Abstract
Accurate measurement of semantic similarity between geographic terms is a fundamental challenge in geographic information science, directly influencing tasks such as knowledge retrieval, ontology-based reasoning, and semantic search in geographic information systems (GIS). Traditional ontology-based approaches primarily rely on a narrow set of features (e.g., semantic distance or depth), which inadequately capture the multidimensional and context-dependent nature of geographic semantics. To address this limitation, this study proposes an ontology-driven semantic similarity model that integrates a backpropagation (BP) neural network with multiple ontological features—hierarchical depth, node distance, concept density, and relational overlap. The BP network serves as a nonlinear optimization mechanism that adaptively learns the contributions of each feature through cross-validation, balancing interpretability and precision. Experimental evaluations on the Geo-Terminology Relatedness Dataset (GTRD) demonstrate that the proposed model outperforms traditional baselines, including the Thesaurus–Lexical Relatedness Measure (TLRM), Word2Vec, and SBERT (Sentence-BERT), with Spearman correlation improvements of 4.2%, 74.8% and 80.1%, respectively. Additionally, comparisons with Linear Regression and Random Forest models, as well as bootstrap analysis and error analysis, confirm the robustness and generalization of the BP-based approach. These results confirm that coupling structured ontological knowledge with data-driven learning enhances robustness and generalization in semantic similarity computation, providing a unified framework for geographic knowledge reasoning, terminology harmonization, and ontology-based information retrieval.