Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (542)

Search Parameters:
Keywords = shallow water zone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 34309 KiB  
Article
Assessing the Motile Fauna of Eastern Mediterranean Marine Caves
by Markos Digenis, Michail Ragkousis, Charalampos Dimitriadis, Stelios Katsanevakis and Vasilis Gerovasileiou
Fishes 2025, 10(8), 383; https://doi.org/10.3390/fishes10080383 - 5 Aug 2025
Viewed by 32
Abstract
Although marine caves are among the most species-diverse habitats in the Mediterranean Sea, most available studies have focused on their sessile fauna. This study provides the first quantitative assessment of motile fauna in 27 marine caves across four geographical subareas of the Aegean [...] Read more.
Although marine caves are among the most species-diverse habitats in the Mediterranean Sea, most available studies have focused on their sessile fauna. This study provides the first quantitative assessment of motile fauna in 27 marine caves across four geographical subareas of the Aegean and Ionian Seas, using a rapid assessment visual census protocol, applied through 3 min time transects in each ecological cave zone. Multivariate analysis revealed that the motile community structure of the cave entrance was differentiated from that of the semidark and dark zones. Deeper caves were distinct from shallower ones while caves of the east Aegean differed from those around Crete Island. A total of 163 taxa were recorded, 27 of which are reported herein for the first time in marine caves of the eastern Mediterranean Sea, while three species (two native and one introduced) are recorded in Greek waters for the first time, enriching our knowledge on the permanent and occasional cave residents. Seventeen species were introduced, comprising more than half of the total fish abundance in the southeasternmost cave. Our limited knowledge of the motile fauna of Mediterranean marine caves coupled with the continued spread of introduced species highlights the urgent need for monitoring and conservation actions, especially within marine protected areas. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

21 pages, 4289 KiB  
Article
H2 Transport in Sedimentary Basin
by Luisa Nicoletti, Juan Carlos Hidalgo, Dariusz Strąpoć and Isabelle Moretti
Geosciences 2025, 15(8), 298; https://doi.org/10.3390/geosciences15080298 - 3 Aug 2025
Viewed by 193
Abstract
Natural hydrogen is generated by fairly deep processes and/or in low-permeability rocks. In such contexts, fluids circulate mainly through the network of faults and fractures. However, hydrogen flows from these hydrogen-generating layers can reach sedimentary rocks with more typical permeability and porosity, allowing [...] Read more.
Natural hydrogen is generated by fairly deep processes and/or in low-permeability rocks. In such contexts, fluids circulate mainly through the network of faults and fractures. However, hydrogen flows from these hydrogen-generating layers can reach sedimentary rocks with more typical permeability and porosity, allowing H2 flows to spread out rather than be concentrated in fractures. In that case, three different H2 transport modes exist: advection (displacement of water carrying dissolved gas), diffusion, and free gas Darcy flow. Numerical models have been run to compare the efficiency of these different modes and the pathway they imply for the H2 in a sedimentary basin with active aquifers. The results show the key roles of these aquifers but also the competition between free gas flow and the dissolved gas displacement which can go in opposite directions. Even with a conservative hypothesis on the H2 charge, a gaseous phase exists at few kilometers deep as well as free gas accumulation. Gaseous phase displacement could be the faster and diffusion is neglectable. The modeling also allows us to predict where H2 is expected in the soil: in fault zones, eventually above accumulations, and, more likely, due to exsolution, above shallow aquifers. Full article
Show Figures

