Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,012)

Search Parameters:
Keywords = semantic interpretation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 17058 KB  
Article
PriorSAM-DBNet: A SAM-Prior-Enhanced Dual-Branch Network for Efficient Semantic Segmentation of High-Resolution Remote Sensing Images
by Qiwei Zhang, Yisong Wang, Ning Li, Quanwen Jiang and Yong He
Sensors 2026, 26(2), 749; https://doi.org/10.3390/s26020749 (registering DOI) - 22 Jan 2026
Abstract
Semantic segmentation of high-resolution remote sensing imagery is a critical technology for the intelligent interpretation of sensor data, supporting automated environmental monitoring and urban sensing systems. However, processing data from dense urban scenarios remains challenging due to sensor signal occlusions (e.g., shadows) and [...] Read more.
Semantic segmentation of high-resolution remote sensing imagery is a critical technology for the intelligent interpretation of sensor data, supporting automated environmental monitoring and urban sensing systems. However, processing data from dense urban scenarios remains challenging due to sensor signal occlusions (e.g., shadows) and the complexity of parsing multi-scale targets from optical sensors. Existing approaches often exhibit a trade-off between the accuracy of global semantic modeling and the precision of complex boundary recognition. While the Segment Anything Model (SAM) offers powerful zero-shot structural priors, its direct application to remote sensing is hindered by domain gaps and the lack of inherent semantic categorization. To address these limitations, we propose a dual-branch cooperative network, PriorSAM-DBNet. The main branch employs a Densely Connected Swin (DC-Swin) Transformer to capture cross-scale global features via a hierarchical shifted window attention mechanism. The auxiliary branch leverages SAM’s zero-shot capability to exploit structural universality, generating object-boundary masks as robust signal priors while bypassing semantic domain shifts. Crucially, we introduce a parameter-efficient Scaled Subsampling Projection (SSP) module that employs a weight-sharing mechanism to align cross-modal features, freezing the massive SAM backbone to ensure computational viability for practical sensor applications. Furthermore, a novel Attentive Cross-Modal Fusion (ACMF) module is designed to dynamically resolve semantic ambiguities by calibrating the global context with local structural priors. Extensive experiments on the ISPRS Vaihingen, Potsdam, and LoveDA-Urban datasets demonstrate that PriorSAM-DBNet outperforms state-of-the-art approaches. By fine-tuning only 0.91 million parameters in the auxiliary branch, our method achieves mIoU scores of 82.50%, 85.59%, and 53.36%, respectively. The proposed framework offers a scalable, high-precision solution for remote sensing semantic segmentation, particularly effective for disaster emergency response where rapid feature recognition from sensor streams is paramount. Full article
20 pages, 2671 KB  
Article
Semantic-Aligned Multimodal Vision–Language Framework for Autonomous Driving Decision-Making
by Feng Peng, Shangju She and Zejian Deng
Machines 2026, 14(1), 125; https://doi.org/10.3390/machines14010125 - 21 Jan 2026
Abstract
Recent advances in Large Vision–Language Models (LVLMs) have demonstrated strong cross-modal reasoning capabilities, offering new opportunities for decision-making in autonomous driving. However, existing end-to-end approaches still suffer from limited semantic consistency, weak task controllability, and insufficient interpretability. To address these challenges, we propose [...] Read more.
Recent advances in Large Vision–Language Models (LVLMs) have demonstrated strong cross-modal reasoning capabilities, offering new opportunities for decision-making in autonomous driving. However, existing end-to-end approaches still suffer from limited semantic consistency, weak task controllability, and insufficient interpretability. To address these challenges, we propose SemAlign-E2E (Semantic-Aligned End-to-End), a semantic-aligned multimodal LVLM framework that unifies visual, LiDAR, and task-oriented textual inputs through cross-modal attention. This design enables end-to-end reasoning from scene understanding to high-level driving command generation. Beyond producing structured control instructions, the framework also provides natural-language explanations to enhance interpretability. We conduct extensive evaluations on the nuScenes dataset and CARLA simulation platform. Experimental results show that SemAlign-E2E achieves substantial improvements in driving stability, safety, multi-task generalization, and semantic comprehension, consistently outperforming state-of-the-art baselines. Notably, the framework exhibits superior behavioral consistency and risk-aware decision-making in complex traffic scenarios. These findings highlight the potential of LVLM-driven semantic reasoning for autonomous driving and provide a scalable pathway toward future semantic-enhanced end-to-end driving systems. Full article
(This article belongs to the Special Issue Control and Path Planning for Autonomous Vehicles)
Show Figures

