Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (323)

Search Parameters:
Keywords = selective oxidation of glucose

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2897 KiB  
Article
Noncovalently Immobilized Glucose Oxidase/Horseradish Peroxidase Cascade on Polyamide Supports for Eco-Friendly Polyaniline Synthesis
by Nadya V. Dencheva, Joana F. Braz, Sofia A. Guimarães and Zlatan Z. Denchev
Molecules 2025, 30(14), 3003; https://doi.org/10.3390/molecules30143003 - 17 Jul 2025
Viewed by 287
Abstract
This study discloses the noncovalent immobilization of a bienzyme cascade composed of glucose oxidase (GOx) and horseradish peroxidase (HRP) onto magnetically responsive polyamide microparticles (PA MPs). Porous PA6, PA4, and PA12 MPs containing iron fillers were synthesized via activated anionic ring-opening polymerization in [...] Read more.
This study discloses the noncovalent immobilization of a bienzyme cascade composed of glucose oxidase (GOx) and horseradish peroxidase (HRP) onto magnetically responsive polyamide microparticles (PA MPs). Porous PA6, PA4, and PA12 MPs containing iron fillers were synthesized via activated anionic ring-opening polymerization in suspension, alongside neat PA6 MPs used as a reference. Four hybrid catalytic systems (GOx/HRP@PA) were prepared through sequential adsorption of HRP and GOx onto the various PA MP supports. The initial morphologies of the supports and the hybrid biocatalysts were characterized by SEM, followed by evaluation of the catalytic performance using a two-step glucose oxidation cascade process. Among all systems, the GOx/HRP@PA4-Fe complex exhibited the highest activity, being approximately 1.5 times greater than the native enzyme dyad, followed by the PA6-supported system with slightly inferior performance. All systems obeyed Michaelis–Menten kinetics, with the immobilized cascades displaying higher Kₘ and Vₘₐₓ values than the non-immobilized enzyme pair while maintaining comparable catalytic efficiencies, CE (CE = kcat/Kₘ). Subsequently, the immobilized and native enzyme systems were employed for the polymerization of aniline. According to UV–VIS, complete monomer conversion was achieved within 24 h for selected catalysts, and FTIR analysis confirmed the formation of polyaniline in the emeraldine base form without the use of template molecules. These findings highlight the potential of Fe-containing polyamide microparticles as efficient supports for the sustainable, enzyme-mediated synthesis of intrinsically conductive aromatic polymers. Full article
Show Figures

Graphical abstract

17 pages, 900 KiB  
Review
Watercress (Nasturtium officinale) as a Functional Food for Non-Communicable Diseases Prevention and Management: A Narrative Review
by Chikondi Maluwa, Blecious Zinan’dala, Hataichanok Chuljerm, Wason Parklak and Kanokwan Kulprachakarn
Life 2025, 15(7), 1104; https://doi.org/10.3390/life15071104 - 15 Jul 2025
Viewed by 1411
Abstract
Non-communicable diseases (NCDs) such as cardiovascular disease, diabetes, cancer, and chronic respiratory conditions are the leading causes of death globally, largely driven by modifiable lifestyle factors. With growing interest in dietary strategies for NCDs prevention and management, functional foods like watercress (Nasturtium [...] Read more.
Non-communicable diseases (NCDs) such as cardiovascular disease, diabetes, cancer, and chronic respiratory conditions are the leading causes of death globally, largely driven by modifiable lifestyle factors. With growing interest in dietary strategies for NCDs prevention and management, functional foods like watercress (Nasturtium officinale) have attracted attention for their rich phytochemical content and potential health benefits. This narrative review synthesizes 88 sources published between 2019 and March 2025, exploring the effects of watercress bioactive compounds on major NCDs. Watercress is abundant in glucosinolates, isothiocyanates (especially phenethyl isothiocyanate), flavonoids, vitamins, and minerals. These compounds contribute to antioxidant, anti-inflammatory, and metabolic regulatory effects. Preclinical and clinical studies show that watercress supplementation may improve lipid profiles, reduce oxidative stress, and modulate inflammation in cardiovascular and respiratory conditions. It also appears to enhance insulin function and reduce blood glucose levels. In cancer models, watercress extracts exhibit antiproliferative, pro-apoptotic, and chemoprotective properties, with selective toxicity towards cancer cells and protective effects on normal cells. These findings highlight the therapeutic potential of watercress as a dietary adjunct in NCDs prevention and management, supporting the need for further clinical research. Full article
Show Figures

Figure 1

20 pages, 1303 KiB  
Review
The Role of Nanomaterials in the Wearable Electrochemical Glucose Biosensors for Diabetes Management
by Tahereh Jamshidnejad-Tosaramandani, Soheila Kashanian, Kobra Omidfar and Helgi B. Schiöth
Biosensors 2025, 15(7), 451; https://doi.org/10.3390/bios15070451 - 14 Jul 2025
Viewed by 433
Abstract
The increasing prevalence of diabetes mellitus necessitates the development of advanced glucose-monitoring systems that are non-invasive, reliable, and capable of real-time analysis. Wearable electrochemical biosensors have emerged as promising tools for continuous glucose monitoring (CGM), particularly through sweat-based platforms. This review highlights recent [...] Read more.
The increasing prevalence of diabetes mellitus necessitates the development of advanced glucose-monitoring systems that are non-invasive, reliable, and capable of real-time analysis. Wearable electrochemical biosensors have emerged as promising tools for continuous glucose monitoring (CGM), particularly through sweat-based platforms. This review highlights recent advancements in enzymatic and non-enzymatic wearable biosensors, with a specific focus on the pivotal role of nanomaterials in enhancing sensor performance. In enzymatic sensors, nanomaterials serve as high-surface-area supports for glucose oxidase (GOx) immobilization and facilitate direct electron transfer (DET), thereby improving sensitivity, selectivity, and miniaturization. Meanwhile, non-enzymatic sensors leverage metal and metal oxide nanostructures as catalytic sites to mimic enzymatic activity, offering improved stability and durability. Both categories benefit from the integration of carbon-based materials, metal nanoparticles, conductive polymers, and hybrid composites, enabling the development of flexible, skin-compatible biosensing systems with wireless communication capabilities. The review critically evaluates sensor performance parameters, including sensitivity, limit of detection, and linear range. Finally, current limitations and future perspectives are discussed. These include the development of multifunctional sensors, closed-loop therapeutic systems, and strategies for enhancing the stability and cost-efficiency of biosensors for broader clinical adoption. Full article
Show Figures

Graphical abstract

25 pages, 18692 KiB  
Article
Hydrothermally Synthesized TiO2 Nanostructures for Electrochemical Detection of H2O2 in Barley (Hordeum vulgare) Under Salt Stress and Remediation with Fe3O4 Nanoparticles
by Irena Mihailova, Marina Krasovska, Eriks Sledevskis, Vjaceslavs Gerbreders, Jans Keviss, Valdis Mizers, Inese Kokina, Ilona Plaksenkova, Marija Jermalonoka and Aleksandra Mosenoka
Chemosensors 2025, 13(7), 256; https://doi.org/10.3390/chemosensors13070256 - 14 Jul 2025
Viewed by 405
Abstract
This study presents the development of a TiO2 nanowire-based electrochemical sensor for the selective and sensitive detection of hydrogen peroxide (H2O2) under neutral pH conditions, with a particular focus on its application in analyzing plant stress. The sensor [...] Read more.
This study presents the development of a TiO2 nanowire-based electrochemical sensor for the selective and sensitive detection of hydrogen peroxide (H2O2) under neutral pH conditions, with a particular focus on its application in analyzing plant stress. The sensor exhibited a linear detection range of 0–0.5 mM, a sensitivity of 0.0393 mA · mM−1, and a detection limit of 2.8 μM in phosphate-buffered saline solution (PBS, pH 7.4). This work’s main novelty lies in the systematic investigation of the relationship between TiO2 nanostructure morphology, which is controlled by hydrothermal synthesis parameters, and the resulting sensor performance. Interference studies confirmed excellent selectivity in the presence of common electroactive species found in plant samples, such as NaCl, KNO3, glucose, citric acid, and ascorbic acid. Real sample analysis using barley plant extracts grown under salt stress and treated with Fe3O4 nanoparticles confirmed the sensor’s applicability in complex biological matrices, enabling accurate quantification of endogenously produced H2O2. Endogenous H2O2 concentrations were found to range from near-zero levels in control and Fe3O4-only treated plants, to elevated levels of up to 0.36 mM in salt-stressed samples. These levels decreased to 0.25 and 0.15 mM upon Fe3O4 nanoparticle treatment, indicating a dose-dependent mitigation of stress. This finding was supported by genome template stability (GTS) analysis, which revealed improved DNA integrity in Fe3O4-treated plants. This study takes an integrated approach, combining the development of a nanostructured sensor with physiological and molecular stress assessment. The urgent need for tools to detect stress at an early stage and manage oxidative stress in sustainable agriculture underscores its relevance. Full article
(This article belongs to the Special Issue Electrochemical Sensors and Biosensors for Environmental Detection)
Show Figures

Figure 1

18 pages, 2035 KiB  
Article
Rapid Plasma Synthesis of Gold Nanoparticles Supported on MWCNTs for Electrochemical Detection of Glucose
by Qing Yang, Yuanwen Pang, Hong Li and Lanbo Di
Materials 2025, 18(13), 3076; https://doi.org/10.3390/ma18133076 - 28 Jun 2025
Viewed by 487
Abstract
In this study, a simple, mild, and eco-friendly cold plasma-solution interaction method is employed to rapidly prepare gold colloids. Through modification with multi-walled carbon nanotubes (MWCNTs), a non-enzymatic glucose-sensing electrode material is successfully fabricated. The prepared electrode material is characterized via X-ray diffraction [...] Read more.
In this study, a simple, mild, and eco-friendly cold plasma-solution interaction method is employed to rapidly prepare gold colloids. Through modification with multi-walled carbon nanotubes (MWCNTs), a non-enzymatic glucose-sensing electrode material is successfully fabricated. The prepared electrode material is characterized via X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The results show that compared with the chemically reduced AuNPs-C-MWCNTs, the plasma-prepared AuNPs-P-MWCNTs exhibits enhanced glucose catalytic performance with a higher sensitivity of 73 μA·mM−1·cm−2 (approximately 3.2 times that of AuNPs-C-MWCNTs), lower response time of 2.1 s, and ultra-low detection limit of 0.21 μM. It also demonstrates excellent selectivity, reproducibility (RSD = 4.37%), repeatability (RSD = 3.67%), and operational stability (RSD = 4.51%). This improvement can be attributed to the smaller particle size and better dispersion of plasma-derived AuNPs on the surface of MWCNTs. Furthermore, the AuNPs-P-MWCNTs surface is enriched with oxygen-containing functional groups, which is conducive to the enhancement of the hydrophilicity of the electrode surface. These synergistic effects facilitate the AuNPs-catalyzed glucose oxidation reaction, ultimately leading to superior glucose catalytic performance. Full article
Show Figures

Figure 1

20 pages, 3803 KiB  
Article
Sustainable Production of 2,5-Furandicarboxylic Acid via Nickel-Based Heterogeneous Catalysis from 5-Hydroxymethylfurfural
by Celso Luiz de Aquino Santos, João Paulo Alves Silva, Solange I. Mussatto and Livia Melo Carneiro
Processes 2025, 13(7), 2026; https://doi.org/10.3390/pr13072026 - 26 Jun 2025
Viewed by 408
Abstract
2,5-Furandicarboxylic acid (FDCA) is a bio-based platform chemical with high potential to replace terephthalic acid in polymer production, particularly for polyethylene furanoate (PEF), a biopolymer with superior thermal and barrier properties. This study investigates the selective oxidation of 5-hydroxymethylfurfural (HMF) into FDCA using [...] Read more.
2,5-Furandicarboxylic acid (FDCA) is a bio-based platform chemical with high potential to replace terephthalic acid in polymer production, particularly for polyethylene furanoate (PEF), a biopolymer with superior thermal and barrier properties. This study investigates the selective oxidation of 5-hydroxymethylfurfural (HMF) into FDCA using nickel-based heterogeneous catalysts, aiming at a cost-effective and sustainable alternative to noble metal catalysts. A series of nickel oxide catalysts were synthesized and screened. The NiOx catalyst synthesized without thermal treatment via Route B showed the best performance, achieving a FDCA yield of 11.77%, selectivity of 27.41%, and concentration of 0.9 g/L under preliminary conditions. Reaction kinetics revealed that the controlled addition of NaClO enhanced FDCA yield by 2.28 times. Optimization using a 23 factorial design identified the optimal conditions as 6% (w/v) catalyst concentration, 25 °C, and a NaClO:HMF molar ratio of 12:1, leading to 34.14% yield and 42.57% selectivity. The NiOx catalyst maintained its activity over five successive cycles, indicating good recyclability. Moreover, NiOx demonstrated catalytic activity with crude HMF derived from glucose dehydration, confirming its practical applicability. These results support the potential of nickel-based catalysts in sustainable FDCA production, contributing to the advancement of bio-based polymer synthesis. Full article
(This article belongs to the Section Sustainable Processes)
Show Figures

Figure 1

19 pages, 8776 KiB  
Article
Exploring the Impact of Bi Content in Nanostructured Pd-Bi Catalysts Used for Selective Oxidation of Glucose: Synthesis, Characterization and Catalytic Properties
by Mariya P. Shcherbakova-Sandu, Semyon A. Gulevich, Eugene P. Meshcheryakov, Kseniya I. Kazantseva, Aleksandr V. Chernyavskii, Alexey N. Pestryakov, Ajay K. Kushwaha, Ritunesh Kumar, Akshay K. Sonwane, Sonali Samal and Irina A. Kurzina
Inorganics 2025, 13(6), 205; https://doi.org/10.3390/inorganics13060205 - 19 Jun 2025
Viewed by 442
Abstract
This work is devoted to the study of the effect of small Bi additives on the functional properties of Pdx:Bi/Al2O3 catalysts in the selective oxidation of glucose to gluconic acid. The catalysts obtained by the joint impregnation method were characterized [...] Read more.
This work is devoted to the study of the effect of small Bi additives on the functional properties of Pdx:Bi/Al2O3 catalysts in the selective oxidation of glucose to gluconic acid. The catalysts obtained by the joint impregnation method were characterized (TEM) by high dispersion of bimetallic nanoparticles with a median diameter of 4–5 nm. The structure of the Pd-Bi solid solution was confirmed via XPS and showed a change in the valence state of Pd and Bi depending on the Bi content, as well as the fraction of the oxidized state of Bi. TPR-H2 revealed various forms of Pd, including PdO and mixed Pd-O-Bi structures. The Pd10:Bi1/Al2O3 catalyst demonstrated the highest efficiency (77.2% glucose conversion, 96% sodium gluconate selectivity), which is due to the optimal ratio between Pd and Bi, ensuring the stabilization of metallic Pd and preventing its oxidation. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

21 pages, 2080 KiB  
Article
The Individual Variations in Sperm Quality of High-Fertility Boars Impact the Offspring Production and Early Physiological Functions
by Santa María Toledo-Guardiola, Chiara Luongo, Felipe Martínez-Pastor, Cristina Soriano-Úbeda and Carmen Matás
Vet. Sci. 2025, 12(6), 582; https://doi.org/10.3390/vetsci12060582 - 13 Jun 2025
Viewed by 1132
Abstract
Artificial insemination (AI) is essential in intensive pig production, which significantly depends on semen quality from boars selected for health, genetics, and fertility. While AI aims to improve productivity, larger litters often result in smaller and less resistant piglets. Beyond fertility and genetic [...] Read more.
Artificial insemination (AI) is essential in intensive pig production, which significantly depends on semen quality from boars selected for health, genetics, and fertility. While AI aims to improve productivity, larger litters often result in smaller and less resistant piglets. Beyond fertility and genetic traits, boars also influence offspring health. This study investigated the relationship between sperm parameters of highly fertile boars and both reproductive outcomes and piglet physiological indicators. Multivariate analysis revealed significant paternal effects on blood markers reflecting organ function, including those of the pancreas, liver, and kidneys, as well as on glucose homeostasis, lipid metabolism, oxidative stress, protein and carbohydrate metabolism, muscle contraction, and neural signaling. Notably, sperm velocity was correlated with mitochondrial function, which is crucial for sperm motility, capacitation, DNA integrity, and embryo development—factors likely linked to healthier, more resilient offspring. Boars transmitting superior sperm velocity, erythropoiesis efficiency, and oxygen transport capacities produced piglets with better glucose regulation, growth, and resistance to neonatal hypoglycemia. These findings underscore the broader impact of sperm quality on offspring vitality and suggest that advanced sperm analysis could improve boar selection and enable more effective, health-oriented breeding strategies. Full article
(This article belongs to the Special Issue Sperm Biotechnology in Animals Reproduction—2nd Edition)
Show Figures

Figure 1

24 pages, 1398 KiB  
Article
iNOS Mediates High-Fat Diet-Associated Aggravation of Complete Freund’s Adjuvant-Induced Inflammatory Pain
by Elmo Wing-Yiu Lee, Lin Wang, Jessica Ai-Jia Liu and Chi-Wai Cheung
Int. J. Mol. Sci. 2025, 26(11), 5422; https://doi.org/10.3390/ijms26115422 - 5 Jun 2025
Viewed by 733
Abstract
Chronic inflammatory pain (IP) remains a therapeutic challenge under the worldwide prevalence of the high-fat dietary lifestyle. This study aimed at identifying mediators of the IP augmented by short-term high-fat diet (HFD). IP was induced on C57BL/6J mice by unilateral, intra-plantar, injection of [...] Read more.
Chronic inflammatory pain (IP) remains a therapeutic challenge under the worldwide prevalence of the high-fat dietary lifestyle. This study aimed at identifying mediators of the IP augmented by short-term high-fat diet (HFD). IP was induced on C57BL/6J mice by unilateral, intra-plantar, injection of Complete Freund’s Adjuvant (CFA). Von Frey test for mechanical hyperalgesia and Hargreaves’ test for thermal hyperalgesia were performed at pre-injection baseline and post-injection 6th h. and days 1/3/5/7/10/14. Ad libitum HFD feeding started 2 weeks pre-injection in assigned groups. Body weight and random blood glucose levels were measured. RT-qPCR and ELISA helped quantify expression levels of the selected candidate genes at manipulated hind-paws. After CFA injection, at 1400 W, a highly selective inducible nitric oxide synthase (iNOS) inhibitor was administered regularly to elicit differences in CFA-induced pain behaviors and gene expression in HFD-fed mice. Results showed that HFD-fed mice were heavier (p < 0.001) and relatively hyperglycemic (p = 0.013) at baseline. HFD aggravated CFA-induced mechanical and thermal pain (mechanical: p = 0.0004, thermal: p = 0.003), showing prolonged hyperalgesic durations and reduced pain thresholds at multiple timepoints. HFD-influenced paws showed accentuated overexpression of pro-inflammatory cytokines and iNOS (RT-qPCR for IL-1β: p = 0.015, IL-6: p = 0.019, TNF: p = 0.04; ELISA for iNOS: p = 0.011). At 1400 W, exertion of analgesic effects (mechanical: p < 0.0001, thermal: p < 0.0001) but pro-inflammatory (RT-qPCR for IL-1β: p = 0.004, IL-6: p = 0.03, TNF: p = 0.04) were exerted on the inflamed paw on day 5 post-injection. In conclusion, short-term HFD aggravated CFA-induced inflammatory pain. Pharmacological inhibition of iNOS attenuated the CFA-induced pain in HFD-fed mice. Future research might uncover signaling pathways mediating such effects, potentially benefiting obese patients with chronic IP. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 3337 KiB  
Article
Fabrication of Palladium-Decorated Zinc Oxide Nanostructures for Non-Enzymatic Glucose Sensing
by Reagan Aviha, Anju Joshi and Gymama Slaughter
Chemosensors 2025, 13(6), 201; https://doi.org/10.3390/chemosensors13060201 - 1 Jun 2025
Cited by 2 | Viewed by 1347
Abstract
The growing global burden of diabetes necessitates the development of glucose sensors that are not only reliable and sensitive but also cost-effective and amenable to point-of-care use. In this work, we report a non-enzymatic electrochemical glucose sensor based on laser-induced graphene (LIG), functionalized [...] Read more.
The growing global burden of diabetes necessitates the development of glucose sensors that are not only reliable and sensitive but also cost-effective and amenable to point-of-care use. In this work, we report a non-enzymatic electrochemical glucose sensor based on laser-induced graphene (LIG), functionalized with zinc oxide (ZnO) and palladium (Pd) nanostructures. The ZnO nanostructures were systematically optimized on the LIG surface by varying electrochemical deposition parameters, including applied potential, temperature, and deposition time, to enhance the electrocatalytic oxidation of glucose in alkaline medium. Subsequent modification with Pd nanostructures further improved the electrocatalytic activity and sensitivity of the sensor. The performance of the LIG/ZnO/Pd sensor was investigated using chronoamperometric and cyclic voltammetric analysis in 0.1 M NaOH at an applied potential of 0.65 V. The sensor exhibited a wide dynamic range (2–10 mM; 10–24 mM) with a limit of detection of 130 μM, capturing hypo- and hyperglycemia conditions. Moreover, a sensitivity of 25.63 µA·mM−1·cm−2 was observed. Additionally, the sensor showcased selective response towards glucose in the presence of common interferents. These findings highlight the potential of the LIG/ZnO/Pd platform for integration into next-generation, non-enzymatic glucose monitoring systems for clinical and point-of-care applications. Full article
Show Figures

Figure 1

19 pages, 2644 KiB  
Article
Effect of Inorganic Coagulant and Dissolved Organic Matter on the Toxicity of Nano-Zinc Oxide to Phosphorus-Accumulating Organisms in Wastewater
by Sen Qu, Wen Zhao, Yushu Wang, Yuan Zhang, Jinyi Liu and Yongkui Yang
Water 2025, 17(11), 1563; https://doi.org/10.3390/w17111563 - 22 May 2025
Viewed by 465
Abstract
In this study, we aimed to investigate the effects of coagulants and dissolved organic matter (DOM) on the biological toxicity of nano-zinc oxide (nZnO) to key microorganisms involved in biological phosphorus removal during sewage treatment. Polyaluminum chloride and polyferric chloride were selected as [...] Read more.
In this study, we aimed to investigate the effects of coagulants and dissolved organic matter (DOM) on the biological toxicity of nano-zinc oxide (nZnO) to key microorganisms involved in biological phosphorus removal during sewage treatment. Polyaluminum chloride and polyferric chloride were selected as coagulants, whereas fulvic acid, glucose, and aspartic acid represented the DOM. The mechanisms through which these chemicals influence nZnO toxicity were also investigated. The results show that polyaluminum chloride and polyferric chloride effectively reduced nZnO toxicity in phosphorus-accumulating organisms, demonstrating their detoxification effects. Similarly, fulvic acid and glucose mitigated nZnO toxicity, whereas aspartic acid displayed dual effects: detoxification at low concentrations and enhanced toxicity at high concentrations. These findings highlight the dual role of sewage treatment additives in enhancing traditional pollutant removal and mitigating the nanoparticle-induced inhibition of microbial biochemical processes. This study clarified the interactions between coagulant chemicals, DOM, and nanoparticles in sewage treatment, offering insights into the regulatory mechanisms that improve treatment efficacy and reduce ecological risks. Full article
Show Figures

Figure 1

15 pages, 5517 KiB  
Article
Cellulose Valorization via Electrochemical Oxidation: Efficient Formate Generation for Green Energy Storage
by Shuhan Xiao and Yang Yang
Biomass 2025, 5(2), 27; https://doi.org/10.3390/biomass5020027 - 16 May 2025
Viewed by 754
Abstract
Achieving efficient electrocatalytic oxidation of cellulose-derived biomass is a pivotal strategy for advancing bioenergy utilization and achieving carbon neutrality. This study addresses the challenges of low conversion efficiency caused by cellulose’s high crystallinity and excessive energy consumption in conventional processes by proposing a [...] Read more.
Achieving efficient electrocatalytic oxidation of cellulose-derived biomass is a pivotal strategy for advancing bioenergy utilization and achieving carbon neutrality. This study addresses the challenges of low conversion efficiency caused by cellulose’s high crystallinity and excessive energy consumption in conventional processes by proposing a novel integrated system combining solid heteropoly acid catalytic pretreatment and electrocatalytic oxidation. By preparing the (C16TA)H2PW solid acid catalyst, we successfully achieved hydrolysis of microcrystalline cellulose under 180 °C for 60 min, attaining a glucose yield of 40.1%. Furthermore, a non-noble metal electrocatalyst system based on foam copper (CuF) was developed, with the Co3O4/CuF electrode material demonstrating a Faradaic efficiency of 85.3% for formate production at 1.66 V (vs. RHE) in 1 mol L−1 KOH electrolyte containing the pretreated cellulose mixture, accompanied by a partial current density of 153.2 mA cm−2. The mechanism study indicates that hydroxyl radical-mediated C-C bond selective cleavage dominates the formate generation. This integrated system overcomes the limitations of poor catalyst stability and low product selectivity in biomass conversion, offering a sustainable strategy for green manufacturing of high-value chemicals from cellulose. Full article
Show Figures

Figure 1

28 pages, 1081 KiB  
Review
Sodium–Glucose Cotransporter 2 Inhibitors in Aortic Stenosis: Toward a Comprehensive Cardiometabolic Approach
by Paschalis Karakasis, Panagiotis Theofilis, Dimitrios Patoulias, Panayotis K. Vlachakis, Konstantinos Pamporis, Marios Sagris, Nikolaos Ktenopoulos, George Kassimis, Antonios P. Antoniadis and Nikolaos Fragakis
Int. J. Mol. Sci. 2025, 26(10), 4494; https://doi.org/10.3390/ijms26104494 - 8 May 2025
Cited by 3 | Viewed by 1169
Abstract
Aortic stenosis (AS), the most prevalent valvular heart disease, is increasingly recognized as an active disease process driven by a convergence of hemodynamic stress, inflammation, oxidative injury, and metabolic remodeling. While transcatheter and surgical valve replacement remain the standard interventions for severe AS, [...] Read more.
Aortic stenosis (AS), the most prevalent valvular heart disease, is increasingly recognized as an active disease process driven by a convergence of hemodynamic stress, inflammation, oxidative injury, and metabolic remodeling. While transcatheter and surgical valve replacement remain the standard interventions for severe AS, they fail to reverse the chronic myocardial remodeling that underlies adverse outcomes in many patients. Sodium–glucose cotransporter 2 (SGLT2) inhibitors have emerged as promising cardioprotective agents, with effects extending well beyond glycemic control. Recent mechanistic studies reveal that SGLT2 is expressed in the myocardium of patients with AS and is linked to pathways of fibrosis, inflammation, and energetic dysfunction. Experimental models and translational data demonstrate that SGLT2 inhibition attenuates maladaptive remodeling through modulation of TGF-β, NF-κB, NLRP3 inflammasome, and oxidative stress signaling while enhancing mitochondrial energetics and endothelial function. Importantly, clinical evidence from randomized and real-world studies suggests that SGLT2 inhibitors improve heart failure outcomes following valve replacement and may slow AS progression. This review integrates current pathophysiological insights with emerging molecular and clinical data to delineate the therapeutic rationale for SGLT2 inhibition in AS. By targeting both myocardial and valvular components of the disease, SGLT2 inhibitors may offer a novel disease-modifying strategy with potential implications across the AS continuum—from asymptomatic stages to the post-interventional setting. Ongoing and future trials are warranted to define optimal patient selection, timing, and biomarkers for response to SGLT2 inhibitor therapy in this increasingly high-risk population. Full article
Show Figures

Figure 1

21 pages, 5851 KiB  
Article
A Janus Amyloid-like Nanofilm Inhibits Colorectal Cancer Postoperative Recurrence and Abdominal Adhesion via Synergistic Enzyme Cascade
by Man Zhang, Junhao Kou, Zhenyi Song, Ling Qiu, Chunzhao Yang and Qi Xue
Nanomaterials 2025, 15(9), 670; https://doi.org/10.3390/nano15090670 - 28 Apr 2025
Viewed by 651
Abstract
Postoperative peritoneal adhesion and high recurrence rates are critical challenges in the clinical treatment of colorectal cancer. In this study, based on amyloid-like protein self-assembly technology, a novel Janus protein film was developed. The protein film encapsulates glucose oxidase (GOx) and catalase (CAT), [...] Read more.
Postoperative peritoneal adhesion and high recurrence rates are critical challenges in the clinical treatment of colorectal cancer. In this study, based on amyloid-like protein self-assembly technology, a novel Janus protein film was developed. The protein film encapsulates glucose oxidase (GOx) and catalase (CAT), which is named PTL@GC. Through a one-step method involving cysteine-reduced lysozyme-induced amyloid-like self-assembly, the film was co-loaded with GOx and CAT to achieve synergistic anti-adhesion and anti-tumor recurrence effects. The Janus film features a hydrophobic side that stably adheres to the intestinal surface without exogenous chemical modification and a hydrophilic side that prevents adhesion. The loaded GOx selectively induces disulfidptosis in SLC7A11-overexpressing tumor cells, while CAT degrades H2O2 to alleviate hypoxia and inhibit oxidative stress, significantly reducing adhesion-related fibrosis. The experimental results demonstrate that PTL@GC exhibited excellent mechanical properties, high enzyme activity retention (>90%), and controllable degradability (complete metabolism within 50 days). In animal models, PTL@GC reduced postoperative adhesion area by 22.77%, decreased local tumor burden to 28.42% of the control group, and achieved an inhibition rate of 58.49%, without inducing systemic toxicity. This study presents a biologically safe and functionally synergistic approach to addressing dual complications following colorectal cancer surgery, offering potential insights for future research on multifunctional Janus materials. Full article
(This article belongs to the Special Issue Design and Applications of Protein/Peptide Nanomaterials)
Show Figures

Figure 1

18 pages, 6741 KiB  
Article
Competitive Ligand-Induced Recruitment of Coactivators to Specific PPARα/δ/γ Ligand-Binding Domains Revealed by Dual-Emission FRET and X-Ray Diffraction of Cocrystals
by Shotaro Kamata, Akihiro Honda, Sayaka Yashiro, Chihiro Kaneko, Yuna Komori, Ayumi Shimamura, Risa Masuda, Takuji Oyama and Isao Ishii
Antioxidants 2025, 14(4), 494; https://doi.org/10.3390/antiox14040494 - 20 Apr 2025
Viewed by 816
Abstract
Peroxisome proliferator-activated receptors (PPARs), composed of the α/δ/γ subtypes, are ligand-activated nuclear receptors/transcription factors that sense endogenous fatty acids or therapeutic drugs to regulate lipid/glucose metabolism and oxidative stress. PPAR forms a multiprotein complex with a retinoid X receptor and corepressor complex in [...] Read more.
Peroxisome proliferator-activated receptors (PPARs), composed of the α/δ/γ subtypes, are ligand-activated nuclear receptors/transcription factors that sense endogenous fatty acids or therapeutic drugs to regulate lipid/glucose metabolism and oxidative stress. PPAR forms a multiprotein complex with a retinoid X receptor and corepressor complex in an unliganded/inactive state, and ligand binding induces the replacement of the corepressor complex with the coactivator complex to initiate the transcription of various genes, including the metabolic and antioxidant ones. We investigated the processes by which the corepressor is replaced with the coactivator or in which two coactivators compete for the PPARα/δ/γ-ligand-binding domains (LBDs) using single- and dual-emission fluorescence resonance energy transfer (FRET) assays. Single-FRET revealed that the respective PPARα/δ/γ-selective agonists (pemafibrate, seladelpar, and pioglitazone) induced the dissociation of the two corepressor peptides, NCoR1 and NCoR2, from the PPARα/δ/γ-LBDs and the recruitment of the two coactivator peptides, CBP and TRAP220. Meanwhile, dual-FRET demonstrated that these processes are simultaneous and that the four coactivator peptides, CBP, TRAP220, PGC1α, and SRC1, were competitively recruited to the PPARα/δ/γ-LBDs with different preferences upon ligand activation. Furthermore, the five newly obtained cocrystal structures using X-ray diffraction, PPARα-LBDs–NCoR2/CBP/TRAP220/PGC1α and PPARγ-LBD–NCoR2, were co-analyzed with those from our previous studies. This illustrates that these coactivators bound to the same PPARα-LBD loci via their consensus LXXLL motifs in the liganded state; that NCoR1/NCoR2 corepressors bound to the same loci via the IXXXL sequences within their consensus LXXXIXXXL motifs in the unliganded state; and that ligand activation induced AF-2 helix 12 formation that interfered with corepressor binding and created a binding space for the coactivator. These PPARα/γ-related biochemical and physicochemical findings highlight the coregulator dynamics on limited PPARα/δ/γ-LBDs loci. Full article
Show Figures

Graphical abstract

Back to TopTop