Figure 1

20 pages, 3033 KiB  
Review
Recharge Sources and Flow Pathways of Karst Groundwater in the Yuquan Mountain Spring Catchment Area, Beijing: A Synthesis Based on Isotope, Tracers, and Geophysical Evidence
by Yuejia Sun, Liheng Wang, Qian Zhang and Yanhui Dong
Water 2025, 17(15), 2292; https://doi.org/10.3390/w17152292 - 1 Aug 2025
Viewed by 240
Abstract
Karst groundwater systems are critical to water supply and ecological sustainability in northern China, yet their heterogeneity poses challenges for flow characterization. The Yuquan Mountain (YM) Spring, historically a major karst spring in western Beijing, has experienced persistent drying, raising concerns about its [...] Read more.
Karst groundwater systems are critical to water supply and ecological sustainability in northern China, yet their heterogeneity poses challenges for flow characterization. The Yuquan Mountain (YM) Spring, historically a major karst spring in western Beijing, has experienced persistent drying, raising concerns about its recharge and flow mechanisms. This study integrates published isotope data, spatial distributions of Na+ and Cl as hydrochemical tracers, groundwater age estimates, and geophysical survey results to assess the recharge sources and flow pathways within the YM Spring catchment area. The analysis identifies two major recharge zones: the Tanzhesi area, primarily recharged by direct infiltration of precipitation through exposed carbonate rocks, and the Junzhuang area, which receives mixed recharge from rainfall and Yongding River seepage. Three potential flow pathways are proposed, including shallow flow along faults and strata, and a deeper, speculative route through the Jiulongshan-Xiangyu syncline. The synthesis of multiple lines of evidence leads to a refined conceptual model that illustrates how geological structures govern recharge, flow, and discharge processes in this karst system. These findings not only enhance the understanding of subsurface hydrodynamics in complex geological settings but also provide a scientific basis for future spring restoration planning and groundwater management strategies in the regions. Full article
Show Figures

Figure 1

18 pages, 10032 KiB  
Article
Design and Efficiency Analysis of High Maneuvering Underwater Gliders for Kuroshio Observation
by Zhihao Tian, Bing He, Heng Zhang, Cunzhe Zhang, Tongrui Zhang and Runfeng Zhang
Oceans 2025, 6(3), 48; https://doi.org/10.3390/oceans6030048 - 1 Aug 2025
Viewed by 213
Abstract
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier [...] Read more.
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier in marine innovation. In recent years, the global research community has increased its efforts towards the development of high-maneuverability underwater vehicles. However, propeller design optimization ignores the key balance between acoustic performance and hydrodynamic efficiency, as well as the appropriate speed threshold for blade rotation. In order to solve this problem, the propeller design of the NACA 65A010 airfoil is optimized by using OpenProp v3.3.4 and XFlow 2022 software, aiming at innovating the propulsion system of shallow water agile submersibles. The study presents an integrated design framework combining lattice Boltzmann method (LBM) simulations synergized with fully Lagrangian-LES modeling, implementing rotational speed thresholds to detect cavitation inception, followed by advanced acoustic propagation analysis. Through rigorous comparative assessment of hydrodynamic metrics, we establish an optimization protocol for propeller selection tailored to littoral zone operational demands. Studies have shown that increasing the number of propeller blades can reduce the single-blade load and delay cavitation, but too many blades will aggravate the complexity of the flow field, resulting in reduced efficiency and noise rebound. It is concluded that the propeller with five blades, a diameter of 234 mm, and a speed of 500 RPM exhibits the best performance. Under these conditions, the water efficiency is 69.01%, and the noise is the lowest, which basically realizes the balance between hydrodynamic efficiency and acoustic performance. This paradigm-shifting research carries substantial implications for next-generation marine vehicles, particularly in optimizing operational stealth and energy efficiency through intelligent propulsion architecture. Full article
Show Figures