Figure 1

32 pages, 16166 KB  
Article
A Multimodal Ensemble-Based Framework for Detecting Fake News Using Visual and Textual Features
by Muhammad Abdullah, Hongying Zan, Arifa Javed, Muhammad Sohail, Orken Mamyrbayev, Zhanibek Turysbek, Hassan Eshkiki and Fabio Caraffini
Mathematics 2026, 14(2), 360; https://doi.org/10.3390/math14020360 - 21 Jan 2026
Abstract
Detecting fake news is essential in natural language processing to verify news authenticity and prevent misinformation-driven social, political, and economic disruptions targeting specific groups. A major challenge in multimodal fake news detection is effectively integrating textual and visual modalities, as semantic gaps and [...] Read more.
Detecting fake news is essential in natural language processing to verify news authenticity and prevent misinformation-driven social, political, and economic disruptions targeting specific groups. A major challenge in multimodal fake news detection is effectively integrating textual and visual modalities, as semantic gaps and contextual variations between images and text complicate alignment, interpretation, and the detection of subtle or blatant inconsistencies. To enhance accuracy in fake news detection, this article introduces an ensemble-based framework that integrates textual and visual data using ViLBERT’s two-stream architecture, incorporates VADER sentiment analysis to detect emotional language, and uses Image–Text Contextual Similarity to identify mismatches between visual and textual elements. These features are processed through the Bi-GRU classifier, Transformer-XL, DistilBERT, and XLNet, combined via a stacked ensemble method with soft voting, culminating in a T5 metaclassifier that predicts the outcome for robustness. Results on the Fakeddit and Weibo benchmarking datasets show that our method outperforms state-of-the-art models, achieving up to 96% and 94% accuracy in fake news detection, respectively. This study highlights the necessity for advanced multimodal fake news detection systems to address the increasing complexity of misinformation and offers a promising solution. Full article
Show Figures

Figure 1

26 pages, 2033 KB  
Article
A Semantic Similarity Model for Geographic Terminologies Using Ontological Features and BP Neural Networks
by Zugang Chen, Xinyu Chen, Yin Ma, Jing Li, Linhan Yang, Guoqing Li, Hengliang Guo, Shuai Chen and Tian Liang
Appl. Sci. 2026, 16(2), 1105; https://doi.org/10.3390/app16021105 - 21 Jan 2026
Abstract
Accurate measurement of semantic similarity between geographic terms is a fundamental challenge in geographic information science, directly influencing tasks such as knowledge retrieval, ontology-based reasoning, and semantic search in geographic information systems (GIS). Traditional ontology-based approaches primarily rely on a narrow set of [...] Read more.
Accurate measurement of semantic similarity between geographic terms is a fundamental challenge in geographic information science, directly influencing tasks such as knowledge retrieval, ontology-based reasoning, and semantic search in geographic information systems (GIS). Traditional ontology-based approaches primarily rely on a narrow set of features (e.g., semantic distance or depth), which inadequately capture the multidimensional and context-dependent nature of geographic semantics. To address this limitation, this study proposes an ontology-driven semantic similarity model that integrates a backpropagation (BP) neural network with multiple ontological features—hierarchical depth, node distance, concept density, and relational overlap. The BP network serves as a nonlinear optimization mechanism that adaptively learns the contributions of each feature through cross-validation, balancing interpretability and precision. Experimental evaluations on the Geo-Terminology Relatedness Dataset (GTRD) demonstrate that the proposed model outperforms traditional baselines, including the Thesaurus–Lexical Relatedness Measure (TLRM), Word2Vec, and SBERT (Sentence-BERT), with Spearman correlation improvements of 4.2%, 74.8% and 80.1%, respectively. Additionally, comparisons with Linear Regression and Random Forest models, as well as bootstrap analysis and error analysis, confirm the robustness and generalization of the BP-based approach. These results confirm that coupling structured ontological knowledge with data-driven learning enhances robustness and generalization in semantic similarity computation, providing a unified framework for geographic knowledge reasoning, terminology harmonization, and ontology-based information retrieval. Full article
28 pages, 1241 KB  
Article
Joint Learning for Metaphor Detection and Interpretation Based on Gloss Interpretation
by Yanan Liu, Hai Wan and Jinxia Lin
Electronics 2026, 15(2), 456; https://doi.org/10.3390/electronics15020456 - 21 Jan 2026
Abstract
Metaphor is ubiquitous in daily communication and makes language expression more vivid. Identifying metaphorical words, known as metaphor detection, is crucial for capturing the real meaning of a sentence. As an important step of metaphorical understanding, the correct interpretation of metaphorical words [...] Read more.
Metaphor is ubiquitous in daily communication and makes language expression more vivid. Identifying metaphorical words, known as metaphor detection, is crucial for capturing the real meaning of a sentence. As an important step of metaphorical understanding, the correct interpretation of metaphorical words directly affects metaphor detection. This article investigates how to use metaphor interpretation to enhance metaphor detection. Since previous approaches for metaphor interpretation are coarse-grained or constrained by ambiguous meanings of substitute words, we propose a different interpretation mechanism that explains metaphorical words by means of gloss-based interpretations. To comprehensively explore the optimal joint strategy, we go beyond previous work by designing diverse model architectures. We investigate both classification and sequence labeling paradigms, incorporating distinct component designs based on MIP and SPV theories. Furthermore, we integrate Part-of-Speech tags and external knowledge to further refine the feature representation. All methods utilize pre-trained language models to encode text and capture semantic information of the text. Since this mechanism involves both metaphor detection and metaphor interpretation but there is a lack of datasets annotated for both tasks, we have enhanced three datasets with glosses for metaphor detection: one Chinese dataset (PSUCMC) and two English datasets (TroFi and VUA). Experimental results demonstrate that the proposed joint methods are superior to or at least comparable to state-of-the-art methods on the three enhanced datasets. Results confirm that joint learning of metaphor detection and gloss-based interpretation makes metaphor detection more accurate. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

33 pages, 550 KB  
Article
Intelligent Information Processing for Corporate Performance Prediction: A Hybrid Natural Language Processing (NLP) and Deep Learning Approach
by Qidi Yu, Chen Xing, Yanjing He, Sunghee Ahn and Hyung Jong Na
Electronics 2026, 15(2), 443; https://doi.org/10.3390/electronics15020443 - 20 Jan 2026
Abstract
This study proposes a hybrid machine learning framework that integrates structured financial indicators and unstructured textual strategy disclosures to improve firm-level management performance prediction. Using corporate business reports from South Korean listed firms, strategic text was extracted and categorized under the Balanced Scorecard [...] Read more.
This study proposes a hybrid machine learning framework that integrates structured financial indicators and unstructured textual strategy disclosures to improve firm-level management performance prediction. Using corporate business reports from South Korean listed firms, strategic text was extracted and categorized under the Balanced Scorecard (BSC) framework into financial, customer, internal process, and learning and growth dimensions. Various machine learning and deep learning models—including k-nearest neighbors (KNNs), support vector machine (SVM), light gradient boosting machine (LightGBM), convolutional neural network (CNN), long short-term memory (LSTM), autoencoder, and transformer—were evaluated, with results showing that the inclusion of strategic textual data significantly enhanced prediction accuracy, precision, recall, area under the curve (AUC), and F1-score. Among individual models, the transformer architecture demonstrated superior performance in extracting context-rich semantic features. A soft-voting ensemble model combining autoencoder, LSTM, and transformer achieved the best overall performance, leading in accuracy and AUC, while the best single deep learning model (transformer) obtained a marginally higher F1 score, confirming the value of hybrid learning. Furthermore, analysis revealed that customer-oriented strategy disclosures were the most predictive among BSC dimensions. These findings highlight the value of integrating financial and narrative data using advanced NLP and artificial intelligence (AI) techniques to develop interpretable and robust corporate performance forecasting models. In addition, we operationalize information security narratives using a reproducible cybersecurity lexicon and derive security disclosure intensity and weight share features that are jointly evaluated with BSC-based strategic vectors. Full article
(This article belongs to the Special Issue Advances in Intelligent Information Processing)
Show Figures

Figure 1

14 pages, 488 KB  
Article
The Evolution of Nanoparticle Regulation: A Meta-Analysis of Research Trends and Historical Parallels (2015–2025)
by Sung-Kwang Shin, Niti Sharma, Seong Soo A. An and Meyoung-Kon (Jerry) Kim
Nanomaterials 2026, 16(2), 134; https://doi.org/10.3390/nano16020134 - 19 Jan 2026
Viewed by 19
Abstract
Objective: We analyzed nanoparticle regulation research to examine the evolution of regulatory frameworks, identify major thematic structures, and evaluate current challenges in the governance of rapidly advancing nanotechnologies. By drawing parallels with the historical development of radiation regulation, the study aimed to [...] Read more.
Objective: We analyzed nanoparticle regulation research to examine the evolution of regulatory frameworks, identify major thematic structures, and evaluate current challenges in the governance of rapidly advancing nanotechnologies. By drawing parallels with the historical development of radiation regulation, the study aimed to contextualize emerging regulatory strategies and derive lessons for future governance. Methods: A total of 9095 PubMed-indexed articles published between January 2015 and October 2025 were analyzed using text mining, keyword frequency analysis, and topic modeling. Preprocessed titles and abstracts were transformed into a TF-IDF (Term Frequency–Inverse Document Frequency) document–term matrix, and NMF (Non-negative Matrix Factorization) was applied to extract semantically coherent topics. Candidate topic numbers (K = 1–12) were evaluated using UMass coherence scores and qualitative interpretability criteria to determine the optimal topic structure. Results: Six major research topics were identified, spanning energy and sensor applications, metal oxide toxicity, antibacterial silver nanoparticles, cancer nano-therapy, and nanoparticle-enabled drug and mRNA delivery. Publication output increased markedly after 2019 with interdisciplinary journals driving much of the growth. Regulatory considerations were increasingly embedded within experimental and biomedical research, particularly in safety assessment and environmental impact analyses. Conclusions: Nanoparticle regulation matured into a dynamic multidisciplinary field. Regulatory efforts should prioritize adaptive, data-informed, and internationally harmonized frameworks that support innovation while ensuring human and environmental safety. These findings provide a data-driven overview of how regulatory thinking was evolved alongside scientific development and highlight areas where future governance efforts were most urgently needed. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

57 pages, 4130 KB  
Review
Critical Review of Recent Advances in AI-Enhanced SEM and EDS Techniques for Metallic Microstructure Characterization
by Gasser Abdelal, Chi-Wai Chan and Sean McLoone
Appl. Sci. 2026, 16(2), 975; https://doi.org/10.3390/app16020975 - 18 Jan 2026
Viewed by 84
Abstract
This critical review explores the transformative impact of artificial intelligence (AI), particularly machine learning (ML) and computer vision (CV), on scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) for metallic microstructure analysis, spanning research from 2010 to 2025. It critically evaluates how [...] Read more.
This critical review explores the transformative impact of artificial intelligence (AI), particularly machine learning (ML) and computer vision (CV), on scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) for metallic microstructure analysis, spanning research from 2010 to 2025. It critically evaluates how AI techniques balance automation, accuracy, and scalability, analysing why certain methods (e.g., Vision Transformers for complex microstructures) excel in specific contexts and how trade-offs in data availability, computational resources, and interpretability shape their adoption. The review examines AI-driven techniques, including semantic segmentation, object detection, and instance segmentation, which automate the identification and characterisation of microstructural features, defects, and inclusions, achieving enhanced accuracy, efficiency, and reproducibility compared to traditional manual methods. It introduces the Microstructure Analysis Spectrum, a novel framework categorising techniques by task complexity and scalability, providing a new lens to understand AI’s role in materials science. The paper also evaluates AI’s role in chemical composition analysis and predictive modelling, facilitating rapid forecasts of mechanical properties such as hardness and fracture strain. Practical applications in steelmaking (e.g., automated inclusion characterisation) and case studies on high-entropy alloys and additively manufactured metals underscore AI’s benefits, including reduced analysis time and improved quality control. Extending prior reviews, this work incorporates recent advancements like Vision Transformers, 3D Convolutional Neural Networks (CNNs), and Generative Adversarial Networks (GANs). Key challenges—data scarcity, model interpretability, and computational demands—are critically analysed, with representative trade-offs from the literature highlighted (e.g., GANs can substantially augment effective dataset size through synthetic data generation, typically at the cost of significantly increased training time). Full article
(This article belongs to the Special Issue Advances in AI and Multiphysics Modelling)
Show Figures

Figure 1

16 pages, 354 KB  
Article
Psychometrics of Drawmetrics: An Expressive–Semantic Framework for Personality Assessment
by Larry R. Price
Behav. Sci. 2026, 16(1), 135; https://doi.org/10.3390/bs16010135 - 17 Jan 2026
Viewed by 124
Abstract
This study examines whether Drawmetrics (DM), an expressive–semantic personality system, can be linked with the Five-Factor Model (Big Five) through an embedding-based mapping approach and network psychometric methods. A total of 185 participants completed both the DM assessment and the IPIP-NEO 120 Big [...] Read more.
This study examines whether Drawmetrics (DM), an expressive–semantic personality system, can be linked with the Five-Factor Model (Big Five) through an embedding-based mapping approach and network psychometric methods. A total of 185 participants completed both the DM assessment and the IPIP-NEO 120 Big Five inventory. DM term outputs were embedded using a miniLM sentence-transformer and aggregated into 30 facet composites, with six composites per domain. Big Five facet composites were extracted from standardized reports and harmonized to canonical facet names. Analyses focused on the overlap sample (N = 148) with valid scores on both instruments. DM composites demonstrated strong internal structure and high stability indices. Substantial semantic-space alignment was observed between DM term language and Big Five facet language, supporting interpretable linking. However, person-level correlations between DM and Big Five domains were modest (mean |r| ≈ 0.07; Spearman similar), with the largest facet-level association at |r| ≈ 0.26. DM appears to represent a coherent expressive–semantic trait space that is related to, but not isomorphic with, Big Five traits. These findings support a linking rather than equivalence interpretation and highlight the need for future research on scaling, reliability, range restriction, and criterion validation. Full article
Show Figures

Figure 1

16 pages, 401 KB  
Article
Heuristic Conductance-Aware Local Clustering for Heterogeneous Hypergraphs
by Jingtian Wei, Xuan Li and Hongen Lu
Algorithms 2026, 19(1), 79; https://doi.org/10.3390/a19010079 - 16 Jan 2026
Viewed by 88
Abstract
Graphs are widely used to model complex interactions among entities, yet they struggle to capture higher-order and multi-typed relationships. Hypergraphs overcome this limitation by allowing for edges to connect arbitrary sets of nodes, enabling richer modelling of higher-order semantics. Real-world systems, however, often [...] Read more.
Graphs are widely used to model complex interactions among entities, yet they struggle to capture higher-order and multi-typed relationships. Hypergraphs overcome this limitation by allowing for edges to connect arbitrary sets of nodes, enabling richer modelling of higher-order semantics. Real-world systems, however, often exhibit heterogeneity in both entities and relations, motivating the need for heterogeneous hypergraphs as a more expressive structure. In this study, we address the problem of local clustering on heterogeneous hypergraphs, where the goal is to identify a semantically meaningful cluster around a given seed node while accounting for type diversity. Existing methods typically ignore node-type information, resulting in clusters with poor semantic coherence. To overcome this, we propose HHLC, a heuristic heterogeneous hyperedge-based local clustering algorithm, guided by a heterogeneity-aware conductance measure that integrates structural connectivity and node-type consistency. HHLC employs type-filtered expansion, cross-type penalties, and low-quality hyperedge pruning to produce interpretable and compact clusters. Comprehensive experiments on synthetic and real-world heterogeneous datasets demonstrate that HHLC consistently outperforms strong baselines across metrics such as conductance, semantic purity, and type diversity. These results highlight the importance of incorporating heterogeneity into hypergraph algorithms and position HHLC as a robust framework for semantically grounded local analysis in complex multi-relational networks. Full article
(This article belongs to the Special Issue Graph and Hypergraph Algorithms and Applications)
Show Figures

Figure 1

23 pages, 1503 KB  
Article
Hallucination-Aware Interpretable Sentiment Analysis Model: A Grounded Approach to Reliable Social Media Content Classification
by Abdul Rahaman Wahab Sait and Yazeed Alkhurayyif
Electronics 2026, 15(2), 409; https://doi.org/10.3390/electronics15020409 - 16 Jan 2026
Viewed by 112
Abstract
Sentiment analysis (SA) has become an essential tool for analyzing social media content in order to monitor public opinion and support digital analytics. Although transformer-based SA models exhibit remarkable performance, they lack mechanisms to mitigate hallucinated sentiment, which refers to the generation of [...] Read more.
Sentiment analysis (SA) has become an essential tool for analyzing social media content in order to monitor public opinion and support digital analytics. Although transformer-based SA models exhibit remarkable performance, they lack mechanisms to mitigate hallucinated sentiment, which refers to the generation of unsupported or overconfident predictions without explicit linguistic evidence. To address this limitation, this study presents a hallucination-aware SA model by incorporating semantic grounding, interpretability-congruent supervision, and neuro-symbolic reasoning within a unified architecture. The proposed model is based on a fine-tuned Open Pre-trained Transformer (OPT) model, using three fundamental mechanisms: a Sentiment Integrity Filter (SIF), a SHapley Additive exPlanations (SHAP)-guided regularization technique, and a confidence-based lexicon-deep fusion module. The experimental analysis was conducted on two multi-class sentiment datasets that contain Twitter (now X) and Reddit posts. In Dataset 1, the suggested model achieved an average accuracy of 97.6% and a hallucination rate of 2.3%, outperforming the current transformer-based and hybrid sentiment models. With Dataset 2, the framework demonstrated strong external generalization with an accuracy of 95.8%, and a hallucination rate of 3.4%, which is significantly lower than state-of-the-art methods. These findings indicate that it is possible to include hallucination mitigation into transformer optimization without any performance degradation, offering a deployable, interpretable, and linguistically complex social media SA framework, which will enhance the reliability of neural systems of language understanding. Full article
Show Figures

Figure 1

28 pages, 8826 KB  
Article
A Lightweight LLM-Based Semantic–Spatial Inference Framework for Fine-Grained Urban POI Analysis
by Zhuo Huang, Yixing Guo, Shuo Huang and Miaoxi Zhao
Smart Cities 2026, 9(1), 13; https://doi.org/10.3390/smartcities9010013 - 16 Jan 2026
Viewed by 204
Abstract
Unstructured POI name texts are widely used in fine-grained urban analysis, yet missing labels and semantic ambiguity often limit their value for spatial inference. This study proposes a large language model-based semantic–spatial inference framework (LLM-SSIF), a lightweight semantic–spatial pipeline that translates POI texts [...] Read more.
Unstructured POI name texts are widely used in fine-grained urban analysis, yet missing labels and semantic ambiguity often limit their value for spatial inference. This study proposes a large language model-based semantic–spatial inference framework (LLM-SSIF), a lightweight semantic–spatial pipeline that translates POI texts into interpretable, fine-grained spatial evidence through an end-to-end workflow that couples scalable label expansion with scale-controlled spatial diagnostics at a 500 m resolution. A key advantage of LLM-SSIF is its deployability: LoRA-based parameter-efficient fine-tuning of an open LLM enables lightweight adaptation under limited compute while scaling fine-label coverage. Trained on a nationwide cuisine-labeled dataset (~220,000 records), the model achieves strong multi-class short-text recognition (macro-F1 = 0.843) and, in the Guangzhou–Shenzhen demonstration, expands usable fine-category labels by ~14–15× to support grid-level inference under long-tail sparsity. The spatial module then isolates cuisine-specific over/under-representation beyond overall restaurant intensity, revealing contrasting cultural configurations between Guangzhou and Shenzhen. Overall, LLM-SSIF provides a reproducible and transferable way to translate unstructured POI texts into spatial–statistical evidence for comparative urban analysis. Full article
Show Figures

Figure 1

23 pages, 3941 KB  
Article
How Environmental Perception and Place Governance Shape Equity in Urban Street Greening: An Empirical Study of Chicago
by Fan Li, Longhao Zhang, Fengliang Tang, Jiankun Liu, Yike Hu and Yuhang Kong
Forests 2026, 17(1), 119; https://doi.org/10.3390/f17010119 - 15 Jan 2026
Viewed by 172
Abstract
Urban street greening structure plays a crucial role in promoting environmental justice and enhancing residents’ daily well-being, yet existing studies have primarily focused on vegetation quantity while neglecting how perception and governance interact to shape fairness. This study develops an integrated analytical framework [...] Read more.
Urban street greening structure plays a crucial role in promoting environmental justice and enhancing residents’ daily well-being, yet existing studies have primarily focused on vegetation quantity while neglecting how perception and governance interact to shape fairness. This study develops an integrated analytical framework that combines deep learning, machine learning, and spatial analysis to examine the impact of perceptual experience and socio-economic indicators on the equity of greening structure distribution in urban streets, and to reveal the underlying mechanisms driving this equity. Using DeepLabV3+ semantic segmentation, perception indices derived from street-view imagery, and population-weighted Gini coefficients, the study quantifies both the structural and perceptual dimensions of greening equity. XGBoost regression, SHAP interpretation, and Partial Dependence Plot analysis were applied to reveal the influence mechanism of the “Matthew effect” of perception and the Site governance responsiveness on the fairness of the green structure. The results identify two key findings: (1) perception has a positive driving effect and a negative vicious cycle effect on the formation of fairness, where positive perceptions such as beauty and safety gradually enhance fairness, while negative perceptions such as depression and boredom rapidly intensify inequality; (2) Site management with environmental sensitivity and dynamic mutual feedback to a certain extent determines whether the fairness of urban green structure can persist under pressure, as diverse Tree–Bush–Grass configurations reflect coordinated management and lead to more balanced outcomes. Policy strategies should therefore emphasize perceptual monitoring, flexible maintenance systems, and transparent public participation to achieve resilient and equitable urban street greening structures. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

