Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (366)

Search Parameters:
Keywords = semiconductor quantum dots

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1760 KB  
Article
Optical Bistability in a Quantum Dot–Metallic Nanoshell–Cell Membrane Hybrid System: Applications for High-Performance Biosensing
by Xiao Ma, Hongmei Gong, Yuxiang Peng, Linwen Long and Jianbo Li
Coatings 2026, 16(1), 109; https://doi.org/10.3390/coatings16010109 - 14 Jan 2026
Viewed by 218
Abstract
We investigate optical bistability (OB) in a hybrid system comprising a semiconductor quantum dot (SQD), a metallic nanoshell (MNS), and a cell membrane within the framework of the multipole approximation. Bistability phase diagrams plotted in the system’s parameter subspaces demonstrate that, in the [...] Read more.
We investigate optical bistability (OB) in a hybrid system comprising a semiconductor quantum dot (SQD), a metallic nanoshell (MNS), and a cell membrane within the framework of the multipole approximation. Bistability phase diagrams plotted in the system’s parameter subspaces demonstrate that, in the weak exciton–phonon coupling regime, dynamic switching of bistable states among no-channel, single-channel, and dual-channel configurations can be achieved via precise modulation of the MNS’s dielectric shell thickness. Especially, a critical sensing threshold is identified: the absorption peak disappears and a bistable effect emerges when only 1.82% of normal cells undergo malignant transformation. Furthermore, the bistable region exhibits a gradual broadening trend with an increasing proportion of cancerous cells, yielding a quantitative and ultra-sensitive readout that underpins a highly accurate strategy for early cancer diagnosis. These findings not only deepen our fundamental understanding of bistability regulation in hybrid quantum-plasmonic systems interfaced with biological materials but also offer valuable insights for the development of next-generation optical switches and biomedical sensing platforms. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

17 pages, 702 KB  
Article
Machine Learning the Decoherence Property of Superconducting and Semiconductor Quantum Devices from Graph Connectivity
by Quan Fu, Jie Liu, Xin Wang and Rui Xiong
Entropy 2026, 28(1), 89; https://doi.org/10.3390/e28010089 - 12 Jan 2026
Viewed by 229
Abstract
Quantum computing faces significant challenges from decoherence and noise, which limit the practical implementation of quantum algorithms. While substantial progress has been made in improving individual qubit coherence times, the collective behavior of interconnected qubit systems remains incompletely understood. The connectivity architecture plays [...] Read more.
Quantum computing faces significant challenges from decoherence and noise, which limit the practical implementation of quantum algorithms. While substantial progress has been made in improving individual qubit coherence times, the collective behavior of interconnected qubit systems remains incompletely understood. The connectivity architecture plays a crucial role in determining overall system susceptibility to environmental noise, yet systematic characterization of this relationship has been hindered by computational complexity. We develop a machine learning framework that bridges graph features with quantum device characterization to predict decoherence lifetime directly from connectivity patterns. By representing quantum architectures as connected graphs and using 14 topological features as input to supervised learning models, we achieve accurate lifetime predictions with R2>0.96 for both superconducting and semiconductor platforms. Our analysis reveals fundamentally distinct decoherence mechanisms: superconducting qubits show high sensitivity to global connectivity measures (betweenness centrality δ1=0.484, spectral entropy δ1=0.480), while semiconductor quantum dots exhibit exceptional sensitivity to system scale (node count δ2=0.919, importance = 1.860). The complete failure of cross-platform model transfer (R2 scores of −0.39 and −433.60) emphasizes the platform-specific nature of optimal connectivity design. Our approach enables rapid assessment of quantum architectures without expensive simulations, providing practical guidance for noise-optimized quantum processor design. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