Figure 1

27 pages, 18566 KiB  
Article
Geochemical Characteristics and Controlling Factors of Lower Cretaceous Lacustrine Hydrocarbon Source Rocks in the Erdengsumu Sag, Erlian Basin, NE China
by Juwen Yao, Zhanli Ren, Kai Qi, Jian Liu, Sasa Guo, Guangyuan Xing, Yanzhao Liu and Mingxing Jia
Processes 2025, 13(8), 2412; https://doi.org/10.3390/pr13082412 - 29 Jul 2025
Viewed by 216
Abstract
This study analyzes the lacustrine hydrocarbon source rocks of the Lower Cretaceous in the Erdengsumu sag of the Erlian Basin, evaluating their characteristics and identifying areas with oil resource potential, while also investigating the ancient lake environment, material source input, and controlling factors, [...] Read more.
This study analyzes the lacustrine hydrocarbon source rocks of the Lower Cretaceous in the Erdengsumu sag of the Erlian Basin, evaluating their characteristics and identifying areas with oil resource potential, while also investigating the ancient lake environment, material source input, and controlling factors, ultimately developing a sedimentary model for lacustrine hydrocarbon source rocks. The findings suggest the following: (1) The lower Tengger Member (K1bt1) and the Aershan Formation (K1ba) are the primary oil-producing strata, with an effective hydrocarbon source rock exhibiting a lower limit of total organic carbon (TOC) at 0.95%. The Ro value typically remains below 0.8%, indicating that high-maturity oil production has not yet been attained. (2) The oil generation threshold depths for the Dalestai and Sayinhutuge sub-sags are 1500 m and 1214 m, respectively. The thickness of the effective hydrocarbon source rock surpasses 200 m, covering areas of 42.48 km2 and 88.71 km2, respectively. The cumulative hydrocarbon generation intensity of wells Y1 and Y2 is 486 × 104 t/km2 and 26 × 104 t/km2, respectively, suggesting that the Dalestai sub-sag possesses considerable petroleum potential. The Aershan Formation in the Chagantala sub-sag has a maximum burial depth of merely 1800 m, insufficient to attain the oil generation threshold depth. (3) The research area’s productive hydrocarbon source rocks consist of organic matter types I and II1. The Pr/Ph range is extensive (0.33–2.07), signifying a reducing to slightly oxidizing sedimentary environment. This aligns with the attributes of small fault lake basins, characterized by shallow water and robust hydrodynamics. (4) The low ratio of ∑nC21−/∑nC22+ (0.36–0.81), high CPI values (>1.49), and high C29 sterane concentration suggest a substantial terrestrial contribution, with negligible input from aquatic algae–bacterial organic matter. Moreover, as sedimentation duration extends, the contribution from higher plants progressively increases. (5) The ratio of the width of the deep depression zone to the width of the depression in the Erdengsumu sag is less than 0.25. The boundary fault scale is small, its activity is low, and there is not much input from the ground. Most of the source rocks are in the reducing sedimentary environment of the near-lying gently sloping zone. Full article
(This article belongs to the Topic Petroleum and Gas Engineering, 2nd edition)
Show Figures

Figure 1

21 pages, 4796 KiB  
Article
Hydrogeochemical Characteristics, Formation Mechanisms, and Groundwater Evaluation in the Central Dawen River Basin, Northern China
by Caiping Hu, Kangning Peng, Henghua Zhu, Sen Li, Peng Qin, Yanzhen Hu and Nan Wang
Water 2025, 17(15), 2238; https://doi.org/10.3390/w17152238 - 27 Jul 2025
Viewed by 340
Abstract
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely [...] Read more.
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely centered on the upstream Muwen River catchment and downstream Dongping Lake, with some focusing solely on karst groundwater. Basin-wide evaluations suggest good overall groundwater quality, but moderate to severe contamination is confined to the lower Dongping Lake area. The hydrogeologically complex mid-reach, where the Muwen and Chaiwen rivers merge, warrants specific focus. This region, adjacent to populous areas and industrial/agricultural zones, features diverse aquifer systems, necessitating a thorough analysis of its hydrochemistry and origins. This study presents an integrated hydrochemical, isotopic investigation and EWQI evaluation of groundwater quality and formation mechanisms within the multiple groundwater types of the central DRB. Central DRB groundwater has a pH of 7.5–8.2 (avg. 7.8) and TDSs at 450–2420 mg/L (avg. 1075.4 mg/L) and is mainly brackish, with Ca2+ as the primary cation (68.3% of total cations) and SO42− (33.6%) and NO3 (28.4%) as key anions. The Piper diagram reveals complex hydrochemical types, primarily HCO3·SO4-Ca and SO4·Cl-Ca. Isotopic analysis (δ2H, δ18O) confirms atmospheric precipitation as the principal recharge source, with pore water showing evaporative enrichment due to shallow depths. The Gibbs diagram and ion ratios demonstrate that hydrochemistry is primarily controlled by silicate and carbonate weathering (especially calcite dissolution), active cation exchange, and anthropogenic influences. EWQI assessment (avg. 156.2) indicates generally “good” overall quality but significant spatial variability. Pore water exhibits the highest exceedance rates (50% > Class III), driven by nitrate pollution from intensive vegetable cultivation in eastern areas (Xiyangzhuang–Liangzhuang) and sulfate contamination from gypsum mining (Guojialou–Nanxiyao). Karst water (26.7% > Class III) shows localized pollution belts (Huafeng–Dongzhuang) linked to coal mining and industrial discharges. Compared to basin-wide studies suggesting good quality in mid-upper reaches, this intensive mid-reach sampling identifies critical localized pollution zones within an overall low-EWQI background. The findings highlight the necessity for aquifer-specific and land-use-targeted groundwater protection strategies in this hydrogeologically complex region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

