Lake Water Depletion Linkages with Seismic Hazards in Sikkim, India: A Case Study on Chochen Lake
Abstract
1. Introduction
1.1. Study Area
1.2. Geological Settings of the Study Area
2. Methodology
Data Acquisition
3. Results and Discussion
3.1. Electrical Profiling Survey
3.2. Electrical Sounding Survey
3.3. Numerical Study of VES Data
4. Interpretations
5. Conclusions
- Seismic activity, particularly in high-hazard zones, plays a critical role in the formation of subsurface fractures, leading to increased lake water seepage and the transformation of perennial lakes into seasonal ones.
- The analysis of geo-electrical profiling and Schlumberger sounding data successfully identifies seepage and fracture locations at points A and B within Chochen Lake. Notably, location A emerges as a prominent seepage site, particularly in the downslope direction, underscoring its significance in understanding the dynamics of subsurface water movement in the lake.
- The Chochen Lake subsurface exhibits a stratified composition comprising layers of silt and clay, characterized by varying resistivity values and thickness. Of particular significance is the silt and clay mixture layer, influenced by surface flow recharge, which plays a crucial role in the dynamics of the lake depression. Below this layer, another distinct clay stratum introduces complexity to the subsurface, showcasing geological characteristics that differ from those of the overlying silt and clay mixture. The varying thickness of this clay layer adds to the overall heterogeneity of the subsurface, shaping the geological landscape and influencing factors such as water movement and seepage dynamics in the lake area.
- Vertical Electrical Sounding data indicate the presence of weathered to semi-weathered schist layers below specific depths at both the VES-1 (below 1.75 m) and VES-2 (below 2.5 m) sites. The presence of weathered to semi-weathered schist layers can impact factors such as permeability, stability, and water flow characteristics in the subsurface. Additionally, these layers may contribute to the overall heterogeneity of the geological formations, influencing the behavior of groundwater seepage patterns, and the potential for fractures in the studied area.
- Analysis of VES data at VES-1 and VES-2 reveals variations in the thickness of weathered to semi-weathered layers, indicating the presence of fractures. The excessive settlement at VES-1, located near the toe area of the slope, poses a risk of further displacement and emphasizes the need for cautious measures, such as avoiding construction activities near Chochen Lake, to mitigate potential damage and enhance regional stability.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Misra, A.K.; Ranjan, R.K.; Wanjari, N.; Dolui, S.; Keshare, M.K.; Baruah, B.; Zimik, H.V.; Angchuk, T. Determining fractures and their orientation for preventing in-situ seepage of water in the Poison Lake, Sikkim, India. J. Taibah Univ. Sci. 2022, 16, 1225–1240. [Google Scholar] [CrossRef]
- Misra, A.K.; Ranjan, R.K.; Wanjari, N.; Dolui, S.; Keshare, M.K.; Dutta, K.; Baruah, B. Geo-electrical characterization and delineation of subsurface fractures to detect in-situ seepage in lake waters. Arab. J. Geosci. 2025, 18, 40. [Google Scholar] [CrossRef]
- Misra, A.K.; Dutta, K.; Ranjan, R.K.; Wanjari, N.; Dhakal, S. Determining Dhap Pokhari lake surface dynamics for restoration strategies through geoelectrical mapping. Water Sci. 2024, 38, 1–14. [Google Scholar] [CrossRef]
- Nath, S.K.; Thingbaijam, K.K.S.; Raj, A. Earthquake hazard in Northeast India—A seismic microzonation approach with typical case studies from Sikkim Himalaya and Guwahati city. J. Earth Syst. Sci. 2009, 117 (Suppl. 2), 809–831. [Google Scholar] [CrossRef]
- Aina, A.; Emofurieta, W.O. VLF anomalies at contacts between Precambrian rocks in southwestern Nigeria. Geoexploration 1991, 28, 55–65. [Google Scholar] [CrossRef]
- Wang, Y.; Jiménez, C.; Moreno, N.; Wang, P. Tsunami characteristics and source estimation of the 2024 Yauca (Peru) earthquake. Ocean Eng. 2025, 331, 121325. [Google Scholar] [CrossRef]
