Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (183)

Search Parameters:
Keywords = sewer management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2671 KiB  
Article
Experimental Study on Cavity Formation and Ground Subsidence Behavior Based on Ground Conditions
by Sungyeol Lee, Jaemo Kang, Jinyoung Kim, Myeongsik Kong and Wonjin Baek
Appl. Sci. 2025, 15(14), 7744; https://doi.org/10.3390/app15147744 - 10 Jul 2025
Viewed by 220
Abstract
Ground subsidence is a significant geotechnical hazard in urban areas, leading to property damage, casualties, and broader societal issues. This study investigates the mechanisms of cavity formation and ground subsidence through laboratory model tests using Korean standard sand and marine clay under controlled [...] Read more.
Ground subsidence is a significant geotechnical hazard in urban areas, leading to property damage, casualties, and broader societal issues. This study investigates the mechanisms of cavity formation and ground subsidence through laboratory model tests using Korean standard sand and marine clay under controlled conditions. A transparent soil box apparatus was fabricated to simulate sewer pipe damage, with model grounds prepared at various relative densities, groundwater levels, and fines contents. The progression of cavity formation and surface collapse was observed and quantitatively analyzed by measuring the time to cavity formation and ground subsidence, as well as the mass of discharged soil. Results indicate that lower relative density accelerates ground subsidence, whereas higher density increases cavity volume due to greater frictional resistance. Notably, as the fines content increased, a tendency was observed for ground subsidence to be increasingly suppressed, suggesting that cohesive clay particles can limit soil loss under seepage conditions. These findings provide valuable insights for selecting backfill materials and managing subsurface conditions to mitigate ground subsidence risks in urban infrastructure. Full article
Show Figures

Figure 1

12 pages, 1675 KiB  
Project Report
Tree Infiltration Trenches in the City of Leipzig—Experiences from Four Years of Operation
by Lucie Moeller, Katy Bernhard, Sabine Kruckow, Sabine Wolf, Anett Georgi, Jan Friesen, Katrin Mackenzie and Roland A. Müller
Land 2025, 14(7), 1315; https://doi.org/10.3390/land14071315 - 20 Jun 2025
Viewed by 385
Abstract
Increasing climate change requires cities to adapt to changing weather conditions. New elements for decentralized stormwater management must be installed to protect the sewer system from overloading during heavy rainfall events and to keep water in the city for irrigation use. A pilot [...] Read more.
Increasing climate change requires cities to adapt to changing weather conditions. New elements for decentralized stormwater management must be installed to protect the sewer system from overloading during heavy rainfall events and to keep water in the city for irrigation use. A pilot project was implemented in Leipzig in 2020, in which infiltration tree trench systems with three different designs were installed and equipped with measuring technology during a road renovation project. The catchment areas of these three tree trenches are between 215 and 300 m² each. In two of the systems, water retention was included to supply the tree with water during drought periods. The retention elements are sealed with clay in tree trench TT1 and bentonite in tree trench TT3. For tree trench TT2, no retention capacity was provided. This article presents the design, construction, and scientific monitoring of the three tree infiltration trenches. The conclusions after four years of operation from the perspective of two departments of the City of Leipzig are summarized. The tree trench TT1 with the clay pan for water storage shows the best performance in terms of water retention and tree fitness. For the next generation of such infiltration systems, improvements in the design of the street runoff inlets and the surface of the tree trench system’s interior are discussed. Full article
(This article belongs to the Special Issue Potential for Nature-Based Solutions in Urban Green Infrastructure)
Show Figures

Graphical abstract

24 pages, 3885 KiB  
Article
Spatiotemporal Analysis of Available Freshwater Resources in Watersheds Across Northern New Jersey
by Toritseju Oyen and Duke Ophori
Hydrology 2025, 12(6), 149; https://doi.org/10.3390/hydrology12060149 - 12 Jun 2025
Cited by 1 | Viewed by 1165
Abstract
Groundwater is a critical freshwater resource, yet its quality is increasingly threatened by anthropogenic activities, particularly in urbanized regions. This study employs geospatial analysis to evaluate the spatiotemporal variability of groundwater quality across 11 Watershed Management Areas (WMAs) in northern New Jersey, from [...] Read more.
Groundwater is a critical freshwater resource, yet its quality is increasingly threatened by anthropogenic activities, particularly in urbanized regions. This study employs geospatial analysis to evaluate the spatiotemporal variability of groundwater quality across 11 Watershed Management Areas (WMAs) in northern New Jersey, from 1999 to 2016. Using specific conductance (SC) as a proxy for salinity, we applied Ordinary Kriging interpolation to estimate SC values in unmonitored locations, leveraging data from 295 shallow wells within the New Jersey Ambient Groundwater Quality Monitoring Network. The results reveal significant spatial heterogeneity in groundwater quality, strongly associated with land use and road density. The Northeast water region, characterized by high urbanization and extensive road networks, exhibited the poorest water quality, with salinity levels exceeding the 750 μS/cm threshold for freshwater in WMAs such as Lower Passaic (WMA-4) and Hackensack (WMA-5). In contrast, the Northwest region, dominated by agricultural and undeveloped land, maintained better water quality. Temporal analysis showed a worrying decline in freshwater coverage, from 80% in 1999–2004 to 74% in 2014–2016, with deicing salts and aging sewer infrastructure identified as major contamination sources. The study highlights the efficacy of Kriging and GIS tools in mapping groundwater quality trends and highlights the urgent need for targeted water management strategies in vulnerable regions. These findings provide policymakers and stakeholders with actionable insights to mitigate groundwater degradation and ensure long-term freshwater sustainability in northern New Jersey. Full article
Show Figures

Figure 1

20 pages, 1885 KiB  
Review
Review of Root Intrusions by Street Trees and Utilising Predictive Analytics to Improve Water Utility Maintenance Strategies
by Chizhengping Yang, Faisal Ahammed, Donald Cameron and Christopher W. K. Chow
Sustainability 2025, 17(12), 5263; https://doi.org/10.3390/su17125263 - 6 Jun 2025
Viewed by 587
Abstract
Tree root intrusion can cause failures of underground sewer pipes and thus represent a major water asset management issue. If tree root intrusion is not detected early, this may lead to the interruption of wastewater services and high costs of repair to the [...] Read more.
Tree root intrusion can cause failures of underground sewer pipes and thus represent a major water asset management issue. If tree root intrusion is not detected early, this may lead to the interruption of wastewater services and high costs of repair to the pipeline. The objectives of this review are to assess the existing maintenance strategies, explore suitable strategies for Australia and similar settings around the world, and identify possible factors and predictive tools. Maintenance strategies can be divided into two categories: reactive and proactive approaches. The current reactive approaches are (1) mechanical techniques to clean the root mass in pipe networks and (2) chemical techniques to remove the root mass and control future growth. The literature suggests that the reactive approaches often provide only partial solutions. The proactive approaches, guided by a predictive model of tree root intrusion and its related factors, showed the potential to improve maintenance and limit the risk of the damage from re-occurring. Predictive models could help to evaluate the risk of planting trees in different conditions and minimise the damage of tree root intrusion after further multifactor investigations. Full article
Show Figures