20 pages, 3986 KiB  
Article
Sentinel-2 Satellite-Derived Bathymetry with Data-Efficient Domain Adaptation
by Christos G. E. Anagnostopoulos, Vassilios Papaioannou, Konstantinos Vlachos, Anastasia Moumtzidou, Ilias Gialampoukidis, Stefanos Vrochidis and Ioannis Kompatsiaris
J. Mar. Sci. Eng. 2025, 13(7), 1374; https://doi.org/10.3390/jmse13071374 - 18 Jul 2025
Viewed by 328
Abstract
Satellite-derived bathymetry (SDB) enables the efficient mapping of shallow waters such as coastal zones but typically requires extensive local ground truth data to achieve high accuracy. This study evaluates the effectiveness of transfer learning in reducing this requirement while keeping estimation accuracy at [...] Read more.
Satellite-derived bathymetry (SDB) enables the efficient mapping of shallow waters such as coastal zones but typically requires extensive local ground truth data to achieve high accuracy. This study evaluates the effectiveness of transfer learning in reducing this requirement while keeping estimation accuracy at acceptable levels by adapting a deep learning model pretrained on data from Puck Lagoon (Poland) to a new coastal site in Agia Napa (Cyprus). Leveraging the open MagicBathyNet benchmark dataset and a lightweight U-Net architecture, three scenarios were studied and compared: direct inference to Cyprus, site-specific training in Cyprus, and fine-tuning from Poland to Cyprus with incrementally larger subsets of training data. Results demonstrate that fine-tuning with 15 samples reduces RMSE by over 50% relative to the direct inference baseline. In addition, the domain adaptation approach using 15 samples shows comparable performance to the site-specific model trained on all available data in Cyprus. Depth-stratified error analysis and paired statistical tests confirm that around 15 samples represent a practical lower bound for stable SDB, according to the MagicBathyNet benchmark. The findings of this work provide quantitative evidence on the effectiveness of deploying data-efficient SDB pipelines in settings of limited in situ surveys, as well as a practical lower bound for clear and shallow coastal waters. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

14 pages, 1722 KiB  
Article
Spectrum-Based Method for Detecting Seepage in Concrete Cracks of Dams
by Jinmao Tang, Yifan Xu, Zhenchao Liu, Xile Wang, Shuai Niu, Dongyang Han and Xiaobin Cao
Water 2025, 17(14), 2130; https://doi.org/10.3390/w17142130 - 17 Jul 2025
Viewed by 208
Abstract
Cracks and seepage in dam structures pose a serious risk to their safety, yet traditional inspection methods often fall short when it comes to detecting shallow or early-stage fractures. This study proposes a new approach that uses spectral response analysis to quickly identify [...] Read more.
Cracks and seepage in dam structures pose a serious risk to their safety, yet traditional inspection methods often fall short when it comes to detecting shallow or early-stage fractures. This study proposes a new approach that uses spectral response analysis to quickly identify signs of seepage in concrete dams. Researchers developed a three-layer model—representing the concrete, a seepage zone, and water—to better understand how cracks affect the way electrical signals behave, thereby inverting the state of the dam based on how electrical signals behave in actual engineering measurements. Through computer simulations and lab experiments, the team explored how changes in the resistivity and thickness of the seepage layer, along with the resistivity of surrounding water, influence key indicators like impedance and signal angle. The results show that the “spectrum-based method” can effectively detect seepage in concrete cracks of dams, and the measurement method of the “spectral quadrupole method” based on the “spectrum-based method” is highly sensitive to these variations, making it a promising tool for spotting early seepage. Field tests backed up the lab findings, confirming that this method is significantly better than traditional techniques at detecting cracks less than a meter deep and identifying early signs of water intrusion. It could provide dam inspectors with a more reliable way to monitor structural health and prevent potential failures. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