21 pages, 1065 KB  
Article
GC-ViT: Graph Convolution-Augmented Vision Transformer for Pilot G-LOC Detection Through AU Correlation Learning
by Bohuai Zhang, Zhenchi Xu and Xuan Li
Aerospace 2026, 13(1), 93; https://doi.org/10.3390/aerospace13010093 - 15 Jan 2026
Viewed by 92
Abstract
Prolonged +Gz acceleration during high-performance flight exposes pilots to the risk of G-induced loss of consciousness (G-LOC), a dangerous condition that compromises operational safety. To enable early detection without intrusive sensors, we present a vision-based warning system that analyzes facial action units (AUs) [...] Read more.
Prolonged +Gz acceleration during high-performance flight exposes pilots to the risk of G-induced loss of consciousness (G-LOC), a dangerous condition that compromises operational safety. To enable early detection without intrusive sensors, we present a vision-based warning system that analyzes facial action units (AUs) as physiological indicators of impending G-LOC. Our approach combines computer vision with physiological modeling to capture subtle facial microexpressions associated with cerebral hypoxia using widely available RGB cameras. We propose a novel Graph Convolution-Augmented Vision Transformer (GC-ViT) network architecture that effectively captures dynamic AU variations in pilots under G-LOC conditions by integrating global context modeling with vision Transformer. The proposed framework integrates a vision–semantics collaborative Transformer for robust AU feature extraction, where EfficientNet-based spatiotemporal modeling is enhanced by Transformer attention mechanisms to maintain recognition accuracy under high-G stress. Building upon this, we develop a graph-based physiological model that dynamically tracks interactions between critical AUs during G-LOC progression by learning the characteristic patterns of AU co-activation during centrifugal training. Experimental validation on centrifuge training datasets demonstrates strong performance, achieving an AUC-ROC of 0.898 and an AP score of 0.96, confirming the system’s ability to reliably identify characteristic patterns of AU co-activation during G-LOC events. Overall, this contact-free system offers an interpretable solution for rapid G-LOC detection, or as a complementary enhancement to existing aeromedical monitoring technologies. The non-invasive design demonstrates significant potential for improving safety in aerospace physiology applications without requiring modifications to current cockpit or centrifuge setups. Full article
(This article belongs to the Special Issue Human Factors and Performance in Aviation Safety)
Show Figures

Figure 1

60 pages, 3790 KB  
Review
Autonomous Mobile Robot Path Planning Techniques—A Review: Metaheuristic and Cognitive Techniques
by Mubarak Badamasi Aremu, Gamil Ahmed, Sami Elferik and Abdul-Wahid A. Saif
Robotics 2026, 15(1), 23; https://doi.org/10.3390/robotics15010023 - 14 Jan 2026
Viewed by 184
Abstract
Autonomous mobile robots (AMRs) require robust, efficient path planning to operate safely in complex, often dynamic environments (e.g., logistics, transportation, and healthcare). This systematic review focuses on advanced metaheuristic and learning- and reasoning-based (cognitive) techniques for AMR path planning. Drawing on approximately 230 [...] Read more.
Autonomous mobile robots (AMRs) require robust, efficient path planning to operate safely in complex, often dynamic environments (e.g., logistics, transportation, and healthcare). This systematic review focuses on advanced metaheuristic and learning- and reasoning-based (cognitive) techniques for AMR path planning. Drawing on approximately 230 articles published between 2018 and 2025, we organize the literature into two prominent families, metaheuristic optimization and AI-based navigation, and introduce and apply a unified taxonomy (planning scope, output type, and constraint awareness) to guide the comparative analysis and practitioner-oriented synthesis. We synthesize representative approaches, including swarm- and evolutionary-based planners (e.g., PSO, GA, ACO, GWO), fuzzy and neuro-fuzzy systems, neural methods, and RL/DRL-based navigation, highlighting their operating principles, recent enhancements, strengths, and limitations, and typical deployment roles within hierarchical navigation stacks. Comparative tables and a compact trade-off synthesis summarize capabilities across static/dynamic settings, real-world validation, and hybridization trends. Persistent gaps remain in parameter tuning, safety, and interpretability of learning-enabled navigation; sim-to-real transfer; scalability under real-time compute limits; and limited physical experimentation. Finally, we outline research opportunities and open research questions, covering benchmarking and reproducibility, resource-aware planning, multi-robot coordination, 3D navigation, and emerging foundation models (LLMs/VLMs) for high-level semantic navigation. Collectively, this review provides a consolidated reference and practical guidance for future AMR path-planning research. Full article
(This article belongs to the Section Sensors and Control in Robotics)
Show Figures

Figure 1

Back to TopTop