Graphical abstract

22 pages, 2748 KiB  
Article
Effects of Green Infrastructure Practices on Runoff and Water Quality in the Arroyo Colorado Watershed, Texas
by Pamela Mugisha and Tushar Sinha
Water 2025, 17(11), 1565; https://doi.org/10.3390/w17111565 - 22 May 2025
Viewed by 672
Abstract
Continuous use of agricultural chemicals and fertilizers, sporadic sewer overflow events, and an increase in urbanization have led to significant nutrient/pollutant loadings into the semi-arid Arroyo Colorado River basin, which is located in South Texas, U.S. Priority nutrients that require reduction include phosphorus [...] Read more.
Continuous use of agricultural chemicals and fertilizers, sporadic sewer overflow events, and an increase in urbanization have led to significant nutrient/pollutant loadings into the semi-arid Arroyo Colorado River basin, which is located in South Texas, U.S. Priority nutrients that require reduction include phosphorus and nitrogen and to mitigate issues of low dissolved oxygen, in some of its river segments. Consequently, the river’s potential to support aquatic life has been significantly reduced, thus highlighting the need for restoration. To achieve this restoration, a watershed protection plan was developed, comprising several preventive mitigation measures, including installing green infrastructure (GI) practices. However, for effective reduction of excessive nutrient loadings, there is a need to study the effects of different combinations of GI practices under current and future land use scenarios to guide decisions in implementing the cost-effective infrastructure while considering factors such as the existing drainage system, topography, land use, and streamflow. Therefore, this study coupled the Soil and Water Assessment Tool (SWAT) model with the System for Urban Stormwater Treatment and Analysis Integration (SUSTAIN) model to determine the effects of different combinations of GI practices on the reduction of nitrogen and phosphorus under changing land use conditions in three selected Arroyo Colorado subwatersheds. Two land use maps from the U.S. Geological Survey (USGS) Forecasting Scenarios of land use (FORE-SCE) model for 2050, namely, A1B and B1, were implemented in the coupled SWAT-SUSTAIN model in this study, where the urban area is projected to increase by 6% and 4%, respectively, with respect to the 2018 land use scenario. As expected, runoff, phosphorus, and nitrogen slightly increased with imperviousness. The modeling results showed that implementing either vegetated swales or wet ponds reduces flow and nutrients to meet the Total Maximum Daily Loads (TMDLs) targets, which cost about USD 1.5 million under current land use (2018). Under the 2050 future projected land use changes (A1B scenario), the cost-effective GI practice was implemented in vegetated swales at USD 1.5 million. In contrast, bioretention cells occupied the least land area to achieve the TMDL targets at USD 2 million. Under the B1 scenario of 2050 projected land use, porous pavements were most cost effective at USD 1.5 million to meet the TMDL requirements. This research emphasizes the need for collaboration between stakeholders at the watershed and farm levels to achieve TMDL targets. This study informs decision-makers, city planners, watershed managers, and other stakeholders involved in restoration efforts in the Arroyo Colorado basin. Full article
(This article belongs to the Special Issue Urban Stormwater Control, Utilization, and Treatment)
Show Figures

Figure 1

18 pages, 1221 KiB  
Technical Note
swmm_api: A Python Package for Automation, Customization, and Visualization in SWMM-Based Urban Drainage Modeling
by Markus Pichler
Water 2025, 17(9), 1373; https://doi.org/10.3390/w17091373 - 1 May 2025
Viewed by 1476
Abstract
The Python package swmm_api addresses a critical gap in urban drainage modeling by providing a flexible, script-based tool for managing SWMM models. Recognizing the limitations of existing solutions, this study developed a Python-based approach that seamlessly integrates SWMM model creation, editing, analysis, and [...] Read more.
The Python package swmm_api addresses a critical gap in urban drainage modeling by providing a flexible, script-based tool for managing SWMM models. Recognizing the limitations of existing solutions, this study developed a Python-based approach that seamlessly integrates SWMM model creation, editing, analysis, and visualization within Python’s extensive ecosystem. The package offers intuitive, dictionary-like interactions with model components, enabling manipulation of input files and extraction of results as structured data. It supports advanced GIS integration, sensitivity analysis, calibration, and uncertainty estimation through libraries like GeoPandas, SALib, and SPOTPY. Results demonstrate significant efficiency improvements in repetitive tasks, including batch simulations, sensitivity analyses, and automated GIS data processing, exemplified by practical applications such as model updates for municipal sewer systems. The package significantly enhances reproducibility and facilitates transparent sharing of scientific workflows. Overall, swmm_api provides researchers and practitioners with a robust, adaptable solution for streamlined urban drainage modeling. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Graphical abstract