19 pages, 12183 KiB  
Article
A Study on the Sedimentary Environment and Facies Model of Triassic Carbonate Rocks in the Mangeshlak Basin
by Fanyang Meng, Kaixun Zhang, Zhiping He, Miao Miao and Feng Wang
Appl. Sci. 2025, 15(14), 7788; https://doi.org/10.3390/app15147788 - 11 Jul 2025
Viewed by 270
Abstract
Based on drilling, core and seismic data, combined with the regional tectonic sedimentary evolution background, the sedimentary environment of the Triassic carbonate rocks in the Mangeshlak Basin was studied. A sedimentary facies model of this set of carbonate rocks was established. Research has [...] Read more.
Based on drilling, core and seismic data, combined with the regional tectonic sedimentary evolution background, the sedimentary environment of the Triassic carbonate rocks in the Mangeshlak Basin was studied. A sedimentary facies model of this set of carbonate rocks was established. Research has shown that the Mangeshlak Basin underwent a complete large-scale marine transgression–regression sedimentary evolution process during the Triassic. During the early to middle Triassic, seawater gradually invaded the northwest region of the basin from northwest to southeast and gradually regressed in the late Middle Triassic. In the lower part of the Triassic carbonate rocks, the primary components are developed granular limestone or dolomite with oolitic structures, interspersed with a small amount of thin mudstone, which is a good reservoir; the upper part of the Triassic is mainly composed of sedimentary mudstone and mudstone, which can form good sealings. The hill-shaped reflections of the platform edge facies, along with the high-frequency, strong-amplitude, and moderately continuous reflections within the restricted platform interior, are clearly visible on the seismic profile. These features are consistent with the sedimentary environment and lithofacies characteristics revealed by drilling data along the profile. Drilling and seismic data revealed that the sedimentary environment of the early and middle Triassic in the basin is mainly composed of shallow water platform edges and restricted platforms, as well as carbonate rock slopes and open non-marine shelves in deep water areas. A sedimentary facies model of the Triassic carbonate rock segment in the basin was established, comprising restricted platforms, platform edges, carbonate rock slopes, and non-marine shelves. Unlike the modified Wilson marginal carbonate rock platform model, the carbonate rock platform edge in the Mangeshlak Basin does not develop reef facies. Instead, it is mainly composed of oolitic beach (dam) sediments, making it the most favorable sedimentary facies zone for the Triassic reservoir development in the basin. Full article
Show Figures

Figure 1

28 pages, 6690 KiB  
Article
Numerical Models for Predicting Water Flow Characteristics and Optimising a Subsurface Self-Regulating, Low-Energy, Clay-Based Irrigation (SLECI) System in Sandy Loam Soil
by Wisdom Eyram Kwame Agbesi, Livingstone Kobina Sam-Amoah, Ransford Opoku Darko, Francis Kumi and George Boafo
Water 2025, 17(14), 2058; https://doi.org/10.3390/w17142058 - 10 Jul 2025
Viewed by 347
Abstract
The Subsurface self-regulating, Low-Energy, Clay-based Irrigation (SLECI) system is a recently developed irrigation method. The SLECI system supplies water directly to the crop root zone by utilising the potential difference established between its permeable interior and exterior radial walls. In this study, we [...] Read more.
The Subsurface self-regulating, Low-Energy, Clay-based Irrigation (SLECI) system is a recently developed irrigation method. The SLECI system supplies water directly to the crop root zone by utilising the potential difference established between its permeable interior and exterior radial walls. In this study, we investigated the effect of the SLECI emitter’s operating pressure head and burial depth on the water flow characteristics in sandy loam soil. The results show that the developed COMSOL-2D model accurately predicted water flow characteristic under SLECI. The operating pressure head significantly influenced the water flow characteristics. As the operating pressure head increased, emitter discharge increased, and the wetted soil area was extended. The burial depth had a minimal effect on the emitter discharge but notably affected the advancement and time at which wetting fronts reached the soil surface and bottom boundaries. Operating the SLECI emitter at a higher operating pressure head and shallower burial depth could degrade irrigation water application and water use efficiencies. Based on a multi-objective optimisation algorithm, we recommend that the SLECI emitter be operated at a 125 cm pressure head and buried at 40 cm for crops with a root zone depth of 100 cm. Our study is expected to provide a greater understanding of the SLECI system and offer some recommendations and guidelines for its efficient deployment in sandy loam for enhanced water use efficiency in crop production. Full article
Show Figures