15 pages, 3350 KB  
Article
Dynamic Control of Quantum Dot Localization in Nematic Liquid Crystal Matrix by Means of Photoinduced Phase Transition
by Yaroslav Derikov, Alexander Ezhov, Oleg Karpov, Georgiy Shandryuk, Yuri Egorov, Olga Sokolovskaya, Leonid Golovan, Alexey Merekalov and Raisa Talroze
Molecules 2026, 31(1), 131; https://doi.org/10.3390/molecules31010131 - 30 Dec 2025
Viewed by 249
Abstract
The stimulated assembly/disassembly of particles is a technique allowing for precise spatial and temporal control over the resulting structures to be realized. The application of a photosensitive liquid crystal (LC) allows the use of a photo-initiated order–disorder transition for the ordering and redistribution [...] Read more.
The stimulated assembly/disassembly of particles is a technique allowing for precise spatial and temporal control over the resulting structures to be realized. The application of a photosensitive liquid crystal (LC) allows the use of a photo-initiated order–disorder transition for the ordering and redistribution of dispersed nanoparticles. The semiconductor quantum dots (QDs) among them are useful for the imaging of such redistribution through simple luminescent microscopy with excitation by laser radiation at a wavelength of 532 nm. Doping the LC matrix with azo-chromophore molecules allowed us to localize the light-driven phase transition of the LC from the organized to the isotropic phase inside the spot, illuminated by ultraviolet (UV) light through a slit. The phase transition leads to a redistribution of the QDs within the matrix, followed by QD-rich region formation. After the termination of UV illumination, the QDs were found to form droplets in the region where UV illumination resulted in a homogeneous distribution of the QDs. The translation of the sample through the UV-illuminated spot resulted in QD accumulation inside the isotropic phase at the borders of the isotropic phase. The results obtained provide a good agreement with the model calculations of nanoparticle diffusion at the LC phase–isotropic liquid interface. Full article
Show Figures

Graphical abstract

8 pages, 965 KB  
Brief Report
Integrated PbTe Quantum Dots for Two-Color Detection in II–VI Wide-Bandgap Diodes
by Jakub M. Głuch, Michał Szot and Grzegorz Karczewski
Nanomaterials 2026, 16(1), 7; https://doi.org/10.3390/nano16010007 - 19 Dec 2025
Viewed by 255
Abstract
Quantum dots (QDs) composed of the narrow-bandgap semiconductor PbTe were incorporated into the depletion region of p–n junctions based on wide-bandgap II–VI semiconductors (p-ZnTe/n-CdTe). The heterostructures were grown by molecular beam epitaxy (MBE) on semi-insulating GaAs (100) substrates. The depletion region was engineered [...] Read more.
Quantum dots (QDs) composed of the narrow-bandgap semiconductor PbTe were incorporated into the depletion region of p–n junctions based on wide-bandgap II–VI semiconductors (p-ZnTe/n-CdTe). The heterostructures were grown by molecular beam epitaxy (MBE) on semi-insulating GaAs (100) substrates. The depletion region was engineered by depositing 20 alternating thin layers of CdTe and PbTe, then thermal annealing under ultrahigh vacuum. As revealed by cross-sectional scanning electron microscopy (SEM), the initially continuous PbTe layers transformed into arrays of zero-dimensional nanostructures, namely PbTe QDs. The formation of PbTe QDs in a CdTe matrix arises from the structural mismatch between the zinc blende and rock-salt crystal structures of the two materials. Electron beam-induced current (EBIC) scans confirmed that the QDs are localized within the depleted charge region between the p-ZnTe and n-CdTe layers. The resulting wide-gap diodes containing narrow-band QDs show pronounced sensitivity to infrared radiation in the spectral range of 1–4.5 μm, with a peak responsivity of approximately 8 V/W at a wavelength of ~2.0 μm and a temperature of 200 K. A red-shift in the cutoff wavelength when temperature decreases indicates that the infrared (IR) response is governed by band-to-band optical transitions in the PbTe QDs. In addition, the devices show sensitivity to visible radiation, with a maximum responsivity of 20 V/W at 0.69 μm. These results demonstrate that wide-bandgap p–n junctions incorporating narrow-bandgap QDs can function as dual-wavelength (visible and infrared) photodetectors, with potential applications in two-color detection and infrared solar cells. Full article
(This article belongs to the Special Issue State-of-the-Art Nanostructured Photodetectors)
Show Figures