17 pages, 7603 KiB  
Article
Towards Environmental Sustainability: Wastewater Management and Sewer Networks for Protecting Groundwater in Rural Settlements
by Tamás Mester, György Szabó, Emőke Kiss and Dániel Balla
Urban Sci. 2025, 9(3), 80; https://doi.org/10.3390/urbansci9030080 - 12 Mar 2025
Viewed by 814
Abstract
Sewer networks are essential in supporting the sustainable development of rural settlements. However, many municipalities face difficulties due to inadequate or missing sanitation systems. Thus, the contamination of municipal water supplies has become a pressing issue. In the present study, the process of [...] Read more.
Sewer networks are essential in supporting the sustainable development of rural settlements. However, many municipalities face difficulties due to inadequate or missing sanitation systems. Thus, the contamination of municipal water supplies has become a pressing issue. In the present study, the process of the sewer network establishment and its impacts on groundwater was assessed in the case of a Hungarian settlement. It was found that, following the realization of wastewater agglomeration in 2015, 85% of households in the municipality were connected by 2023. Results indicate that uninsulated septic tanks used before the sewer system resulted in a high rate of sewage leakage. 3D models using RockWorks software show a groundwater dome of more than 1 m in the vicinity of the septic tank. The discharge had a significant impact on groundwater quality; high NH4+ concentrations (>90 mg/L) within the vicinity of the tank and above the limit value (0.5 mg/L) in the total area were detected. Na+ and NO3 concentrations above the contamination limit also reflect the severe impact of wastewater discharge. Significant positive changes in groundwater quality have been detected following sewerage. Our results highlight the importance of similar investments and draw attention to the positive changes that can be achieved. However, a very significant decrease in water levels was detected both in the vicinity of the septic tank and at the municipal level, which, in addition to precipitation patterns, is mainly attributable to the cessation of sewage outflow. Between 2013 and 2022, the average groundwater level declined by 3.8 m in the settlement. Therefore, long-term monitoring of the investment is essential. Full article
(This article belongs to the Special Issue Rural–Urban Transformation and Regional Development)
Show Figures

Figure 1

31 pages, 7093 KiB  
Review
A Data-Driven Visualization Approach for Life-Cycle Cost Analysis of Open-Cut and Trenchless CIPP Methods for Sanitary Sewers: A PRISMA Systematic Review
by Gayatri Thakre, Vinayak Kaushal, Eesha Karkhanis and Mohammad Najafi
Appl. Sci. 2025, 15(4), 1765; https://doi.org/10.3390/app15041765 - 9 Feb 2025
Viewed by 2118
Abstract
The wastewater conveyance systems in the United States are facing severe structural challenges, with the nation’s overall wastewater infrastructure receiving a critically low grade of D- from the American Society of Civil Engineers (ASCE). Innovative trenchless technologies, such as Cured-in-Place Pipe Renewal Technology [...] Read more.
The wastewater conveyance systems in the United States are facing severe structural challenges, with the nation’s overall wastewater infrastructure receiving a critically low grade of D- from the American Society of Civil Engineers (ASCE). Innovative trenchless technologies, such as Cured-in-Place Pipe Renewal Technology (CIPPRT), offer a cost-efficient substitute for traditional open-cut construction methods (OCCM). However, the possibility of a comprehensive life-cycle cost analysis (LCCA) comparing these methods remains unexplored. LCCA examines the comprehensive financial impact, encompassing installation, operation, maintenance, rehabilitation, and replacement expenses, using net present value (NPV) over a set duration. The objective of this study is to systematically review the existing literature to explore advancements in calculating the LCCA for CIPPRT and compare the latter approach to OCCM. A rigorous PRISMA-guided methodology applied to academic databases identified 845 publications (1995–2024), with 83 documents being selected after stringent screening. The findings reveal limited use of artificial intelligence (AI) or machine learning (ML) in predicting CIPPRT costs. A bibliometric analysis using VOSviewer visualizes the results. The study underscores the potential of intelligent, data-driven approaches, such as spreadsheet models and AI, to enhance decision-making in selecting rehabilitation methods tailored to project conditions. These advancements promise more sustainable and cost-effective management of sanitary sewer systems, offering vital insights for decision-makers in addressing critical infrastructure challenges. Full article
(This article belongs to the Special Issue Advances in Underground Pipeline Technology, 2nd Edition)
Show Figures

Figure 1

25 pages, 17627 KiB  
Article
The Machine Learning-Based Mapping of Urban Pluvial Flood Susceptibility in Seoul Integrating Flood Conditioning Factors and Drainage-Related Data
by Julieber T. Bersabe and Byong-Woon Jun
ISPRS Int. J. Geo-Inf. 2025, 14(2), 57; https://doi.org/10.3390/ijgi14020057 - 1 Feb 2025
Cited by 2 | Viewed by 4078
Abstract
In the last two decades, South Korea has seen an increase in extreme rainfall coinciding with the proliferation of impermeable surfaces due to urban development. When underground drainage systems are overwhelmed, pluvial flooding can occur. Therefore, recognizing drainage systems as key flood-conditioning factors [...] Read more.
In the last two decades, South Korea has seen an increase in extreme rainfall coinciding with the proliferation of impermeable surfaces due to urban development. When underground drainage systems are overwhelmed, pluvial flooding can occur. Therefore, recognizing drainage systems as key flood-conditioning factors is vital for identifying flood-prone areas and developing predictive models in highly urbanized regions. This study evaluates and maps urban pluvial flood susceptibility in Seoul, South Korea using the machine learning techniques such as logistic regression (LR), random forest (RF), and support vector machines (SVM), and integrating traditional flood conditioning factors and drainage-related data. Together with known flooding points from 2010 to 2022, sixteen flood conditioning factors were selected, including the drainage-related parameters sewer pipe density (SPD) and distance to a storm drain (DSD). The RF model performed best (accuracy: 0.837, an area under the receiver operating characteristic curve (AUC): 0.902), and indicated that 32.65% of the study area has a high susceptibility to flooding. The accuracy and AUC were improved by 7.58% and 3.80%, respectively, after including the two drainage-related variables in the model. This research provides valuable insights for urban flood management, highlighting the primary causes of flooding in Seoul and identifying areas with heightened flood susceptibility, particularly relating to drainage infrastructure. Full article
Show Figures

Figure 1

13 pages, 2015 KiB  
Project Report
Digital-Twin-Based Management of Sewer Systems: Research Strategy for the KaSyTwin Project
by Sabine Hartmann, Raquel Valles, Annette Schmitt, Thamer Al-Zuriqat, Kosmas Dragos, Peter Gölzhäuser, Jan Thomas Jung, Georg Villinger, Diana Varela Rojas, Matthias Bergmann, Torben Pullmann, Dirk Heimer, Christoph Stahl, Axel Stollewerk, Michael Hilgers, Eva Jansen, Brigitte Schoenebeck, Oliver Buchholz, Ioannis Papadakis, Dominik Robert Merkle, Jan-Iwo Jäkel, Sven Mackenbach, Katharina Klemt-Albert, Alexander Reiterer and Kay Smarslyadd Show full author list remove Hide full author list
Water 2025, 17(3), 299; https://doi.org/10.3390/w17030299 - 22 Jan 2025
Viewed by 1856
Abstract
Sewer infrastructure is vital for flood prevention, environmental protection, and public health. As part of sewer infrastructure, sewer systems are prone to degradation. Traditional maintenance methods for sewer systems are largely manual and reactive and rely on inconsistent data, leading to inefficient maintenance. [...] Read more.
Sewer infrastructure is vital for flood prevention, environmental protection, and public health. As part of sewer infrastructure, sewer systems are prone to degradation. Traditional maintenance methods for sewer systems are largely manual and reactive and rely on inconsistent data, leading to inefficient maintenance. The KaSyTwin research project addresses the urgent need for efficient and resilient sewer system management methods in Germany, aiming to develop a methodology for the semi-automated development and utilization of digital twins of sewer systems to enhance data availability and operational resilience. Using advanced multi-sensor robotic platforms equipped with scanning and imaging systems, i.e., laser scanners and cameras, as well as artificial intelligence (AI), the KaSyTwin research project focuses on generating digital twin-enabled representations of sewer systems in real time. As a project report, this work outlines the research framework and proposed methodologies in the KaSyTwin research project. Digital twins of sewer systems integrated with AI technologies are expected to facilitate proactive maintenance, resilience forecasting against extreme weather events, and real-time damage detection. Furthermore, the KaSyTwin research project aspires to advance the digital management of sewer systems, ensuring long-term functionality and public welfare via on-demand structural health monitoring and non-destructive testing. Full article
(This article belongs to the Special Issue Urban Sewer Systems: Monitoring, Modeling and Management)
Show Figures

Figure 1

17 pages, 2509 KiB  
Article
Efficient Treatment of Leachate from Municipal Solid Waste Transfer Stations via a Bioreactor–Nanofiltration System: A Pilot-Scale Study
by Shoubo Huang, Qiyuan Zheng, Zihan Zhu, Xiaomeng Geng, Lin Wang, Bin Xu and Youcai Zhao
Sustainability 2024, 16(24), 11305; https://doi.org/10.3390/su162411305 - 23 Dec 2024
Viewed by 1243
Abstract
The management of municipal solid waste leachate has emerged as a pivotal challenge in sustainable urban development. Currently, there is limited information on the practical engineering applications of bioreactors and nanofiltration systems on the pilot scale. This work employs a bioreactor–nanofiltration pilot system [...] Read more.
The management of municipal solid waste leachate has emerged as a pivotal challenge in sustainable urban development. Currently, there is limited information on the practical engineering applications of bioreactors and nanofiltration systems on the pilot scale. This work employs a bioreactor–nanofiltration pilot system for the treatment of leachate in municipal solid waste transfer stations. The results demonstrate that the bioreactor–nanofiltration system exhibits excellent and stable efficiency in removing organic pollutants and heavy metal ions. The effluent qualities of COD, TN, and TP are 50, 28, and 2 mg/L, and the removal rates are 99.4%, 99.3%, and 96.1%, respectively. All types of heavy metal ions also comply with the standard limits specified in the “Wastewater quality standards for discharge to municipal sewers” (GB/T 31962-2015). More importantly, using waste materials such as mineralized waste and animal aggregates as bioreactor fillers increases the diversity of the microbial community in the system, and provides an engineering basis for the resource utilization of waste materials. The bioreactor–nanofiltration process is expected to become an ideal solution for the treatment of leachate in transfer stations. Full article
Show Figures

Figure 1

18 pages, 1899 KiB  
Review
Methane Production Mechanism and Control Strategies for Sewers: A Critical Review
by Feng Hou, Shuai Liu, Wan-Xin Yin, Li-Li Gan, Hong-Tao Pang, Jia-Qiang Lv, Ying Liu, Ai-Jie Wang and Hong-Cheng Wang
Water 2024, 16(24), 3618; https://doi.org/10.3390/w16243618 - 16 Dec 2024
Cited by 2 | Viewed by 1692
Abstract
Methane (CH4) emissions from urban sewer systems represent a significant contributor to greenhouse gases, driven by anaerobic decomposition processes. This review elucidates the mechanisms underlying CH4 production in sewers, which are influenced by environmental factors such as the COD/SO4 [...] Read more.
Methane (CH4) emissions from urban sewer systems represent a significant contributor to greenhouse gases, driven by anaerobic decomposition processes. This review elucidates the mechanisms underlying CH4 production in sewers, which are influenced by environmental factors such as the COD/SO42− ratio, temperature, dissolved oxygen, pH, flow rate, and hydraulic retention time. We critically evaluated the effectiveness of empirical, mechanistic, and machine learning (ML) models in predicting CH4 emissions, highlighting the limitations of each. This review further examines control strategies, including oxygen injection, iron salt dosing, and nitrate application, emphasizing the importance of balancing CH4 reduction with the operational efficiency of wastewater treatment plants (WWTPs). An integrated approach combining mechanistic and data-driven models is advocated to enhance prediction accuracy and optimize CH4 management across urban sewer systems. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

16 pages, 6033 KiB  
Article
Urban Waterlogging Simulation and Disaster Risk Analysis Using InfoWorks Integrated Catchment Management: A Case Study from the Yushan Lake Area of Ma’anshan City in China
by Kun Wang, Jian Chen, Hao Hu, Yuchao Tang, Jian Huang, Youbing Wu, Jingyu Lu and Jinjun Zhou
Water 2024, 16(23), 3383; https://doi.org/10.3390/w16233383 - 25 Nov 2024
Cited by 2 | Viewed by 1269
Abstract
Under the dual pressures of climate change and urbanization, cities in China are experiencing increasingly severe flooding. Using the Yushan Lake area in Ma’anshan City, Anhui Province, as a case study, we employed the InfoWorks Integrated Catchment Management (ICM) hydraulic model to analyze [...] Read more.
Under the dual pressures of climate change and urbanization, cities in China are experiencing increasingly severe flooding. Using the Yushan Lake area in Ma’anshan City, Anhui Province, as a case study, we employed the InfoWorks Integrated Catchment Management (ICM) hydraulic model to analyze the drainage and flood prevention system of the region and assess the current infrastructure for drainage and flood control. There are 117 pipelines with a return period lower than one year for stormwater and combined sewer systems, accounting for 12.3% of the total number of pipelines. The number of pipelines meeting the one-year but not the three-year return period standard is 700, representing 70.2%. Only 17.5% of the pipelines are capable of handling events exceeding the one-year standard. In simulating a 24 h, 30-year return period rainfall event, the results indicate that floodwater accumulation in the study area is predominantly between 0.15 m and 0.3 m. Most risk areas are classified as low risk, covering an area of 36.398 hectares, followed by medium and high-risk areas, which cover 8.226 hectares and 3.087 hectares, respectively. The Ma’anshan Yushan Lake area has, overall, certain flood control capabilities but faces flood risks during storms with return periods exceeding three years. This research offers valuable insights for improving urban flood management in Ma’anshan City through the development of a stormwater management model for the Yushan Lake area. Full article
Show Figures

Figure 1

5 pages, 3630 KiB  
Proceeding Paper
Large-Scale Real-Time Hydraulic and Quality Model of Combined Sewer Network—Case Study in Helsinki, Finland
by Markus I. Sunela, Pedro Almeida, Hanna Riihinen and Hannes Björninen
Eng. Proc. 2024, 69(1), 185; https://doi.org/10.3390/engproc2024069185 - 10 Oct 2024
Viewed by 696
Abstract
A method for a real-time now- and forecasting hydraulic and quality simulation model for combined sewer networks, based on an enhanced version of the Storm Water Management Model (SWMM) simulator, with added support for storing the hot start file at any time during [...] Read more.
A method for a real-time now- and forecasting hydraulic and quality simulation model for combined sewer networks, based on an enhanced version of the Storm Water Management Model (SWMM) simulator, with added support for storing the hot start file at any time during the simulation, the rotational speed control of the pumps, multiple dry weather flows with unique patterns, and improvements for quality simulations over control devices is presented. The methodology is applied in the combined sewer network of Helsinki, Finland. The model includes all pipes and dry weather flows, including the pollutants, catchment hydrology, infiltration, snowpacks, and other climate aspects. Full article
Show Figures

Figure 1

14 pages, 1774 KiB  
Article
A Novel Approach to Detecting Blockages in Sewers and Drains: The Reflected Wave Technique
by David A. Kelly, Mark Garden, Khanda Sharif, David Campbell and Michael Gormley
Buildings 2024, 14(10), 3138; https://doi.org/10.3390/buildings14103138 - 1 Oct 2024
Cited by 1 | Viewed by 2332
Abstract
Blockages in sewers and drains often result in overflows and flooding that cause significant environmental pollution and public health risks, particularly in hospitals, where the consequences can be catastrophic. Due to their low “visibility”, sewers and drains are inherently difficult to monitor and [...] Read more.
Blockages in sewers and drains often result in overflows and flooding that cause significant environmental pollution and public health risks, particularly in hospitals, where the consequences can be catastrophic. Due to their low “visibility”, sewers and drains are inherently difficult to monitor and maintain, resulting in a reactive management approach whereby maintenance or repair is carried out only after a system failure has occurred. This paper investigates the feasibility of applying the reflected wave technique, a unique sonar-like monitoring approach capable of identifying changes in the geometry of closed-pipe conduits, as a means of proactive system monitoring. The technique uses a 10 Hz sinusoidal air pressure wave which is transmitted into the drainpipe. When the pressure wave encounters a system boundary, a reflection is generated which alters the measured test pressure response. Analysis of the reflections generated by a changed system boundary, such as the formation of a blockage, can provide information related to the location of that boundary within the system. An experimental setup was developed to simulate a horizontal drain using standard pipework of 100 mm diameter and 70 m length. The technique was able to detect applied blockages with cross-sectional coverage of 30% and 75%, and lengths ranging from 30 mm to 3000 mm. Accuracy was improved when the pressure sensor was positioned closer to the blockage. When the sensor was 3.4 m from the blockage, location estimates were very accurate (−2% to 3% error). At a 14 m distance from the blockage, the error increased to between 4% and 33%. The accuracy of blockage detection and location improved with increasing blockage cross-sectional area and length. Overall, the reflected wave technique could provide a potentially continuous monitoring solution for blockage detection in sewers and drains. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop