Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = shear edge clearance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11820 KB  
Article
High-Speed Nanoindentation and Local Residual Stress Analysis for Cut Edge Damage in Complex Phase Steels for Automotive Applications
by Laia Ortiz-Membrado, Sergi Parareda, Daniel Casellas, Emilio Jiménez-Piqué and Antonio Mateo
Metals 2025, 15(6), 651; https://doi.org/10.3390/met15060651 - 11 Jun 2025
Viewed by 1572
Abstract
Advanced high-strength steels (AHSSs) are used as lightweight solutions for vehicles, mainly focusing on the Body-in-White. However, the implementation of such steels for chassis parts requires a profound knowledge of the key design parameters for these components, particularly those concerning fatigue performance. Manufacturing [...] Read more.
Advanced high-strength steels (AHSSs) are used as lightweight solutions for vehicles, mainly focusing on the Body-in-White. However, the implementation of such steels for chassis parts requires a profound knowledge of the key design parameters for these components, particularly those concerning fatigue performance. Manufacturing of chassis parts include mechanical cutting operations. Therefore, the deformation and damage induced at the cut edge may affect the fatigue resistance of the parts in service. To characterize and study this critical area, damage and micromechanical properties have been evaluated at the cut edge for three different AHSS grades, CP800, CP980, and DP600, analyzing the impact of cutting parameters and post-processing treatments, such as sandblasting. Large high-speed nanoindentation maps of 400 × 200 µm2 have been carried out along the cut edge in the three different target zones: burnish, fracture, and burr. In the hardness maps, the deformation lines and the gradient of hardness with increasing distance from the cut edge are perfectly observed. Residual stresses at the target zones of the cut edges were measured using the FIB-DIC method for CP980 to complement the micromechanical study in these critical areas. The results found show that reduced cutting clearance leads to larger hardened zones and favorable compressive stress distributions, correlating with improved fatigue resistance. Hardened zones extending up to 100 µm from the cut edge and compressive residual stresses exceeding −300 MPa were observed at low clearance. These findings are consistent with numerical simulations and previous fatigue tests, highlighting the potential of combining high-speed nanoindentation and local stress analysis for optimizing shear cutting processes in AHSS components. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Behavior of High-Strength Steel)
Show Figures

Graphical abstract

14 pages, 5900 KB  
Article
Punch Edge Topological Design for Reduction of Work Hardening Damage in Shearing of Non-Oriented Electrical Steel Sheets
by Ryoma Okada, Kentaro Ito, Tatsuya Funazuka, Tatsuhiko Aizawa and Tomomi Shiratori
Materials 2025, 18(4), 878; https://doi.org/10.3390/ma18040878 - 17 Feb 2025
Cited by 1 | Viewed by 921
Abstract
A new shearing tool is necessary to reduce the iron loss of motor cores by minimizing the work hardening damage on the sheared non-oriented electrical steel sheets. The punch edge topology and the clearance between the punch and the die were controlled to [...] Read more.
A new shearing tool is necessary to reduce the iron loss of motor cores by minimizing the work hardening damage on the sheared non-oriented electrical steel sheets. The punch edge topology and the clearance between the punch and the die were controlled to investigate their influence on the sheared surface condition and the work hardening damage of steel sheets. A non-oriented electrical steel sheet with the thickness of 500 µm was used and sheared at the speed of 5 mm/s. After that, the sheared surface was investigated. In particular, hardness mapping was utilized to quantitatively analyze the work-hardened area of the sheared steel sheets and the dissipation of the plastic work. Among the four punch edge topological configurations explored, the nano-grooved punch employed straight along the shearing direction reduced the damage dealt to the sheared steel sheets and the plastic dissipation work to one-third compared to conventional punches. Full article
Show Figures

Figure 1

14 pages, 15922 KB  
Article
Influence of Subsequent Heat Treatment on Fatigue Behavior of Shear-Cut Electrical Steel Sheets
by Albin Gottwalt-Baruth, Paul Kubaschinski, Manuela Waltz and Ulrich Tetzlaff
Alloys 2024, 3(4), 281-294; https://doi.org/10.3390/alloys3040017 - 25 Nov 2024
Viewed by 1645
Abstract
The fatigue behavior of a fully processed, non-oriented electrical steel sheet is investigated in dependence on shear-cutting parameters and a subsequent heat treatment. For this, stress-controlled fatigue tests are performed before and after annealing at 700 °C for a total of six different [...] Read more.
The fatigue behavior of a fully processed, non-oriented electrical steel sheet is investigated in dependence on shear-cutting parameters and a subsequent heat treatment. For this, stress-controlled fatigue tests are performed before and after annealing at 700 °C for a total of six different shear-cutting settings. For all parameters, the fatigue strength of shear-cut sheets is improved by the heat treatment. This is due to reduction in a large part of the strain hardening region as well as the reduction in tensile residual stresses. Both were introduced during shear cutting and act detrimental to the fatigue strength. However, the intensity of this improvement depends on the shear-cutting parameters. This is related to the corresponding edge surfaces characteristically being formed during shear cutting. Specimens cut with a worn cutting tool show a more pronounced increase in fatigue life. In contrast, specimens produced with a sharp-edged cutting tool and high cutting clearance hardly benefit from the heat treatment. This appears to be caused by differences in surface topography, in particular coarse topographical damage in the form of grain breakouts. If these occur during shear cutting, the crack formation is not significantly delayed by additional annealing. Full article
Show Figures

Figure 1

13 pages, 7864 KB  
Article
Determination of the Influence of the Tool Side Stress Superposition and Tool Geometry on the Cut Surface Quality during Precision Shear Cutting
by Alexander Graf, Verena Kräusel, Dieter Weise, Jana Petrů, Jiří Koziorek and Pravishan Bhandari
J. Manuf. Mater. Process. 2023, 7(4), 145; https://doi.org/10.3390/jmmp7040145 - 8 Aug 2023
Viewed by 2908
Abstract
Shearing high-strength steels often leads to a subpar cut quality and excessive stress on the tool components. To enhance the quality of the cut surface, intricate techniques like fine blanking are commonly employed. However, for applications with lower quality requirements, precision shear cutting [...] Read more.
Shearing high-strength steels often leads to a subpar cut quality and excessive stress on the tool components. To enhance the quality of the cut surface, intricate techniques like fine blanking are commonly employed. However, for applications with lower quality requirements, precision shear cutting offers an alternative solution. This research paper introduces a novel approach to directly superimpose radial stress on a workpiece during the precision shear cutting process and showcases for the first time how the application of direct stress superimposition can impact the cut surface by concurrently modifying the shear cutting edge and punch surface. A statistical experimental design is employed to investigate the interrelationships between the parameters and their effects. The results indicate that the overall cut quality, including cylindricity, clean-cut angle, rollover height, and tool stress, defined by punch force and retraction force, is influenced by the superimposed stress. Regarding the clean-cut zone, the statistical significance of direct radially superimposed stress was not observed, except when interacting with sheet thickness and clearance. Additionally, the sheet thickness and cutting gap emerged as significant parameters affecting the overall quality of the cut surface. Full article
Show Figures

Figure 1

19 pages, 10286 KB  
Article
Numerical Analysis of Energy Loss in Stall Zone for Full Tubular Pump Based on Entropy Generation Theory
by Lijian Shi, Yuhang Jiang, Wei Shi, Yi Sun, Fengquan Qiao, Fangping Tang and Tian Xu
J. Mar. Sci. Eng. 2023, 11(5), 895; https://doi.org/10.3390/jmse11050895 - 22 Apr 2023
Cited by 3 | Viewed by 1836
Abstract
As a low-head and non-drive pump, the head reduction and stall advance are the key factors that restrict the popularization and application of the full tubular pump (FTP). In this paper, the shear stress transport (SST) k-ω turbulence model is used for the [...] Read more.
As a low-head and non-drive pump, the head reduction and stall advance are the key factors that restrict the popularization and application of the full tubular pump (FTP). In this paper, the shear stress transport (SST) k-ω turbulence model is used for the numerical calculation of the FTP. Additionally, based on the entropy generation theory, the energy loss and main distribution zones of the FTP under all working conditions are analyzed, and the mechanism of inducing its stall advance is explored. By comparison, we found that there is little difference between the numerical simulation results and the model test. Turbulence entropy generation has a high proportion under small flow conditions, which is mainly reflected in the outlet flow separation zone of the suction surface of the impeller blade, the guide vane inlet zone where inlet deviation exists, and the trailing edge of the guide vane where the flow separation exists. Compared with the axial flow pump (AFP), when the flow rate decreases, the clearance reflow between the stator and rotor induces the deterioration of the flow at the impeller inlet, and the turbulent entropy generation in the impeller channel increases rapidly, making the FTP enter the stall zone ahead of time. The clearance backflow affects the flow pattern of the inlet pipe, making the turbulence entropy generation in the outlet area of the inlet pipe increase. The total entropy generation in the stator–rotor region is little affected by the pump flow conditions, and it is mainly affected by different stator–rotor backflow clearance dimensions. This study can provide a reference for exploring the energy loss of the FTP and revealing its stall characteristics. Full article
Show Figures

Figure 1

21 pages, 10270 KB  
Article
Experimental Research on Sheared Edge Formation in the Shear-Slitting of Grain-Oriented Electrical Steel Workpieces
by Łukasz Bohdal, Agnieszka Kułakowska, Radosław Patyk, Marcin Kułakowski, Monika Szada-Borzyszkowska and Kamil Banaszek
Materials 2022, 15(24), 8824; https://doi.org/10.3390/ma15248824 - 10 Dec 2022
Cited by 1 | Viewed by 2158
Abstract
This study sought to experimentally develop guidelines for shaping 0.3-mm-thick cold-rolled grain-oriented ET 110-30LS steel using a shear-slitting operation. Coated and non-coated steel was used for the analysis. The coated sheet had a thin inorganic C-5 coating on both sides applied to the [...] Read more.
This study sought to experimentally develop guidelines for shaping 0.3-mm-thick cold-rolled grain-oriented ET 110-30LS steel using a shear-slitting operation. Coated and non-coated steel was used for the analysis. The coated sheet had a thin inorganic C-5 coating on both sides applied to the C-2 substrate. The first part of this paper presents an analysis of the quality of the cut surface depending on the adopted machining parameters, which were the control variables on the production lines. The second part presents an analysis of the magnetic parameters of the cut samples, which allowed for the specific impact of the quality of the cut edge on the selected magnetic features. Finally, an optimization task was developed to obtain a set of acceptable solutions on the plane of controllable process variables such as slitting speed and horizontal clearance. The obtained results can be used to control the shear-slitting process on production lines and obtain high-quality workpieces. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys)
Show Figures

Figure 1

22 pages, 9967 KB  
Article
Deformation Behavior and Connection Mechanism of EMP Connections in Aluminum Pipe Joints
by Haiping Yu, Boyang Ma, Yihan He and Yang Qi
Metals 2022, 12(11), 1892; https://doi.org/10.3390/met12111892 - 4 Nov 2022
Cited by 5 | Viewed by 2156
Abstract
The joint is a key component of the aviation piping system, with severe performance requirements and better requirements for connection technology. With a focus on the manufacturing demand of AA6061 aerospace pipe joints, as well as the characteristics of EMP forming technology, this [...] Read more.
The joint is a key component of the aviation piping system, with severe performance requirements and better requirements for connection technology. With a focus on the manufacturing demand of AA6061 aerospace pipe joints, as well as the characteristics of EMP forming technology, this paper investigates the deformation behavior of the EMP forming on AA6061 aerospace pipe joints, the influence of process parameters on the deformation behavior, and the deformation mechanism of the tube wall. The results show that under the conditions of this paper, with an increase in the initial tube-sleeve gap and discharge voltage, the degree of local deformation of the AA6061 tube wall and the trench embedding rate increase. Keeping the width and depth of the grooves as 1.14 mm and 0.23 mm, the embedding rate of the grooves is less than 85% under the clearance conditions of 0.11 mm and 0.5 mm, while the lowest voltage for the embedding rate of the grooves to reach more than 85% under the clearance conditions of 1 mm, 1.5 mm and 2 mm is 7 kV, 6 kV, and 5 kV, respectively. The metallographic organization of the deformation area shows that the tube is deformed by the intense shear at the edge of the groove of the tube sleeve, thereby showing streamlined organization characteristics and deformation characteristics. The electromagnetic pulse forming process of the AA6061 tube is mainly divided into two stages: free bulging and local deformation; the inertia of high-rate deformation causes the groove filling to exhibit volume deformation characteristics in the local deformation stage. Full article
(This article belongs to the Special Issue Advances in Impulse Manufacturing)
Show Figures