Figure 1

27 pages, 5832 KiB  
Article
Incorporation of Horizontal Aquifer Flow into a Vertical Vadose Zone Model to Simulate Natural Groundwater Table Fluctuations
by Vipin Kumar Oad, Adam Szymkiewicz, Tomasz Berezowski, Anna Gumuła-Kawęcka, Jirka Šimůnek, Beata Jaworska-Szulc and René Therrien
Water 2025, 17(14), 2046; https://doi.org/10.3390/w17142046 - 8 Jul 2025
Viewed by 1111
Abstract
The main goal of our work was to evaluate approaches for modeling lateral outflow from shallow unconfined aquifers in a one-dimensional model of vertical variably-saturated flow. The HYDRUS-1D model was modified by implementing formulas representing lateral flow in an aquifer, with linear or [...] Read more.
The main goal of our work was to evaluate approaches for modeling lateral outflow from shallow unconfined aquifers in a one-dimensional model of vertical variably-saturated flow. The HYDRUS-1D model was modified by implementing formulas representing lateral flow in an aquifer, with linear or quadratic drainage functions describing the relationship between groundwater head and flux. The results obtained by the modified HYDRUS-1D model were compared to the reference simulations with HydroGeoSphere (HGS), with explicit representation of 2D flow in unsaturated and saturated zones in a vertical cross-section of a strip aquifer, including evapotranspiration and plant water uptake. Four series of simulations were conducted for sand and loamy sand soil profiles with deep (6 m) and shallow (2 m) water tables. The results indicate that both linear and quadratic drainage functions can effectively capture groundwater table fluctuations and soil water dynamics. HYDRUS-1D demonstrates notable accuracy in simulating transient fluctuations but shows higher variability near the surface. The study concludes that both quadratic and linear drainage boundary conditions can effectively represent horizontal aquifer flow in 1D models, enhancing the ability of such models to simulate groundwater table fluctuations. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

34 pages, 8503 KiB  
Article
Hydrogeochemical Characterization and Determination of Arsenic Sources in the Groundwater of the Alluvial Plain of the Lower Sakarya River Basin, Turkey
by Nisa Talay and İrfan Yolcubal
Water 2025, 17(13), 1931; https://doi.org/10.3390/w17131931 - 27 Jun 2025
Viewed by 467
Abstract
Arsenic (As) contamination in groundwater represents a major global public health threat, particularly in alluvial aquifer systems where redox-sensitive geochemical processes facilitate the mobilization of naturally occurring trace elements. This study investigates groundwater quality, particularly focusing on the origin of arsenic contamination in [...] Read more.
Arsenic (As) contamination in groundwater represents a major global public health threat, particularly in alluvial aquifer systems where redox-sensitive geochemical processes facilitate the mobilization of naturally occurring trace elements. This study investigates groundwater quality, particularly focusing on the origin of arsenic contamination in shallow and deep alluvial aquifers of the Lower Sakarya River Basin, which are crucial for drinking, domestic, and agricultural uses. Groundwater samples were collected from 34 wells—7 tapping the shallow aquifer (<60 m) and 27 tapping the deep aquifer (>60 m)—during wet and dry seasons for the hydrogeochemical characterization of groundwater. Environmental isotope analysis (δ18O, δ2H, 3H) was conducted to characterize origin and groundwater residence times, and the possible hydraulic connection between shallow and deep alluvial aquifers. Mineralogical and geochemical characterization of the sediment core samples were carried out using X-ray diffraction and acid digestion analyses to identify mineralogical sources of As and other metals. Pearson correlation coefficient analyses were also applied to the results of the chemical analyses to determine the origin of metal enrichments observed in the groundwater, as well as related geochemical processes. The results reveal that 33–41% of deep groundwater samples contain arsenic concentrations exceeding the WHO and Turkish drinking water standard of 10 µg/L, with maximum values reaching 373 µg/L. Manganese concentrations exceeded the 50 µg/L limit in up to 44% of deep aquifer samples, reaching 1230 µg/L. On the other hand, iron concentrations were consistently low, remaining below the detection limit in nearly all samples. The co-occurrence of As and Mn above their maximum contaminant levels was observed in 30–33% of the wells, exhibiting extremely low sulfate concentrations (0.2–2 mg/L), notably low dissolved oxygen concentration (1.45–3.3 mg/L) alongside high bicarbonate concentrations (450–1429 mg/L), indicating localized varying reducing conditions in the deep alluvial aquifer. The correlations between molybdenum and As (rdry = 0.46, rwet = 0.64) also indicate reducing conditions, where Mo typically mobilizes with As. Arsenic concentrations also showed significant correlations with bicarbonate (HCO3) (rdry = 0.66, rwet = 0.80), indicating that alkaline or reducing conditions are promoting arsenic mobilization from aquifer materials. All these correlations between elements indicate that coexistence of As with Mn above their MCLs in deep alluvial aquifer groundwater result from reductive dissolution of Mn/Fe(?) oxides, which are primary arsenic hosts, thereby releasing arsenic into groundwater under reducing conditions. In contrast, the shallow aquifer system—although affected by elevated nitrate, sulfate, and chloride levels from agricultural and domestic sources—exhibited consistently low arsenic concentrations below the maximum contaminant level. Seasonal redox fluctuations in the shallow zone influence manganese concentrations, but the aquifer’s more dynamic recharge regime and oxic conditions suppress widespread As mobilization. Mineralogical analysis identified that serpentinite, schist, and other ophiolitic/metamorphic detritus transported by river processes into basin sediments were identified as the main natural sources of arsenic and manganese in groundwater of deep alluvium aquifer. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

25 pages, 12391 KiB  
Article
Pore Pressure Prediction and Fluid Contact Determination: A Case Study of the Cretaceous Sediments in the Bredasdorp Basin, South Africa
by Phethile Promise Shabangu, Moses Magoba and Mimonitu Opuwari
Appl. Sci. 2025, 15(13), 7154; https://doi.org/10.3390/app15137154 - 25 Jun 2025
Viewed by 427
Abstract
Pore pressure prediction gives drillers an early warning of potential oil and gas kicks, enabling them to adjust mud weight pre-emptively. A kick causes a delay in drilling practices, blowouts, and jeopardization of the wells. Changes in pore pressure affect the type of [...] Read more.
Pore pressure prediction gives drillers an early warning of potential oil and gas kicks, enabling them to adjust mud weight pre-emptively. A kick causes a delay in drilling practices, blowouts, and jeopardization of the wells. Changes in pore pressure affect the type of fluid contact in the reservoir. This study predicted the pore pressure and determined fluid contacts within the Lower Cretaceous and early Upper Cretaceous (Barremian to early Cenomanian) sandstone reservoirs of the Bredasdorp Basin using well logs and repeat formation test (RFT) data from three wells: E-BK1, E-AJ1, and E-CB1. Eaton’s method of developing a depth-dependent Normal Compact Trend (NCT), using resistivity and sonic wireline logs, as well as other methods including the Mathews and Kelly, Baker and Wood, and Modified Eaton and Bowers methods, were employed for pore pressure prediction. Eaton’s method provided reliable pore pressure results in all the wells when compared to alternative methods in this study. Overburden gradient and predicted pore pressures ranged from 1.84 gm/cc to 2.07 gm/cc and from 3563.74 psi to 4310.06 psi, respectively. Eaton’s resistivity and density/neutron log method results indicated normal pressure in E-BK1 and E-AJ1, as well as overpressured zones in E-AJ1. However, in E-CB1, the results showed only overpressured zones. The E-AJ1 significant overpressures were from 2685 m to 2716 m and from 2716 m to 2735 m in the pores exceeding 7991.54 psi. Gas–water contact (GOC) was encountered at 2967.5 m in E-BK1, while oil–gas contact (OGC) was at 2523 m in E-CB1, and gas–oil and oil–water contacts (GOC and OWC) were at 2699 m and 2723 m, respectively, in E-AJ1. In E-CB1, oil–water contact (OWC) was at 2528.5 m. Fluid contacts observed from the well logs and RFT data were in close agreement in E-AJ1, whereas there was no agreement in E-CB1 because the well log observations showed a shallower depth compared to RFT data with a difference of 5.5 m. This study illustrated the significance of an integrated approach to predicting fluid contacts and pore pressure within the reservoirs by showing that fluid contacts associated with overpressures were gas–water and oil–water contacts. In contrast, gas–oil contact was associated with normal pressure and under pressure. Full article
Show Figures

Figure 1

28 pages, 5040 KiB  
Article
Formation and Evolution Mechanisms of Geothermal Waters Influenced by Fault Zones and Ancient Lithology in the Yunkai Uplift, Southern China
by Xianxing Huang, Yongjun Zeng, Shan Lu, Guoping Lu, Hao Ou and Beibei Wang
Water 2025, 17(13), 1885; https://doi.org/10.3390/w17131885 - 25 Jun 2025
Viewed by 470
Abstract
Geothermal systems play a crucial role in understanding Earth’s heat dynamics. The Yunkai Uplift in southern China exemplifies a geothermally rich region characterized by ancient lithologies and high heat flow. This study investigates the geochemical characteristics of geothermal waters in the Yunkai Uplift. [...] Read more.
Geothermal systems play a crucial role in understanding Earth’s heat dynamics. The Yunkai Uplift in southern China exemplifies a geothermally rich region characterized by ancient lithologies and high heat flow. This study investigates the geochemical characteristics of geothermal waters in the Yunkai Uplift. Both geothermal and non-thermal water samples were collected along the Xinyi–Lianjiang (XL) Fault Zone and the Cenxi–Luchuan (CL) Fault Zone flanking the core of the Yunkai Mountains. Analytical techniques were applied to examine major ions, trace elements, and dissolved CO2 and H2, as well as isotopic characteristics of O, H, Sr, C, and He in water samples, allowing for an investigation of geothermal reservoir temperatures, circulation depths, and mixing processes. The findings indicate that most geothermal waters are influenced by water–rock interactions primarily dominated by granites. The region’s diverse lithologies, change from ancient Caledonian granites and medium–high-grade metamorphic rocks in the central hinterland (XL Fault Zone) to low-grade metamorphic rocks and sedimentary rocks in the western margin (CL Fault Zone). The chemical compositions of geothermal waters are influenced through mixing contacts between diverse rocks of varying ages, leading to distinct geochemical characteristics. Notably, δ13CCO2 values reveal that while some samples exhibit significant contributions from metamorphic CO2 sources, others are characterized by organic CO2 origins. Regional heat flow results from the upwelling of mantle magma, supplemented by radioactive heat generated from crustal granites. Isotopic evidence from δ2H and δ18O indicates that the geothermal waters originate from atmospheric sources, recharged by precipitation in the northern Yunkai Mountains. After infiltrating to specific depths, meteoric waters are heated to temperatures ranging from about 76.4 °C to 178.5 °C before ascending through the XL and CL Fault Zones under buoyancy forces. During their upward migration, geothermal waters undergo significant mixing with cold groundwater (54–92%) in shallow strata. As part of the western boundary of the Yunkai Uplift, the CL Fault Zone may extend deeper into the crust or even interact with the upper mantle but exhibits weaker hydrothermal activities than the XL Fault Zone. The XL Fault Zone, however, is enriched with highly heat-generating granites, is subjected more to both the thermal and mechanical influences of upwelling mantle magma, resulting in a higher heat flow and tension effect, and is more conducive to the formation of geothermal waters. Our findings underscore the role of geotectonic processes, lithological variation, and fault zone activity in shaping the genesis and evolution of geothermal waters in the Yunkai Uplift. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

14 pages, 3850 KiB  
Article
CFD Simulations of Basic Stepped-Hull Configurations in Planing Regime Using Star-CCM+ Software
by Konstantin I. Matveev
J. Mar. Sci. Eng. 2025, 13(7), 1217; https://doi.org/10.3390/jmse13071217 - 24 Jun 2025
Viewed by 362
Abstract
High-speed marine vehicles often employ stepped hulls with the purpose of ventilating bottom surfaces with air, thus reducing the hull’s water resistance. Due to the large number of possible geometrical variations for stepped hulls, numerical simulations can potentially make the process of designing [...] Read more.
High-speed marine vehicles often employ stepped hulls with the purpose of ventilating bottom surfaces with air, thus reducing the hull’s water resistance. Due to the large number of possible geometrical variations for stepped hulls, numerical simulations can potentially make the process of designing such hulls more effective. In this study, the computational fluid dynamics software Star-CCM+ (version 15.04.008) is applied to comparing the numerical results with the experimental hydrodynamic data available for prismatic hulls with one and two steps. Additionally, simulations are carried out for steps with different sweep angles, for three- and four-step hulls, and for a stepped hull in shallow water. Reasonable agreement with the test data was obtained, although some underestimation of drag and overprediction of air-ventilated zones were noted. In the studied conditions, increasing the forward sweep angle of a step, employing multi-step configurations, and operating in shallow water demonstrated further reductions in the wetted areas and the attainment of higher lift–drag ratios. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop