Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,184)

Search Parameters:
Keywords = seismics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4968 KiB  
Article
EQResNet: Real-Time Simulation and Resilience Assessment of Post-Earthquake Emergency Highway Transportation Networks
by Zhenliang Liu and Chuxuan Guo
Computation 2025, 13(8), 188; https://doi.org/10.3390/computation13080188 (registering DOI) - 6 Aug 2025
Abstract
Multiple uncertainties in traffic demand fluctuations and infrastructure vulnerability during seismic events pose significant challenges for the resilience assessment of highway transportation networks (HTNs). While Monte Carlo simulation remains the dominant approach for uncertainty propagation, its high computational cost limits its scalability, particularly [...] Read more.
Multiple uncertainties in traffic demand fluctuations and infrastructure vulnerability during seismic events pose significant challenges for the resilience assessment of highway transportation networks (HTNs). While Monte Carlo simulation remains the dominant approach for uncertainty propagation, its high computational cost limits its scalability, particularly in metropolitan-scale networks. This study proposes an EQResNet framework for accelerated post-earthquake resilience assessment of HTNs. The model integrates network topology, interregional traffic demand, and roadway characteristics into a streamlined deep neural network architecture. A comprehensive surrogate modeling strategy is developed to replace conventional traffic simulation modules, including highway status realization, shortest path computation, and traffic flow assignment. Combined with seismic fragility models and recovery functions for regional bridges, the framework captures the dynamic evolution of HTN functionality following seismic events. A multi-dimensional resilience evaluation system is also established to quantify network performance from emergency response and recovery perspectives. A case study on the Sioux Falls network under probabilistic earthquake scenarios demonstrates the effectiveness of the proposed method, achieving 95% prediction accuracy while reducing computational time by 90% compared to traditional numerical simulations. The results highlight the framework’s potential as a scalable, efficient, and reliable tool for large-scale post-disaster transportation system analysis. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

21 pages, 1212 KiB  
Article
A Semi-Supervised Approach to Characterise Microseismic Landslide Events from Big Noisy Data
by David Murray, Lina Stankovic and Vladimir Stankovic
Geosciences 2025, 15(8), 304; https://doi.org/10.3390/geosciences15080304 - 6 Aug 2025
Abstract
Most public seismic recordings, sampled at hundreds of Hz, tend to be unlabelled, i.e., not catalogued, mainly because of the sheer volume of samples and the amount of time needed by experts to confidently label detected events. This is especially challenging for very [...] Read more.
Most public seismic recordings, sampled at hundreds of Hz, tend to be unlabelled, i.e., not catalogued, mainly because of the sheer volume of samples and the amount of time needed by experts to confidently label detected events. This is especially challenging for very low signal-to-noise ratio microseismic events that characterise landslides during rock and soil mass displacement. Whilst numerous supervised machine learning models have been proposed to classify landslide events, they rely on a large amount of labelled datasets. Therefore, there is an urgent need to develop tools to effectively automate the data-labelling process from a small set of labelled samples. In this paper, we propose a semi-supervised method for labelling of signals recorded by seismometers that can reduce the time and expertise needed to create fully annotated datasets. The proposed Siamese network approach learns best class-exemplar anchors, leveraging learned similarity between these anchor embeddings and unlabelled signals. Classification is performed via soft-labelling and thresholding instead of hard class boundaries. Furthermore, network output explainability is used to explain misclassifications and we demonstrate the effect of anchors on performance, via ablation studies. The proposed approach classifies four landslide classes, namely earthquakes, micro-quakes, rockfall and anthropogenic noise, demonstrating good agreement with manually detected events while requiring few training data to be effective, hence reducing the time needed for labelling and updating models. Full article
Show Figures