Figure 1

22 pages, 3241 KB  
Article
Exploring Pump–Probe Response in Exciton–Biexciton Quantum Dot–Metal Nanospheroid Hybrids
by Spyridon G. Kosionis, Dimitrios P. Alevizos and Emmanuel Paspalakis
Micromachines 2025, 16(12), 1319; https://doi.org/10.3390/mi16121319 - 25 Nov 2025
Viewed by 520
Abstract
We study the optical susceptibility of a CdSe-based semiconductor quantum dot with a cascade exciton–biexciton configuration, which is coupled via the Coulomb interaction to a gold spheroidal nanoparticle, in the presence of a nearly resonant strong pump field and a weak probe field. [...] Read more.
We study the optical susceptibility of a CdSe-based semiconductor quantum dot with a cascade exciton–biexciton configuration, which is coupled via the Coulomb interaction to a gold spheroidal nanoparticle, in the presence of a nearly resonant strong pump field and a weak probe field. We take both fields’ polarization vectors to be parallel to the interparticle axis, derive the equations of motion for the density matrix, and proceed with a perturbative expansion approach to calculate the components of the density matrix associated with the effective optical susceptibility, which describes processes to first order in the probe field and to all orders in the pump field. We present spectra of the effective susceptibility and examine their dependence on the metal nanoparticle’s geometric characteristics for various interparticle distances and pump field detunings, under both one- and two-photon resonance conditions. The role of the biexciton energy shift is also studied. Lastly, we introduce a dressed-state picture to elucidate the origin of the observed spectral features. Our calculations reveal that reducing the interparticle distance and increasing the metal nanoparticle aspect ratio enhance the exciton–plasmon coupling, leading to pronounced resonance splitting, spectral shifts, and broadened gain regions. Prolate nanoparticles aligned with the field polarization exhibit the strongest coupling and the widest gain bandwidth, whereas oblate geometries produce nearly overlapping resonances. Under exact resonance, the probe displays zero absorption with a negative dispersion slope, indicating slow-light behavior. These results demonstrate the tunability of hybrid CdSe-Au nanostructures for designing nanoscale optimal amplifiers, modulators, and sensors. Full article
(This article belongs to the Special Issue Emerging Trends in Optoelectronic Device Engineering)
Show Figures

Figure 1

17 pages, 9035 KB  
Article
Nanostructured Ge-Based Glass Coatings for Sustainable Greenhouse Production: Balancing Light Transmission, Energy Harvesting, and Crop Performance
by Božidar Benko, Krešimir Salamon, Ivana Periša, Sanja Fabek Uher, Sanja Radman, Nevena Opačić and Maja Mičetić
Agronomy 2025, 15(11), 2559; https://doi.org/10.3390/agronomy15112559 - 5 Nov 2025
Viewed by 934
Abstract
Greenhouse horticulture is an energy-intensive production system that requires innovative solutions to reduce energy demand without compromising crop yield or quality. Functional greenhouse covers are particularly promising, as they regulate solar radiation while integrating energy-harvesting technologies. In this study, six nanostructured glass coatings [...] Read more.
Greenhouse horticulture is an energy-intensive production system that requires innovative solutions to reduce energy demand without compromising crop yield or quality. Functional greenhouse covers are particularly promising, as they regulate solar radiation while integrating energy-harvesting technologies. In this study, six nanostructured glass coatings incorporating semiconductor-based quantum dots (QDs) and quantum wires (QWs) of Ge and TiN are developed using magnetron sputtering—an industrially scalable technique widely applied in smart window and energy-efficient glass manufacturing. The coatings’ optical properties are characterized in the laboratory, and their agronomic performance is evaluated in greenhouse trials with lamb’s lettuce (Valerianella locusta) and radish (Raphanus sativus). Plant growth, yield, and leaf color (CIELAB parameters) are analyzed in relation to spectral transmission and the daily light integral (DLI). Although uncoated horticultural glass achieves the highest yields, several Ge-QD coatings provide favorable compromises by selectively absorbing non-photosynthetically active radiation (non-PAR) while maintaining acceptable crop performance. These results demonstrate that nanostructured coatings can simultaneously sustain crop growth and enable solar energy conversion, offering a practical pathway toward energy-efficient and climate-smart greenhouse systems. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

11 pages, 319 KB  
Article
Non-Linear Quantum Dynamics in Coupled Double-Quantum- Dot-Cavity Systems
by Tatiana Mihaescu, Mihai A. Macovei and Aurelian Isar
Physics 2025, 7(4), 47; https://doi.org/10.3390/physics7040047 - 14 Oct 2025
Viewed by 945
Abstract
The steady-state quantum dynamics of a compound sample consisting of a semiconductor double-quantum-dot (DQD) system, non-linearly coupled with a leaking superconducting transmission line resonator, is theoretically investigated. Particularly, the transition frequency of the DQD is taken to be equal to the doubled resonator [...] Read more.
The steady-state quantum dynamics of a compound sample consisting of a semiconductor double-quantum-dot (DQD) system, non-linearly coupled with a leaking superconducting transmission line resonator, is theoretically investigated. Particularly, the transition frequency of the DQD is taken to be equal to the doubled resonator frequency, whereas the inter-dot Coulomb interaction is considered weak. As a consequence, the steady-state quantum dynamics of this complex non-linear system exhibit sudden changes in its features, occurring at a critical DQD-cavity coupling strength, suggesting perspectives for designing on-chip microwave quantum switches. Furthermore, we show that, above the threshold, the electrical current through the double-quantum dot follows the mean photon number into the microwave mode inside the resonator. This might not be the case any more below that critical coupling strength. Lastly, the photon quantum correlations vary from super-Poissonian to Poissonian photon statistics, i.e., towards single-qubit lasing phenomena at microwave frequencies. Full article
Show Figures

Figure 1

12 pages, 608 KB  
Article
Flux-Dependent Superconducting Diode Effect in an Aharonov–Bohm Interferometer
by Yu-Mei Gao, Hao-Yuan Yang, Feng Chi, Zi-Chuan Yi and Li-Ming Liu
Materials 2025, 18(20), 4670; https://doi.org/10.3390/ma18204670 - 11 Oct 2025
Viewed by 744
Abstract
We theoretically investigate the supercurrent and superconducting diode effect (SDE) in an Aharonov–Bohm (AB) interferometer sandwiched between two aluminium-based superconducting leads. The interferometer features a quantum dot (QD), which is created in an indium arsenide (InAs) semiconductor nanowire by local electrostatic gating, inserted [...] Read more.
We theoretically investigate the supercurrent and superconducting diode effect (SDE) in an Aharonov–Bohm (AB) interferometer sandwiched between two aluminium-based superconducting leads. The interferometer features a quantum dot (QD), which is created in an indium arsenide (InAs) semiconductor nanowire by local electrostatic gating, inserted in one of its arms and a magnetic flux threading through the ring structure. The magnetic flux breaks the system time-reversal symmetry by modulating the quantum phase difference between electronic transport through the QD path and the direct arm, which enhances constructive interference in one direction and destructive interference in the other. This leads to a discrepancy between the magnitudes of the forward and reverse critical supercurrents and is the core mechanism that induces the SDE. We demonstrate that the critical supercurrents exhibit Fano line shapes arising from the interference between discrete Andreev bound states in the QD and continuous states in the direct arm. It is found that when electron transport is dominated by the QD-containing path as compared to the direct arm path of the interferometer, the diode efficiency reaches a maximum, with values as high as 80%. In contrast, when the direct arm path dominates transport, the diode efficiency becomes weak. This attenuation is attributed to the participation of higher-order quantum interference processes, which disrupt the nonreciprocal supercurrent balance. Importantly, the proposed AB interferometer system has a relatively simple structure, and the realization of the SDE within it is feasible using current nano-fabrication technologies. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Figure 1

43 pages, 11197 KB  
Review
Plasmon–Exciton Strong Coupling in Low-Dimensional Materials: From Fundamentals to Hybrid Nanophotonic Platforms
by Peipei Zhao, Chengxi Lü, Siyi Sun and Fan Wu
Nanomaterials 2025, 15(19), 1463; https://doi.org/10.3390/nano15191463 - 23 Sep 2025
Cited by 1 | Viewed by 2729
Abstract
Strong coupling has emerged as a central topic in nanophotonics, offering a powerful platform for light–matter interaction studies and advancing quantum technologies. Low-dimensional materials, such as quantum dots (QDs) and two-dimensional (2D) semiconductors, possess pronounced excitonic resonances, high stability, and size-dependent tunability, making [...] Read more.
Strong coupling has emerged as a central topic in nanophotonics, offering a powerful platform for light–matter interaction studies and advancing quantum technologies. Low-dimensional materials, such as quantum dots (QDs) and two-dimensional (2D) semiconductors, possess pronounced excitonic resonances, high stability, and size-dependent tunability, making them ideal candidates for achieving strong coupling with plasmonic structures. In this review, we systematically summarize recent progress in plasmon low-dimensional material strong coupling. We first introduce the fundamental principles and experimental methods of plasmon–exciton strong coupling, then highlight representative studies on plasmon–QDs and plasmon–2D material hybrid systems, and finally discuss recent advances in multimode strong coupling. This review will provide a comprehensive overview and offer valuable guidance for future studies in strong coupling. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

28 pages, 2156 KB  
Review
Au QDs in Advanced Biomedicine: Fluorescent, Biocompatible, and Multifunctional Nanoprobes for Imaging, Diagnostics, and Targeted Drug Delivery
by Nutan Shukla, Aayushi Chanderiya, Ratnesh Das, Elizaveta A. Mukhanova, Alexander V. Soldatov and Sabrina Belbekhouche
J. Nanotheranostics 2025, 6(3), 25; https://doi.org/10.3390/jnt6030025 - 8 Sep 2025
Viewed by 1958
Abstract
AuQDs (Au quantum dots) are ultrasmall nanostructures that combine the size-tunable fluorescence and photostability of semiconductor quantum dots with the chemical stability, low toxicity, and versatile surface chemistry of gold nanoparticles. This unique combination endows AuQDs with exceptional biocompatibility and multifunctionality, making them [...] Read more.
AuQDs (Au quantum dots) are ultrasmall nanostructures that combine the size-tunable fluorescence and photostability of semiconductor quantum dots with the chemical stability, low toxicity, and versatile surface chemistry of gold nanoparticles. This unique combination endows AuQDs with exceptional biocompatibility and multifunctionality, making them ideal for biomedical applications such as cellular imaging, real-time tracking, targeted drug delivery, diagnostics, therapeutic monitoring, and biosensing. Various synthesis methods—including chemical reduction, hydrothermal, laser ablation, and microwave-assisted techniques—allow for precise control over size and surface properties, optimizing fluorescence and electronic behavior for high-resolution imaging and sensitive detection. Compared to traditional quantum dots, AuQDs offer enhanced safety and biocompatibility, while surpassing larger gold nanoparticles by enabling fluorescence-based imaging. Their surfaces can be functionalized with diverse ligands for targeted delivery and specific biological interactions. In summary, AuQDs are multifunctional nanoprobes that combine superior optical properties, chemical stability, and biocompatibility, making them powerful tools for advanced biomedical diagnostics, therapy, and biosensing. Full article
Show Figures

Figure 1

48 pages, 7053 KB  
Review
Recent Advances in Carbon Dots-Based Photocatalysts for Water Treatment Applications
by Adamantia Zourou, Afrodite Ntziouni, Alexandra Karagianni, Niyaz Alizadeh, Nikolaos Argirusis, Maria Antoniadou, Georgia Sourkouni, Konstantinos V. Kordatos and Christos Argirusis
Inorganics 2025, 13(9), 286; https://doi.org/10.3390/inorganics13090286 - 26 Aug 2025
Viewed by 3062
Abstract
Carbon dots (CDs), a rapidly emerging class of zero-dimensional (0-D) nanomaterials with small particle sizes (<10 nm), have garnered significant scientific interest owing to their exceptional physicochemical properties, non-toxicity, low-cost synthesis, and versatile applications. In recent years, the combination of various inorganic photocatalysts [...] Read more.
Carbon dots (CDs), a rapidly emerging class of zero-dimensional (0-D) nanomaterials with small particle sizes (<10 nm), have garnered significant scientific interest owing to their exceptional physicochemical properties, non-toxicity, low-cost synthesis, and versatile applications. In recent years, the combination of various inorganic photocatalysts (e.g., metal oxides, metal chalcogenides, metal oxyhalides, MXenes, non-metallic semiconductors) with CDs has gained momentum as a promising strategy to enhance their photocatalytic efficiency. By incorporating CDs, researchers have addressed fundamental challenges in photocatalytic systems, including limited light absorption range, rapid electron–hole recombination rate, low quantum efficiency, etc. The present review is focused on the most recent developments in CDs-based heterostructures for advanced photocatalytic applications, particularly in the field of environmental remediation, providing a comprehensive overview of emerging strategies, synthesis approaches, and the resulting enhancements in photocatalytic water treatment applications. Full article
(This article belongs to the Special Issue Inorganic Photocatalysts for Environmental Applications)
Show Figures

Figure 1

27 pages, 13926 KB  
Article
The Comprehensive Study of TiO2 Blocking Layer with Complementary Electrochemical and SPM Methods for the Application in Photovoltaics
by Evgenija Milinković, Katarina Cvetanović, Marko V. Bošković, Nastasija Conić, Vladislav Jovanov, Dragomir Stanisavljev and Dana Vasiljević-Radović
Inorganics 2025, 13(8), 270; https://doi.org/10.3390/inorganics13080270 - 17 Aug 2025
Cited by 1 | Viewed by 1456
Abstract
The blocking layer is crucial for inhibiting recombination processes in photovoltaics that utilize oxide semiconductors, such as dye-sensitized solar cells (DSSCs), quantum-dot-sensitized solar cells (QDSSCs), and perovskite solar cells. However, its effectiveness strongly depends on the chosen deposition method. This study systematically evaluates [...] Read more.
The blocking layer is crucial for inhibiting recombination processes in photovoltaics that utilize oxide semiconductors, such as dye-sensitized solar cells (DSSCs), quantum-dot-sensitized solar cells (QDSSCs), and perovskite solar cells. However, its effectiveness strongly depends on the chosen deposition method. This study systematically evaluates the most suitable approach for obtaining a uniform, pinhole-free titanium dioxide (TiO2) blocking layer by using three deposition methods: radio-frequency sputtering, spin-coating, and chemical bath deposition. The electrochemical, optical, and morphological properties of blocking layers were characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), UV-VIS spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and Kelvin probe force microscopy (KPFM). KPFM analysis, together with CV and EIS, revealed that the lower Rct values and higher CV currents observed in spin-coated (SC_11-33) and vertically deposited CBD films (CB_5, CB_6) resulted from incomplete FTO coverage. In contrast, sputtered (SP_21-24) and horizontally deposited CBD films (CB_1, CB_2) demonstrated significantly higher Rct values and improved surface coverage. Full DSSCs fabricated with SP_23, SC_33, and CB_2 confirmed the correlation between interfacial properties and photovoltaic performance. This combined approach offers a fast, material-efficient, and environmentally conscious screening method for optimizing blocking layers in solar cell technologies. Full article
Show Figures

Graphical abstract

31 pages, 10216 KB  
Review
Silane-Coupled Silica Nanoparticles Encapsulating Emitting Quantum Dots: Advancing Robust Phosphors for Displays and Beyond
by Norio Murase and Chunliang Li
Molecules 2025, 30(16), 3369; https://doi.org/10.3390/molecules30163369 - 13 Aug 2025
Cited by 2 | Viewed by 1787
Abstract
Colloidal quantum dots (QDs) are semiconductor crystals a few nanometers in size. Due to their vibrant colors and unique photoluminescence (PL), QDs are widely utilized in displays, where barrier films provide essential shielding. However, one of the primary challenges of QD applications remains [...] Read more.
Colloidal quantum dots (QDs) are semiconductor crystals a few nanometers in size. Due to their vibrant colors and unique photoluminescence (PL), QDs are widely utilized in displays, where barrier films provide essential shielding. However, one of the primary challenges of QD applications remains achieving sufficient robustness while keeping costs low. Over the past two decades, significant progress has been made in the encapsulation of QDs within silica matrices, aiming to preserve their original PL properties. Research efforts have evolved from bulk forms to thin films. Silica nanoparticles containing multiple embedded QDs have emerged as particularly promising candidates for practical applications. This review highlights recent advancements in silica-based QD encapsulation, incorporating findings from both the authors’ investigations and those of other research groups within the field. Silica glass possesses inherent shielding capabilities, but silane coupling agents such as (3-aminopropyl)trimethoxysilane and (3-mercaptopropyl)trimethoxysilane tend to negatively impact this functionality when they are used alone, partly because of the limited formation of a well-developed glass network structure. However, when judiciously controlled, they can serve as mediators between the QD surface and the surrounding pure silica glass matrix, helping to preserve PL properties and control the morphology of silica particles. This review discusses the potential for achieving exceptional shielding properties through sol–gel glass fabrication at low temperatures, utilizing both tetraethoxysilane and other silane coupling agents. Full article
Show Figures

