W.; Zhu, X.; Yang, X.; Shen, Y.; Yan, R. Enzymatic Acylation of Flavonoids from Bamboo Leaves: Improved Lipophilicity and Antioxidant Activity for Oil-Based Foods. J. Agric. Food Chem. 2023, 71, 4817–4824. [Google Scholar] [CrossRef]
- Villano, D.; Fernandez-Pachon, M.S.; Moya, M.L.; Troncoso, A.M.; Garcia-Parrilla, M.C. Radical Scavenging Ability of Polyphenolic Compounds towards DPPH Free Radical. Talanta 2007, 71, 230–235. [Google Scholar] [CrossRef]
- Shiekh, R.A.; Malik, M.A.; Al-Thabaiti, S.A.; Shiekh, M.A. Chitosan as a Novel Edible Coating for Fresh Fruits. Food Sci. Technol. Res. 2013, 19, 139–155. [Google Scholar] [CrossRef]
- Roman, M.J.; Decker, E.A.; Goddard, J.M. Retaining Oxidative Stability of Emulsified Foods by Novel Nonmigratory Polyphenol Coated Active Packaging. J. Agric. Food Chem. 2016, 64, 5574–5582. [Google Scholar] [CrossRef]
- Bautista-Baños, S.; Hernández-Lauzardo, A.N.; Velázquez-del Valle, M.G.; Hernández-López, M.; Barka, E.A.; Bosquez-Molina, E.; Wilson, C.L. Chitosan as a Potential Natural Compound to Control Pre and Postharvest Diseases of Horticultural Commodities. Crop Prot. 2006, 25, 108–118. [Google Scholar] [CrossRef]
- Wang, F.; Xie, C.; Tang, H.; Hao, W.; Wu, J.; Sun, Y.; Sun, J.; Liu, Y.; Jiang, L. Development, Characterization and Application of Intelligent/Active Packaging of Chitosan/Chitin Nanofibers Films Containing Eggplant Anthocyanins. Food Hydrocoll. 2023, 139, 108496. [Google Scholar] [CrossRef]
- Charles, A.P.R.; Rajasekaran, B.; Awasti, N.; Choudhary, P.; Khanashyam, A.C.; Majumder, K.; Wu, Y.; Pandiselvam, R.; Jin, T.Z. Emerging Chitosan Systems Incorporated with Polyphenols: Their Applications in Intelligent Packaging, Active Packaging, and Nutraceutical Systems—A Comprehensive Review. Int. J. Biol. Macromol. 2025, 308, 142714. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial Properties of Chitosan and Mode of Action: A State of the Art Review. Int. J. Food. Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef]
- Amankwaah, C.; Li, J.; Lee, J.; Pascall, M.A. Antimicrobial Activity of Chitosan-Based Films Enriched with Green Tea Extracts on Murine Norovirus, Escherichia Coli, and Listeria Innocua. Int. J. Food Sci. 2020, 2020, 3941924. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Lv, H.; Yang, B.; Chen, X.; Sun, H. Physical Properties, Antioxidant and Antimicrobial Activity of Chitosan Films Containing Carvacrol and Pomegranate Peel Extract. Molecules 2015, 20, 11034–11045. [Google Scholar] [CrossRef] [PubMed]
- Riaz, A.; Lei, S.; Akhtar, H.M.S.; Wan, P.; Chen, D.; Jabbar, S.; Abid, M.; Hashim, M.M.; Zeng, X. Preparation and Characterization of Chitosan-Based Antimicrobial Active Food Packaging Film Incorporated with Apple Peel Polyphenols. Int. J. Biol. Macromol. 2018, 114, 547–555. [Google Scholar] [CrossRef]
- Sun, L.; Sun, J.; Chen, L.; Niu, P.; Yang, X.; Guo, Y. Preparation and Characterization of Chitosan Film Incorporated with Thinned Young Apple Polyphenols as an Active Packaging Material. Carbohydr. Polym. 2017, 163, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.H.S.; Silva, M.A. Retention of Vitamin C in Drying Processes of Fruits and VegetablesA Review. Dry. Technol. 2008, 26, 1421–1437. [Google Scholar] [CrossRef]
- Ruirui, Q.; Wencai, X.; Dongli, L.; Shiyong, L. Study on Chitosan Food Preservatives Technology. In Proceedings of the Green Printing and Packaging Materials; Yun, O.Y., Min, X., Li, Y., Eds.; Scientific.Net, Publisher in Materials Science & Engineering: Shanghai, China, 2012; Volume 380, pp. 222–225. [Google Scholar]
- Medeiros, B.G.d.S.; Pinheiro, A.C.; Carneiro-da-Cunha, M.G.; Vicente, A.A. Development and Characterization of a Nanomultilayer Coating of Pectin and Chitosan—Evaluation of Its Gas Barrier Properties and Application on “Tommy Atkins” Mangoes. J. Food Eng. 2012, 110, 457–464. [Google Scholar] [CrossRef]
- Yang, H.Q.; Zheng, J.Y.; Huang, C.Q.; Zhao, X.F.; Chen, H.Y.; Sun, Z.D. Effects of Combined Aqueous Chlorine Dioxide and Chitosan Coatings on Microbial Growth and Quality Maintenance of Fresh-Cut Bamboo Shoots (Phyllostachys praecox f. prevernalis.) During Storage. Food Bioproc. Technol. 2015, 8, 1011–1019. [Google Scholar] [CrossRef]
Treatment | Chitosan (% w/v) | Glycerol (% w/v) | BLFs (% w/v) | Acetic Acid (1%, w/v, mL) |
---|---|---|---|---|
Control (CK) | - | - | - | - |
Coating 1 (CS) | 0.5 | 0.15 | - | 100 |
Coating 2 (CS/BLFs-25) | 0.5 | 0.15 | 0.025 | 100 |
Coating 3 (CS/BLFs-50) | 0.5 | 0.15 | 0.05 | 100 |
Coating 4 (CS/BLFs-75) | 0.5 | 0.15 | 0.075 | 100 |
Coating 5 (CS/BLFs-100) | 0.5 | 0.15 | 0.1 | 100 |
Coating 6 (CS/BLFs-200) | 0.5 | 0.15 | 0.2 | 100 |
Vitamin C (mg/100 g) | Titratable Acid (%) | Soluble Solid (%) | ||
---|---|---|---|---|
Day 0 | CK | 54.14 ± 0.81 a | 0.477 ± 0.012 a | 10.57 ± 0.21 a |
CS | 54.62 ± 1.23 a | 0.473 ± 0.017 a | 10.63 ± 0.21 a | |
CS/BLFs-50 | 54.95 ± 1.41 a | 0.475 ± 0.007 a | 10.60 ± 0.10 a | |
CS/BLFs-75 | 54.80 ± 0.36 a | 0.478 ± 0.006 a | 10.60 ± 0.10 a | |
CS/BLFs-100 | 54.86 ± 0.75 a | 0.480 ± 0.024 a | 10.60 ± 0.17 a | |
Day 4 | CK | 36.76 ± 0.80 a | 0.422 ± 0.006 a | 11.07 ± 0.06 a |
CS | 37.75 ± 1.38 a | 0.451 ± 0.020 a | 11.17 ± 0.15 a | |
CS/BLFs-50 | 38.24 ± 2.18 a | 0.429 ± 0.026 a | 11.20 ± 0.17 a | |
CS/BLFs-75 | 37.59 ± 0.29 a | 0.444 ± 0.029 a | 11.17 ± 0.32 a | |
CS/BLFs-100 | 38.94 ± 1.21 a | 0.435 ± 0.027 a | 11.23 ± 0.15 a | |
Day 8 | CK | 29.45 ± 0.26 b | 0.417 ± 0.021 a | 10.20 ± 0.26 a |
CS | 28.28 ± 0.79 b | 0.445 ± 0.009 a | 10.30 ± 0.26 a | |
CS/BLFs-50 | 32.64 ± 2.43 a | 0.435 ± 0.043 a | 10.40 ± 0.17 a | |
CS/BLFs-75 | 30.62 ± 2.00 b | 0.445 ± 0.033 a | 10.57 ± 0.32 a | |
CS/BLFs-100 | 31.86 ± 2.04 a | 0.440 ± 0.019 a | 10.37 ± 0.15 a |
Vitamin C (mg/100 g) | Titratable Acid (%) | Soluble Solid (%) | ||
---|---|---|---|---|
Day 0 | CK | 11.12 ± 0.40 a | 0.377 ± 0.111 a | 11.10 ± 0.26 a |
CS | 10.90 ± 0.51 a | 0.506 ± 0.044 a | 11.17 ± 0.15 a | |
CS/BLFs-50 | 11.39 ± 0.73 a | 0.542 ± 0.060 a | 11.17 ± 0.12 a | |
CS/BLFs-75 | 11.34 ± 0.13 a | 0.578 ± 0.006 a | 11.17 ± 0.12 a | |
CS/BLFs-100 | 11.46 ± 0.44 a | 0.413 ± 0.073 a | 11.13 ± 0.23 a | |
Day 5 | CK | 7.62 ± 0.38 a | 0.456 ± 0.152 a | 10.57 ± 0.06 a |
CS | 7.74 ± 0.10 a | 0.484 ± 0.133 a | 10.73 ± 0.15 a | |
CS/BLFs-50 | 8.00 ± 0.67 a | 0.362 ± 0.134 a | 10.77 ± 0.15 a | |
CS/BLFs-75 | 7.72 ± 0.13 a | 0.611 ± 0.078 a | 10.77 ± 0.32 a | |
CS/BLFs-100 | 8.29 ± 0.36 a | 0.402 ± 0.229 a | 10.83 ± 0.15 a | |
Day 10 | CK | 6.20 ± 0.31 a | 0.217 ± 0.021 a | 9.80 ± 0.26 a |
CS | 6.37 ± 0.43 a | 0.411 ± 0.158 a | 9.83 ± 0.23 a | |
CS/BLFs-50 | 6.85 ± 0.84 a | 0.402 ± 0.145 a | 9.93 ± 0.21 a | |
CS/BLFs-75 | 6.71 ± 0.57 a | 0.378 ± 0.147 a | 10.13 ± 0.31 a | |
CS/BLFs-100 | 6.82 ± 0.82 a | 0.340 ± 0.088 a | 9.90 ± 0.17 a |
Vitamin C (mg/100 g) | Soluble Protein (g/100 g) | Crude Fiber (%) | ||
---|---|---|---|---|
Day 0 | CK | 8.77 ± 0.70 a | 1.804 ± 0.121 a | 0.946 ± 0.033 a |
CS | 9.23 ± 0.14 a | 1.756 ± 0.193 a | 0.999 ± 0.001 a | |
CS/BLFs-50 | 8.61 ± 0.65 a | 1.828 ± 0.163 a | 0.963 ± 0.005 ab | |
CS/BLFs-75 | 8.33 ± 0.48 a | 1.932 ± 0.013 a | 0.987 ± 0.018 a | |
CS/BLFs-100 | 8.43 ± 0.99 a | 1.892 ± 0.050 a | 0.976 ± 0.030 a | |
Day 5 | CK | 6.11 ± 0.54 a | 1.657 ± 0.106 a | 1.251 ± 0.033 a |
CS | 6.11 ± 0.40 a | 1.692 ± 0.166 a | 1.196 ± 0.018 a | |
CS/BLFs-50 | 5.74 ± 0.86 a | 1.759 ± 0.155 a | 1.070 ± 0.204 a | |
CS/BLFs-75 | 6.03 ± 0.31 a | 1.831 ± 0.028 a | 1.048 ± 0.029 b | |
CS/BLFs-100 | 6.56 ± 0.78 a | 1.785 ± 0.091 a | 1.047 ± 0.202 a | |
Day 9 | CK | 4.22 ± 0.69 a | 1.425 ± 0.093 a | 1.634 ± 0.026 a |
CS | 5.06 ± 0.26 a | 1.553 ± 0.165 a | 1.398 ± 0.019 b | |
CS/BLFs-50 | 5.68 ± 0.78 a | 1.611 ± 0.137 a | 1.360 ± 0.024 b | |
CS/BLFs-75 | 4.65 ± 0.29 a | 1.741 ± 0.022 a | 1.372 ± 0.017 b | |
CS/BLFs-100 | 5.28 ± 0.36 a | 1.665 ± 0.028 a | 1.328 ± 0.046 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Tang, F.; Yao, X. The Characterization of a Chitosan Coating Enriched with Bamboo-Leaf Flavonoids and Its Effect on Postharvest Preservation of Three Horticultural Products. Foods 2025, 14, 2364. https://doi.org/10.3390/foods14132364
Wu H, Tang F, Yao X. The Characterization of a Chitosan Coating Enriched with Bamboo-Leaf Flavonoids and Its Effect on Postharvest Preservation of Three Horticultural Products. Foods. 2025; 14(13):2364. https://doi.org/10.3390/foods14132364
Chicago/Turabian StyleWu, Haoran, Feng Tang, and Xi Yao. 2025. "The Characterization of a Chitosan Coating Enriched with Bamboo-Leaf Flavonoids and Its Effect on Postharvest Preservation of Three Horticultural Products" Foods 14, no. 13: 2364. https://doi.org/10.3390/foods14132364
APA StyleWu, H., Tang, F., & Yao, X. (2025). The Characterization of a Chitosan Coating Enriched with Bamboo-Leaf Flavonoids and Its Effect on Postharvest Preservation of Three Horticultural Products. Foods, 14(13), 2364. https://doi.org/10.3390/foods14132364