Figure 1

40 pages, 6580 KiB  
Review
Shear Behavior of Reinforced Concrete Two-Way Slabs with Openings
by Ahmed Ashteyat, Mousa Shhabat, Ahmad Al-Khreisat and Salem Aldawsari
Buildings 2025, 15(15), 2765; https://doi.org/10.3390/buildings15152765 - 5 Aug 2025
Abstract
Openings in two-way reinforced concrete (RC) slabs are frequently incorporated for architectural and functional purposes, such as providing pathways for mechanical, electrical, and plumbing services. While necessary, these openings can significantly compromise the structural performance of slabs, particularly by reducing their capacity to [...] Read more.
Openings in two-way reinforced concrete (RC) slabs are frequently incorporated for architectural and functional purposes, such as providing pathways for mechanical, electrical, and plumbing services. While necessary, these openings can significantly compromise the structural performance of slabs, particularly by reducing their capacity to resist punching shear, an effect that is especially critical when the openings are located near column–slab connections. This paper provides a detailed review of the existing research, examining how various opening parameters such as their size, shape, and position affect key structural performance metrics including their stiffness, ductility, and failure modes. The findings highlight that opening geometry is a major determinant of a slab’s overall behavior. Notably, the proximity of openings to column faces is identified as a critical factor that can substantially influence the extent of strength degradation and failure mechanisms. Furthermore, this review identifies a significant research gap concerning the behavior of slabs with openings under non-standard loading conditions, such as seismic activity, blasts, and impact loads. It also emphasizes the need for further investigation into the long-term performance of such slabs under adverse environmental influences, including elevated temperatures, corrosion, and material degradation. By consolidating the current knowledge and identifying unresolved challenges, this review aims to guide engineers and researchers in developing more robust design strategies and performance-based solutions for RC slabs with openings, ultimately contributing to safer and more resilient structural systems. Full article
Show Figures

Figure 1

20 pages, 25227 KiB  
Article
Sedimentary Model of Sublacustrine Fans in the Shahejie Formation, Nanpu Sag
by Zhen Wang, Zhihui Ma, Lingjian Meng, Rongchao Yang, Hongqi Yuan, Xuntao Yu, Chunbo He and Haiguang Wu
Appl. Sci. 2025, 15(15), 8674; https://doi.org/10.3390/app15158674 (registering DOI) - 5 Aug 2025
Abstract
The Shahejie Formation in Nanpu Sag is a crucial region for deep-layer hydrocarbon exploration in the Bohai Bay Basin. To address the impact of faults on sublacustrine fan formation and spatial distribution within the study area, this study integrated well logging, laboratory analysis, [...] Read more.
The Shahejie Formation in Nanpu Sag is a crucial region for deep-layer hydrocarbon exploration in the Bohai Bay Basin. To address the impact of faults on sublacustrine fan formation and spatial distribution within the study area, this study integrated well logging, laboratory analysis, and 3D seismic data to systematically analyze sedimentary characteristics of sandbodies from the first member of the Shahejie Formation (Es1) sublacustrine fans, clarifying their planar and cross-sectional distributions. Further research indicates that Gaoliu Fault activity during Es1 deposition played a significant role in fan development through two mechanisms: (1) vertical displacement between hanging wall and footwall reshaped local paleogeomorphology; (2) tectonic stresses generated by fault movement affected slope stability, triggering gravitational mass transport processes that remobilized fan delta sediments into the central depression zone as sublacustrine fans through slumping and collapse mechanisms. Core observations reveal soft-sediment deformation features, including slump structures, flame structures, and shale rip-up clasts. Seismic profiles show lens-shaped geometries with thick centers thinning laterally, exhibiting lateral pinch-out terminations. Inverse fault-step architectures formed by underlying faults control sandbody distribution patterns, restricting primary deposition locations for sublacustrine fan development. The study demonstrates that sublacustrine fans in the study area are formed by gravity flow processes. A new model was established, illustrating the combined control of the Gaoliu Fault and reverse stepover faults on fan development. These findings provide valuable insights for gravity flow exploration and reservoir prediction in the Nanpu Sag, offering important implications for hydrocarbon exploration in similar lacustrine rift basins. Full article
Show Figures

Figure 1

21 pages, 14898 KiB  
Article
SSI Effects on Constant-Ductility Inelastic Displacement Ratio and Residual Displacement of Self-Centering Systems Under Pulse-Type Ground Motions
by Muberra Eser Aydemir
Appl. Sci. 2025, 15(15), 8661; https://doi.org/10.3390/app15158661 (registering DOI) - 5 Aug 2025
Abstract
This study aims to examine the seismic response of self-centering single-degree-of-freedom (SDOF) systems exhibiting flag-shaped hysteretic behavior, while considering soil–structure interaction, in contrast to prior research that predominantly addressed conventional hysteretic behavior and overlooked soil flexibility. The inelastic displacement ratio, residual displacement, and [...] Read more.
This study aims to examine the seismic response of self-centering single-degree-of-freedom (SDOF) systems exhibiting flag-shaped hysteretic behavior, while considering soil–structure interaction, in contrast to prior research that predominantly addressed conventional hysteretic behavior and overlooked soil flexibility. The inelastic displacement ratio, residual displacement, and residual displacement ratio are used to analyze the seismic response of interacting structures. These structural response parameters are calculated based on the nonlinear dynamic analyses of SDOF systems subjected to 56 near-fault pulse-type ground motions. Analyses are conducted for varying values of ductility, energy dissipation coefficient, strain hardening ratio, aspect ratio, structural period, and normalized vibration period by pulse period of the record. New formulas to estimate the inelastic displacement ratio and residual displacement of self-centering SDOF systems with soil–structure interaction are developed based on a statistical analysis of the findings. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

30 pages, 12422 KiB  
Article
Real-Time Foreshock–Aftershock–Swarm Discrimination During the 2025 Seismic Crisis near Santorini Volcano, Greece: Earthquake Statistics and Complex Networks
by Ioanna Triantafyllou, Gerassimos A. Papadopoulos, Constantinos Siettos and Konstantinos Spiliotis
Geosciences 2025, 15(8), 300; https://doi.org/10.3390/geosciences15080300 - 4 Aug 2025
Abstract
The advanced determination of the type (foreshock–aftershock–swarm) of an ongoing seismic cluster is quite challenging; only retrospective solutions have thus far been proposed. In the period of January–March 2025, a seismic cluster, recorded between Santorini volcano and Amorgos Island, South Aegean Sea, caused [...] Read more.
The advanced determination of the type (foreshock–aftershock–swarm) of an ongoing seismic cluster is quite challenging; only retrospective solutions have thus far been proposed. In the period of January–March 2025, a seismic cluster, recorded between Santorini volcano and Amorgos Island, South Aegean Sea, caused considerable social concern. A rapid increase in both the seismicity rate and the earthquake magnitudes was noted until the mainshock of ML = 5.3 on 10 February; afterwards, activity gradually diminished. Fault-plane solutions indicated SW-NE normal faulting. The epicenters moved with a mean velocity of ~0.72 km/day from SW to NE up to the mainshock area at a distance of ~25 km. Crucial questions publicly emerged during the cluster. Was it a foreshock–aftershock activity or a swarm of possibly volcanic origin? We performed real-time discrimination of the cluster type based on a daily re-evaluation of the space–time–magnitude changes and their significance relative to background seismicity using earthquake statistics and the topological metric betweenness centrality. Our findings were periodically documented during the ongoing cluster starting from the fourth cluster day (2 February 2025), at which point we determined that it was a foreshock and not a case of seismic swarm. The third day after the ML = 5.3 mainshock, a typical aftershock decay was detected. The observed foreshock properties favored a cascade mechanism, likely facilitated by non-volcanic material softening and the likely subdiffusion processes in a dense fault network. This mechanism was possibly combined with an aseismic nucleation process if transient geodetic deformation was present. No significant aftershock expansion towards the NE was noted, possibly due to the presence of a geometrical fault barrier east of the Anydros Ridge. The 2025 activity offered an excellent opportunity to investigate deciphering the type of ongoing seismicity cluster for real-time discrimination between foreshocks, aftershocks, and swarms. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Natural Hazards)
Show Figures

Figure 1

21 pages, 12507 KiB  
Article
Soil Amplification and Code Compliance: A Case Study of the 2023 Kahramanmaraş Earthquakes in Hayrullah Neighborhood
by Eyübhan Avcı, Kamil Bekir Afacan, Emre Deveci, Melih Uysal, Suna Altundaş and Mehmet Can Balcı
Buildings 2025, 15(15), 2746; https://doi.org/10.3390/buildings15152746 - 4 Aug 2025
Viewed by 60
Abstract
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was [...] Read more.
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was a soil amplification effect on the damage occurring in the Hayrullah neighborhood of the Onikişubat district of Kahramanmaraş Province. Firstly, borehole, SPT, MASW (multi-channel surface wave analysis), microtremor, electrical resistivity tomography (ERT), and vertical electrical sounding (VES) tests were carried out in the field to determine the engineering properties and behavior of soil. Laboratory tests were also conducted using samples obtained from bore holes and field tests. Then, an idealized soil profile was created using the laboratory and field test results, and site dynamic soil behavior analyses were performed on the extracted profile. According to The Turkish Building Code (TBC 2018), the earthquake level DD-2 design spectra of the project site were determined and the average design spectrum was created. Considering the seismicity of the project site and TBC (2018) criteria (according to site-specific faulting, distance, and average shear wave velocity), 11 earthquake ground motion sets were selected and harmonized with DD-2 spectra in short, medium, and long periods. Using scaled motions, the soil profile was excited with 22 different earthquake scenarios and the results were obtained for the equivalent and non-linear models. The analysis showed that the soft soil conditions in the area amplified ground shaking by up to 2.8 times, especially for longer periods (1.0–2.5 s). This level of amplification was consistent with the damage observed in mid- to high-rise buildings, highlighting the important role of local site effects in the structural losses seen during the Kahramanmaraş earthquakes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 11558 KiB  
Article
First Steps Towards Site Characterization Activities at the CSTH Broad-Band Station of the Campi Flegrei’s Seismic Monitoring Network (Italy)
by Lucia Nardone, Rebecca Sveva Morelli, Guido Gaudiosi, Francesco Liguoro, Danilo Galluzzo and Massimo Orazi
Sensors 2025, 25(15), 4787; https://doi.org/10.3390/s25154787 - 3 Aug 2025
Viewed by 269
Abstract
Local site conditions can significantly influence the amplitude, duration, and frequency content of seismic recordings, making the characterization of subsoil properties a critical component in seismic hazard assessment. However, despite extensive research, standardized methodologies for assessing site effects are still lacking. This study [...] Read more.
Local site conditions can significantly influence the amplitude, duration, and frequency content of seismic recordings, making the characterization of subsoil properties a critical component in seismic hazard assessment. However, despite extensive research, standardized methodologies for assessing site effects are still lacking. This study presents preliminary steps in the site characterization of a small area of Campi Flegrei caldera (Italy), with the aim of enhancing understanding of local lithology and seismic wave propagation. The analysis focuses on the broad-band seismic station CSTH, installed in 2021, and incorporates data from a temporary 2D array of five short-period sensors deployed around the station. These sensors recorded both ambient noise and seismic events associated with caldera dynamics. To improve the robustness of the characterization, data from two additional permanent broad-band stations (CPIS and CSOB) of the Istituto Nazionale di Geofisica e Vulcanologia—Osservatorio Vesuviano’s monitoring network, also located nearby a hydrothermal field, were included. Spectral analyses such as Power Spectral Density (PSD), Horizontal-to-Vertical (H/V) spectral ratios, and f-k array technique were performed to evaluate the frequency-dependent response of the site and to support the development of a comprehensive seismic site model. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