Graphical abstract

21 pages, 13405 KB  
Article
Impact of Nonresonant Intense Laser and Electric Fields on a Low-Dimensional CdTe/CdSe Type-II Cone
by Fredy Amador Donado, Fernando Guerrero Almanza, Camilo Frías Viña, Juan Alejandro Vinasco, J. Sierra-Ortega, Gene Elizabeth Escorcia-Salas, R. V. H. Hahn, M. E. Mora-Ramos, O. Mommadi, A. El Moussaouy, R. Boussetta, D. Duque, A. L. Morales, S. Uran-Parra and C. A. Duque
Nanomaterials 2025, 15(15), 1208; https://doi.org/10.3390/nano15151208 - 7 Aug 2025
Viewed by 765
Abstract
In this work, a theoretical study on the combined effects of an external electric field and a nonresonant intense laser field on the electronic properties of a quantum dot with a truncated cone shape is presented. This quantum dot was made from a [...] Read more.
In this work, a theoretical study on the combined effects of an external electric field and a nonresonant intense laser field on the electronic properties of a quantum dot with a truncated cone shape is presented. This quantum dot was made from a type-II CdTe/CdSe heterostructure (core/shell). Using the effective mass approximation with parabolic bands and the finite element method, the Schrödinger equation was solved to analyze the confined states of electron, hole, and exciton. This study demonstrates the potential of combining nonresonant intense laser and electric fields to control confinement properties in semiconductor nanodevices, with potential applications in optoelectronics and quantum mechanics-related technologies. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

10 pages, 1855 KB  
Article
TCAD Design and Optimization of In0.20Ga0.80N/In0.35Ga0.65N Quantum-Dot Intermediate-Band Solar Cells
by Salaheddine Amezzoug, Haddou El Ghazi and Walid Belaid
Crystals 2025, 15(8), 693; https://doi.org/10.3390/cryst15080693 - 30 Jul 2025
Viewed by 919
Abstract
Intermediate-band photovoltaics promise single-junction efficiencies that exceed the Shockley and Queisser limit, yet viable material platforms and device geometries remain under debate. Here, we perform comprehensive two-dimensional device-scale simulations using Silvaco Atlas TCAD to analyze p-i-n In0.20Ga0.80N solar cells [...] Read more.
Intermediate-band photovoltaics promise single-junction efficiencies that exceed the Shockley and Queisser limit, yet viable material platforms and device geometries remain under debate. Here, we perform comprehensive two-dimensional device-scale simulations using Silvaco Atlas TCAD to analyze p-i-n In0.20Ga0.80N solar cells in which the intermediate band is supplied by In0.35Ga0.65N quantum dots located inside the intrinsic layer. Quantum-dot diameters from 1 nm to 10 nm and areal densities up to 116 dots per period are evaluated under AM 1.5G, one-sun illumination at 300 K. The baseline pn junction achieves a simulated power-conversion efficiency of 33.9%. The incorporation of a single 1 nm quantum-dot layer dramatically increases efficiency to 48.1%, driven by a 35% enhancement in short-circuit current density while maintaining open-circuit voltage stability. Further increases in dot density continue to boost current but with diminishing benefit; the highest efficiency recorded, 49.4% at 116 dots, is only 1.4 percentage points above the 40-dot configuration. The improvements originate from two-step sub-band-gap absorption mediated by the quantum dots and from enhanced carrier collection in a widened depletion region. These results define a practical design window centred on approximately 1 nm dots and about 40 dots per period, balancing substantial efficiency gains with manageable structural complexity and providing concrete targets for epitaxial implementation. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

Back to TopTop