Graphical abstract

23 pages, 3910 KB  
Article
Drilling-Induced Damages in Hybrid Carbon and Glass Fiber-Reinforced Composite Laminate and Optimized Drilling Parameters
by Elango Natarajan, Kalaimani Markandan, Santhosh Mozhuguan Sekar, Kaviarasan Varadaraju, Saravanakumar Nesappan, Anto Dilip Albert Selvaraj, Wei Hong Lim and Gérald Franz
J. Compos. Sci. 2022, 6(10), 310; https://doi.org/10.3390/jcs6100310 - 12 Oct 2022
Cited by 25 | Viewed by 4041
Abstract
Hybrid carbon and glass fiber-reinforced composites have attracted significant research interest for primary load-bearing structural components in the field of aviation manufacturing owing to their low weight and high strength to weight ratio. However, the anisotropic and heterogenic nature of carbon and/or glass [...] Read more.
Hybrid carbon and glass fiber-reinforced composites have attracted significant research interest for primary load-bearing structural components in the field of aviation manufacturing owing to their low weight and high strength to weight ratio. However, the anisotropic and heterogenic nature of carbon and/or glass fiber-reinforced composite prevents high machining quality due to the directionality effect of fibers in the polymer matrix. As such, this study investigates the effect of drilling process for hybrid fiber-reinforced composite and reports optimal drilling parameters to improve the drill quality. Experimental studies indicate that an increased point angle (i.e., from 80° to 120°) resulted in low delamination upon entry due to reduced thrust force, which in turn produces better surface finish with minimal tool wear. The optimal feed rate (0.2 mm/min) ensures lower delamination at entry, since higher feed rates can increase the thrust force due to elevation in the shear area or raise the self-generated feed angle, which in turn reduces the effective clearance angle. To this end, drilling parameters were optimized using Dandelion optimizer (DO)—a cutting-edge metaheuristic search algorithm (MSA). We report the excellent consistency of DO to solve the proposed drilling optimization problem while achieving promising results as ascertained by the small standard deviation values. Full article
(This article belongs to the Special Issue Recent Advancements in Mechanical Drilling of Composite Laminates)
Show Figures

Figure 1

18 pages, 3434 KB  
Article
Cutting Mechanical Properties of Pumpkin Grafted Seedling Investigated by Finite Element Simulation and Experiment
by Daipeng Lu, Wei Wang, Encai Bao, Shilin Wang, Xue Wu, Zongchun Bai and Yuxin Tang
Agriculture 2022, 12(9), 1354; https://doi.org/10.3390/agriculture12091354 - 1 Sep 2022
Cited by 12 | Viewed by 2340
Abstract
The cutting device in the seedling grafting process was studied, which provided a reference for optimizing the structural parameters and working parameters of important shearing components in the seedling grafting line, thereby improving the performance of the cutting device. The dynamic cutting process [...] Read more.
The cutting device in the seedling grafting process was studied, which provided a reference for optimizing the structural parameters and working parameters of important shearing components in the seedling grafting line, thereby improving the performance of the cutting device. The dynamic cutting process of the cutting device was numerically simulated. The effects of four factors, the average cutting speed (X1), the sliding angle (X2), the cutting edge angle (X3), and the cutter clearance (X4) on the cutting force, were studied. The optimal combination of structural parameters and working parameters of the cutting device was determined. The simulation results showed that the sliding angle (X2) and the cutting edge angle (X3) affect the ultimate cutting stress. The average cutting speed (X1) and the cutter clearance (X4) affect the ultimate cutting force. When X1, X2, X3, and X4 are 579 mm/s, 39°, 25°, and 1.4 mm, respectively, it is the better combination parameter, and the ultimate cutting equivalent stress of the cutting device is 0.32 Mpa. A high-speed cutting device for grafted seedlings was built, and the cutting experiment was carried out. The experiment results showed that the simulated values fit well with the experimental data. Under the optimal combination of cutting parameters, the cutting stress of the cutting device was smaller. The finite element simulation of the seedling grafting cutting device reduces the experiment cost and provides a reference for developing the seedling grafting line. Full article
Show Figures

Figure 1

12 pages, 15150 KB  
Article
Experimental and Simulation Analysis of Warm Shearing Process Parameters for Rolled AZ31B Magnesium Alloy Plate
by Yue Meng, Lifeng Ma and Weitao Jia
Crystals 2022, 12(5), 661; https://doi.org/10.3390/cryst12050661 - 5 May 2022
Cited by 1 | Viewed by 2171
Abstract
The study was carried out on a KRUMAN-CLS1016-NC shearing machine at a shear temperature of 20 °C to 250 °C and a shear edge clearance of 8% to 10% for a rolled AZ31B magnesium alloy plate with a thickness of 8.35 mm. The [...] Read more.
The study was carried out on a KRUMAN-CLS1016-NC shearing machine at a shear temperature of 20 °C to 250 °C and a shear edge clearance of 8% to 10% for a rolled AZ31B magnesium alloy plate with a thickness of 8.35 mm. The height and area share of the bright zone in the shear section were analyzed by macroscopic measurements and super depth-of-field experiments, and combined with DEFORM-3D finite element simulations, the optimal shear program was determined using the orthogonal experimental method. It was found that, with the increase of shear temperature and shear edge clearance, the height and area of the burnish band first increased and then decreased. In addition, from the simulated orthogonal test, it can be obtained that the effect of shear temperature on the height of the burnish band is superior to that of the shear edge gap, so the selection of shear temperature is preferred. In this paper, the shear temperature of 150 °C and the shear edge clearance of 12% were finally determined as the best shear process parameters for the rolled AZ31B magnesium alloy sheet. Full article
(This article belongs to the Special Issue State-of-the-Art Magnesium Alloys)
Show Figures

Figure 1

15 pages, 12422 KB  
Article
Quantitative Characterization of the Affected Zones in a Single Crystal Fe-6Si Steel Sheet by Fine Piercing
by Tatsuhiko Aizawa, Tomomi Shiratori, Tomoaki Yoshino, Yohei Suzuki and Kuniaki Dohda
Micromachines 2022, 13(4), 562; https://doi.org/10.3390/mi13040562 - 31 Mar 2022
Cited by 3 | Viewed by 2151
Abstract
An iron loss in the motor core was often enhanced by formation of plastically affected zones in piercing the electrical steel sheets. A platform methodology to carry out quantitative evaluation of these affected zones in the pierced electrical steel sheets was proposed to [...] Read more.
An iron loss in the motor core was often enhanced by formation of plastically affected zones in piercing the electrical steel sheets. A platform methodology to carry out quantitative evaluation of these affected zones in the pierced electrical steel sheets was proposed to search for the way to minimize the affected zone widths. A coarse-grained electrical steel sheet was employed as a work material for a fine piercing experiment under the narrowed clearance between the plasma-nitrided SKD11 punch and core-die. The shearing behavior by the applied loading for piercing was described by in situ measurement of the load-stroke relationship. The plastic straining in the single-crystal electrical steel sheet was characterized by SEM (scanning electron microscopy) and EBSD (electron back-scattering diffraction) to define the affected zone size and to analyze the rotation of crystallographic orientations by the induced plastic distortion during piercing. Integral and differentiation of spin rotation measured the affected zones. The effect of punch edge sharpness on these spin-rotation measures was also discussed using the nitrided and ion-milled SKD11 punch and core-die. Full article
(This article belongs to the Special Issue Micro and Nano Manufacturing (WCMNM 2021))
Show Figures

Figure 1

12 pages, 3586 KB  
Article
Correlation between Cutting Clearance, Deformation Texture, and Magnetic Loss Prediction in Non-Oriented Electrical Steels
by Ján Füzer, Samuel Dobák, Ivan Petryshynets, Peter Kollár, František Kováč and Ján Slota
Materials 2021, 14(22), 6893; https://doi.org/10.3390/ma14226893 - 15 Nov 2021
Cited by 13 | Viewed by 2276
Abstract
Manufacturing the magnetic cores in electrical machines impacts the magnetic performance of the electrical steel by inducing stresses near the cutting edge. In this paper, energy loss behaviour in non-oriented electrical steels punched with different cutting clearances before and after annealing is investigated. [...] Read more.
Manufacturing the magnetic cores in electrical machines impacts the magnetic performance of the electrical steel by inducing stresses near the cutting edge. In this paper, energy loss behaviour in non-oriented electrical steels punched with different cutting clearances before and after annealing is investigated. An experimental shear cutting tool was employed to punch the ring-shaped parts from electrical steels in a finished state with four different values of cutting clearance corresponding to 1%, 3%, 5%, and 7% of the sheet thickness. The effect of cutting clearance on the magnetic losses is derived and analysed by the statistical theory of losses and associated loss separation concept including the analysis of movable magnetic objects. In this framework, this paper assesses the combined effect of cutting clearance, frequency, and heat treatment on the hysteresis loops and iron losses in non-oriented FeSi electrical steels. Measurements have been performed from quasi-static to 400 Hz at peak induction Bp = 1.0 T. Both states before and after heat treatment have been considered. The excess loss is observed as the most sensitive loss component to cutting clearance and its magneto–structural correlation is quantified. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Graphical abstract

17 pages, 5408 KB  
Article
Finite Element Analysis and Experimental Investigation of Cut Surface Formation of Magnetic Silicon Steel in Shear Cutting
by Łukasz Bohdal, Agnieszka Kułakowska and Marcin Kułakowski
Materials 2021, 14(21), 6415; https://doi.org/10.3390/ma14216415 - 26 Oct 2021
Cited by 1 | Viewed by 3135
Abstract
Shear cutting allows for shaping materials with any length of cutting line with high efficiency and without negative thermal effects, but it causes stresses and deformations in the cutting zone of the material. This has a negative effect on the magnetic properties of [...] Read more.
Shear cutting allows for shaping materials with any length of cutting line with high efficiency and without negative thermal effects, but it causes stresses and deformations in the cutting zone of the material. This has a negative effect on the magnetic properties of the sheet in the areas of the cut edge. The main problem on production lines is to ensure appropriate control of the process so as to obtain the appropriate technological quality of the cut edge, free of not only defects in the form of burrs and shape deviations, but also the minimum deformed zone. This task is difficult due to the large number of control variables, the influence of which on the shaping of the material and the formation of the cut edge is not fully understood. The article attempts to determine the course of the cutting process and to examine the influence of control variables on the formation of the cut edge in the shear-slitting process in which the tools perform a rotary motion. For this purpose, FEM modeling, vision techniques and experimental studies were used. A 3D model of the process was developed, which enables a detailed analysis of the states of stresses, strains, displacements and fracture mechanisms of the material. The simulation results were verified using vision techniques, which were used in the work to observe the flow and cracking mechanisms of the material. Parametric analyses were performed for the process control variables. The research showed a significant influence of the cutting velocity and the clearance between the tools on the formation of the cut edge. The most homogeneous surface of the cut edge with the minimum burr height was obtained for the following parameters: rake angle α = 15–30°, horizontal clearance hc = 0.03 mm and slitting velocity v2 = 15 m/min. The developed results can be useful for controlling the cutting process on production lines in terms of maximum process efficiency while maintaining the appropriate technological quality of the cut edge. Full article
Show Figures

Figure 1

20 pages, 13232 KB  
Article
Numerical Investigations on Non-Rectangular Anchor Groups under Shear Loads Applied Perpendicular or Parallel to an Edge
by Boglárka Bokor and Akanshu Sharma
CivilEng 2021, 2(3), 692-711; https://doi.org/10.3390/civileng2030038 - 28 Aug 2021
Cited by 7 | Viewed by 3811
Abstract
Anchorages of non-rectangular configuration, though not covered by current design codes, are often used in practice due to functional or architectural needs. Frequently, such anchor groups are placed close to a concrete edge and are subjected to shear loads. The design of such [...] Read more.
Anchorages of non-rectangular configuration, though not covered by current design codes, are often used in practice due to functional or architectural needs. Frequently, such anchor groups are placed close to a concrete edge and are subjected to shear loads. The design of such anchorages requires engineering judgement and no clear rules are given in the codes and standards. In this work, numerical investigations using a nonlinear 3D FE analysis code are carried out on anchor groups with triangular and hexagonal anchor patterns to understand their behavior under shear loads. A microplane model with relaxed kinematic constraint is utilized as the constitutive law for concrete. Two different orientations are considered for both triangular and hexagonal anchor groups while no hole clearance is considered in the analysis. Two loading scenarios are investigated: (i) shear loading applied perpendicular and towards the edge; and (ii) shear loading applied parallel to the edge. The results of the analyses are evaluated in terms of the load-displacement behavior and failure modes. A comparison is made between the results of the numerical simulations and the analytical calculations according to the current approaches. It is found that, similar to the rectangular anchorages, and also for such non-rectangular anchorages without hole clearance, it may be reasonable to calculate the concrete edge breakout capacity by assuming a failure crack from the back anchor row. Furthermore, the failure load of the investigated groups loaded in shear parallel to the edge may be considered as twice the failure load of the corresponding groups loaded in shear perpendicular to the edge. Full article
(This article belongs to the Special Issue Connections in Concrete Volume 2)
Show Figures

Figure 1

21 pages, 7991 KB  
Article
Modeling and Experimental Analysis of Shear-Slitting of AA6111-T4 Aluminum Alloy Sheet
by Łukasz Bohdal, Leon Kukiełka, Stanisław Legutko, Radosław Patyk and Andrii M. Radchenko
Materials 2020, 13(14), 3175; https://doi.org/10.3390/ma13143175 - 16 Jul 2020
Cited by 38 | Viewed by 4383
Abstract
This work presents experimental studies with numerical modeling, aiming at the development of guidelines for shaping aluminum alloy AA6111-T4, t = 1.5 mm thick, with the use of a shear-slitting operation. During the experimental tests, parametric analyses were conducted for the selected material [...] Read more.
This work presents experimental studies with numerical modeling, aiming at the development of guidelines for shaping aluminum alloy AA6111-T4, t = 1.5 mm thick, with the use of a shear-slitting operation. During the experimental tests, parametric analyses were conducted for the selected material thickness. For the purposes of the material deformation’s analysis, a vision system based on the digital image correlation (DiC) method was used. Numerical models were developed with the use of finite element analysis (FEA) and the mesh-free method: smoothed particle hydrodynamics (SPH), which were used to analyze the residual stress and strain in the cutting zone at different process conditions. The results indicate a significant effect of the horizontal clearance between knives on the width of the deformation zone on sheet cut edge. Together with the clearance value increase, the deformation zone increases. The highest burrs on the cut edge were obtained, when the slitting speed was set to v = 17 m/min, and clearance to hc = 6%t. A strong influence was observed of the horizontal clearance value at high slitting speeds on burr unshapeliness. The most favorable conditions were obtained for v = 32 m/min, hc = 0.062 mm, and rake angle of upper knife for α = 30°. For this configuration, a smooth sheared edge with minimal burr height was obtained. Full article
Show Figures

Graphical abstract

Back to TopTop