19 pages, 865 KiB  
Article
What Are US Undergraduates Taught and What Have They Learned About US Continental Crust and Its Sedimentary Basins?
by Clinton Whitaker Crowley and Robert James Stern
Geosciences 2025, 15(8), 296; https://doi.org/10.3390/geosciences15080296 - 2 Aug 2025
Viewed by 157
Abstract
We need to educate students and the public about addressing natural resource challenges to maintain civilization moving into a sustainable future. Because US mineral and energy resources are found in its continental crust and sedimentary basins, introductory geology students need to be well-informed [...] Read more.
We need to educate students and the public about addressing natural resource challenges to maintain civilization moving into a sustainable future. Because US mineral and energy resources are found in its continental crust and sedimentary basins, introductory geology students need to be well-informed about US crust and basins. We think that creating effective videos about these topics is the best way to engage students to want to learn more. In preparation for making these videos, we researched what introductory geology students are taught and what they learn about these topics. Student interviews informed us about learned curriculum, and taught curriculum was analyzed using a novel keyword-counting method applied to textbook indices. We found that geophysics is stressed twice as much as geology, radiometric dating, and sedimentary basins. We expected that students would have learned more about geophysics and less about the other topics; however, this was not the case. Students knew more about geology, and less about geophysics, radiometric dating, and sedimentary basins. To make effective videos on these topics, we need to explain the following threshold concepts: seismic refraction to scaffold student understanding of crustal geophysics, as well as radiometric dating and deep time to understand crustal geology and the economic importance of sedimentary basins. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

21 pages, 7203 KiB  
Article
Experimental Lateral Behavior of Porcelain-Clad Cold-Formed Steel Shear Walls Under Cyclic-Gravity Loading
by Caeed Reza Sowlat-Tafti, Mohammad Reza Javaheri-Tafti and Hesam Varaee
Infrastructures 2025, 10(8), 202; https://doi.org/10.3390/infrastructures10080202 - 2 Aug 2025
Viewed by 202
Abstract
Lightweight steel-framing (LSF) systems have become increasingly prominent in modern construction due to their structural efficiency, design flexibility, and sustainability. However, traditional facade materials such as stone are often cost-prohibitive, and brick veneers—despite their popularity—pose seismic performance concerns. This study introduces an innovative [...] Read more.
Lightweight steel-framing (LSF) systems have become increasingly prominent in modern construction due to their structural efficiency, design flexibility, and sustainability. However, traditional facade materials such as stone are often cost-prohibitive, and brick veneers—despite their popularity—pose seismic performance concerns. This study introduces an innovative porcelain sheathing system for cold-formed steel (CFS) shear walls. Porcelain has no veins thus it offers integrated and reliable strength unlike granite. Four full-scale CFS shear walls incorporating screwed porcelain sheathing (SPS) were tested under combined cyclic lateral and constant gravity loading. The experimental program investigated key seismic characteristics, including lateral stiffness and strength, deformation capacity, failure modes, and energy dissipation, to calculate the system response modification factor (R). The test results showed that configurations with horizontal sheathing, double mid-studs, and three blocking rows improved performance, achieving up to 21.1 kN lateral resistance and 2.5% drift capacity. The average R-factor was 4.2, which exceeds the current design code values (AISI S213: R = 3; AS/NZS 4600: R = 2), suggesting the enhanced seismic resilience of the SPS-CFS system. This study also proposes design improvements to reduce the risk of brittle failure and enhance inelastic behavior. In addition, the results inform discussions on permissible building heights and contribute to the advancement of CFS design codes for seismic regions. Full article
Show Figures

Figure 1

23 pages, 5280 KiB  
Article
Seismic Damage Pattern Analysis of Long-Span CFST Arch Bridges Based on Damper Configuration Strategies
by Bin Zhao, Longhua Zeng, Qingyun Chen, Chao Gan, Lueqin Xu and Guosi Cheng
Buildings 2025, 15(15), 2728; https://doi.org/10.3390/buildings15152728 - 2 Aug 2025
Viewed by 184
Abstract
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. [...] Read more.
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. The framework aims to investigate the influence of viscous dampers on the seismic response and damage patterns of long-span deck-type CFST arch bridges under near-fault pulse-like ground motions. The effects of different viscous damper configuration strategies and design parameters on seismic responses of long-span deck-type CFST arch bridges were systematically investigated, and the preferred configuration and parameter set were identified. The influence of preferred viscous damper configurations on seismic damage patterns of long-span deck-type CFST arch bridges was systematically analyzed through the established analysis and evaluation frameworks. The results indicate that a relatively optimal reduction in bridge response can be achieved when viscous dampers are simultaneously installed at both the abutments and the approach piers. Minimum seismic responses were attained at a damping exponent α = 0.2 and damping coefficient C = 6000 kN/(m/s), demonstrating stability in mitigating vibration effects on arch rings and bearings. In the absence of damper implementation, the lower chord arch foot section is most likely to experience in-plane bending failure. The piers, influenced by the coupling effect between the spandrel construction and the main arch ring, are more susceptible to damage as their height decreases. Additionally, the end bearings are more prone to failure compared to the central-span bearings. Implementation of the preferred damper configuration strategy maintains essentially consistent sequences in seismic-induced damage patterns of the bridge, but the peak ground motion intensity causing damage to the main arch and spandrel structure is significantly increased. This strategy enhances the damage-initiation peak ground acceleration (PGA) for critical sections of the main arch, while concurrently reducing transverse and longitudinal bending moments in pier column sections. The proposed integrated analysis and evaluation framework has been validated for its applicability in capturing the seismic damage patterns of long-span deck-type CFST arch bridges. Full article
Show Figures

Figure 1

18 pages, 7965 KiB  
Article
Identification of Environmental Noise Traces in Seismic Recordings Using Vision Transformer and Mel-Spectrogram
by Qianlong Ding, Shuangquan Chen, Jinsong Shen and Borui Wang
Appl. Sci. 2025, 15(15), 8586; https://doi.org/10.3390/app15158586 (registering DOI) - 1 Aug 2025
Viewed by 214
Abstract
Environmental noise is inevitable during seismic data acquisition, with major sources including heavy machinery, rivers, wind, and other environmental factors. During field data acquisition, it is important to assess the impact of environmental noise and evaluate data quality. In subsequent seismic data processing, [...] Read more.
Environmental noise is inevitable during seismic data acquisition, with major sources including heavy machinery, rivers, wind, and other environmental factors. During field data acquisition, it is important to assess the impact of environmental noise and evaluate data quality. In subsequent seismic data processing, these noise components also need to be eliminated. Accurate identification of noise traces facilitates rapid quality control (QC) during fieldwork and provides a reliable basis for targeted noise attenuation. Conventional environmental noise identification primarily relies on amplitude differences. However, in seismic data, high-amplitude signals are not necessarily caused by environmental noise. For example, surface waves or traces near the shot point may also exhibit high amplitudes. Therefore, relying solely on amplitude-based criteria has certain limitations. To improve noise identification accuracy, we use the Mel-spectrogram to extract features from seismic data and construct the dataset. Compared to raw time-series signals, the Mel-spectrogram more clearly reveals energy variations and frequency differences, helping to identify noise traces more accurately. We then employ a Vision Transformer (ViT) network to train a model for identifying noise in seismic data. Tests on synthetic and field data show that the proposed method performs well in identifying noise. Moreover, a denoising case based on synthetic data further confirms its general applicability, making it a promising tool in seismic data QC and processing workflows. Full article
Show Figures

Figure 1

36 pages, 12384 KiB  
Article
A Soil Moisture-Informed Seismic Landslide Model Using SMAP Satellite Data
by Ali Farahani and Majid Ghayoomi
Remote Sens. 2025, 17(15), 2671; https://doi.org/10.3390/rs17152671 - 1 Aug 2025
Viewed by 294
Abstract
Earthquake-triggered landslides pose significant hazards to lives and infrastructure. While existing seismic landslide models primarily focus on seismic and terrain variables, they often overlook the dynamic nature of hydrologic conditions, such as seasonal soil moisture variability. This study addresses this gap by incorporating [...] Read more.
Earthquake-triggered landslides pose significant hazards to lives and infrastructure. While existing seismic landslide models primarily focus on seismic and terrain variables, they often overlook the dynamic nature of hydrologic conditions, such as seasonal soil moisture variability. This study addresses this gap by incorporating satellite-based soil moisture data from NASA’s Soil Moisture Active Passive (SMAP) mission into the assessment of seismic landslide occurrence. Using landslide inventories from five major earthquakes (Nepal 2015, New Zealand 2016, Papua New Guinea 2018, Indonesia 2018, and Haiti 2021), a balanced global dataset of landslide and non-landslide cases was compiled. Exploratory analysis revealed a strong association between elevated pre-event soil moisture and increased landslide occurrence, supporting its relevance in seismic slope failure. Moreover, a Random Forest model was trained and tested on the dataset and demonstrated excellent predictive performance. To assess the generalizability of the model, a leave-one-earthquake-out cross-validation approach was also implemented, in which the model trained on four events was tested on the fifth. This approach outperformed comparable models that did not consider soil moisture, such as the United States Geological Survey (USGS) seismic landslide model, confirming the added value of satellite-based soil moisture data in improving seismic landslide susceptibility assessments. Full article
(This article belongs to the Special Issue Satellite Soil Moisture Estimation, Assessment, and Applications)
Show Figures

Figure 1

17 pages, 3731 KiB  
Article
Lake Water Depletion Linkages with Seismic Hazards in Sikkim, India: A Case Study on Chochen Lake
by Anil Kumar Misra, Kuldeep Dutta, Rakesh Kumar Ranjan, Nishchal Wanjari and Subash Dhakal
GeoHazards 2025, 6(3), 42; https://doi.org/10.3390/geohazards6030042 - 1 Aug 2025
Viewed by 119
Abstract
After the 2011 earthquake, lake water depletion has become a widespread issue in Sikkim, especially in regions classified as high to very high seismic zones, where many lakes have turned into seasonal water bodies. This study investigates Chochen Lake in the Barapathing area [...] Read more.
After the 2011 earthquake, lake water depletion has become a widespread issue in Sikkim, especially in regions classified as high to very high seismic zones, where many lakes have turned into seasonal water bodies. This study investigates Chochen Lake in the Barapathing area of Sikkim’s Pakyong district, which is facing severe water seepage and instability. The problem, intensified by the 2011 seismic event and ongoing local construction, is examined through subsurface fracture mapping using Vertical Electrical Sounding (VES) and profiling techniques. A statistical factor method, applied to interpret VES data, helped identify fracture patterns beneath the lake. Results from two sites (VES-1 and VES-2) reveal significant variations in weathered and semi-weathered soil layers, indicating fractures at depths of 17–50 m (VES-1) and 20–55 m (VES-2). Higher fracture density near VES-1 suggests increased settlement risk and ground displacement compared to VES-2. Contrasting resistivity values emphasize the greater instability in this zone and the need for cautious construction practices. The findings highlight the role of seismic-induced fractures in ongoing water depletion and underscore the importance of continuous dewatering to stabilize the swampy terrain. Full article
Show Figures

Figure 1

12 pages, 11337 KiB  
Brief Report
Crustal-Scale Duplexes Beneath the Eastern Rioni Foreland Basin in Western Georgia: A Case Study from Seismic Reflection Profile
by Victor Alania, Onise Enukidze, Nino Kvavadze, Tamar Beridze, Rusudan Chagelishvili, Anzor Giorgadze, George Melikadze and Alexander Razmadze
Geosciences 2025, 15(8), 291; https://doi.org/10.3390/geosciences15080291 - 1 Aug 2025
Viewed by 170
Abstract
Our understanding of foreland basin subsurface structures relies heavily on seismic reflection data. The seismic profile across the eastern Rioni foreland basin in western Georgia is critical for characterizing its deformation structural style. We applied fault-related folding and thrust wedge theories to interpret [...] Read more.
Our understanding of foreland basin subsurface structures relies heavily on seismic reflection data. The seismic profile across the eastern Rioni foreland basin in western Georgia is critical for characterizing its deformation structural style. We applied fault-related folding and thrust wedge theories to interpret the seismic profile and construction structural cross-section, which reveals that compressional structures are controlled by multiple detachment levels. Both thin-skinned and thick-skinned structures are identified. The seismic profile and structural cross-section reveal the presence of normal faults, reverse faults, thrust faults, duplexes, triangle zone, and crustal-scale duplexes. The deep-level detachment within the basement is responsible for the development of the crustal-scale duplexes. These structures appear to have formed through the reactivation of pre-existing normal faults during compressive deformation. Based on our interpretation, the imaged duplex system likely represents the western subsurface continuation of the Dzirula Massif. Full article
(This article belongs to the Section Structural Geology and Tectonics)
Show Figures

Figure 1

Back to TopTop