- Loke, M.H.; Rucker, D.F.; Chambers, J.E.; Wilkinson, P.B.; Kuras, O. Electrical resistivity surveys and data interpretation. In Encyclopedia of Solid Earth Geophysics; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–6. [Google Scholar]
- Accaino, F.; Bratus, A.; Conti, S.; Fontana, D.; Tinivella, U. Fluid seepage in mud volcanoes of the northern Apennines: An integrated geophysical and geological study. J. Appl. Geophys. 2007, 63, 90–101. [Google Scholar] [CrossRef]
- Baranwal, V.C.; Sharma, S.P. Integrated geophysical studies in the East-Indian geothermal province. Pure Appl. Geophys. 2006, 163, 209–227. [Google Scholar] [CrossRef]
- Sharma, S.P.; Anbarasu, K.; Gupta, S.; Sengupta, A. Integrated very low-frequency EM, electrical resistivity, and geological studies on the Lanta Khola landslide, North Sikkim, India. Landslides 2010, 7, 43–53. [Google Scholar] [CrossRef]
- Adarsh, S.; Dharan, S.D.; Anuja, P.K. Analyzing the hydrologic variability of Kallada River, India using continuous wavelet transform and fractal theory. Water Conserv. Sci. Eng. 2018, 3, 305–319. [Google Scholar] [CrossRef]
- Amanatidou, E.; Vargemezis, G.; Tsourlos, P. Combined application of seismic and electrical geophysical methods for karst cavities detection: A case study at the campus of the new University of Western Macedonia, Kozani, Greece. J. Appl. Geophys. 2022, 196, 104499. [Google Scholar] [CrossRef]
- André, F.; van Leeuwen, C.; Saussez, S.; Van Durmen, R.; Bogaert, P.; Moghadas, D.; de Rességuier, L.; Delvaux, B.; Vereecken, H.; Lambot, S. High-resolution imaging of a vineyard in south of France using ground-penetrating radar, electromagnetic induction and electrical resistivity tomography. J. Appl. Geophys. 2012, 78, 113–122. [Google Scholar] [CrossRef]
- Baggett, J.; Abbasi, A.; Monsalve, J.; Bishop, R.; Ripepi, N.; Hole, J. Ground-penetrating radar for karst detection in underground stone mines. Min. Metall. Explor. 2020, 37, 153–165. [Google Scholar] [CrossRef]
- Ekanem, A.M. Georesistivity Modelling and Mapping of Aquifer Geometry and Hydraulic Characteristics in a Sedimentary Environment. Water Conserv. Sci. Eng. 2022, 7, 585–598. [Google Scholar] [CrossRef]
- Everett, M.E. Near-Surface Applied Geophysics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Solbakk, T.; Fichler, C.; Wheeler, W.H.; Lauritzen, S.E.; Ringrose, P. Detecting multiscale karst features including hidden caves using microgravimetry in a Caledonian nappe setting: Mefjell massif, Norway. Nor. J. Geol. 2018, 98, 359–378. [Google Scholar] [CrossRef]
- Verdet, C.; Sirieix, C.; Marache, A.; Riss, J.; Portais, J.C. Detection of undercover karst features by geophysics (ERT) Lascaux cave hill. Geomorphology 2020, 360, 107177. [Google Scholar] [CrossRef]
- Hussain, Y.; Uagoda, R.; Borges, W.; Nunes, J.; Hamza, O.; Condori, C.; Aslam, K.; Dou, J.; Cárdenas-Soto, M. The potential use of geophysical methods to identify cavities, sinkholes and pathways for water infiltration. Water 2020, 12, 2289. [Google Scholar] [CrossRef]
- Sungkono Santosa, B.J.; Bahri, A.S.; Santos, F.M.; Iswahyudi, A. Application of Noise-Assisted Multivariate Empirical Mode Decomposition in VLF-EM Data to Identify Underground River. Adv. Data Sci. Adapt. Anal. 2017, 9, 1650011. [Google Scholar] [CrossRef]
- Shirzaditabar, F.; Karimi, K. A one-step linear inversion to recover current density pseudo-section from VLF-EM signals. J. Geophys. Eng. 2020, 17, 203–211. [Google Scholar] [CrossRef]
- Santos, F.M.; Mateus, A.; Figueiras, J.; Gonçalves, M.A. Mapping groundwater contamination around a landfill facility using the VLF-EM method—A case study. J. Appl. Geophys. 2006, 60, 115–125. [Google Scholar] [CrossRef]
- Binley, A.; Kemna, A. DC resistivity and induced polarization methods. In Hydrogeophysics; Springer Netherlands: Dordrecht, The Netherlands, 2005; pp. 129–156. [Google Scholar]
- Griffiths, D.H.; Barker, R.D. Two-dimensional resistivity imaging and modelling in areas of complex geology. J. Appl. Geophys. 1993, 29, 211–226. [Google Scholar] [CrossRef]
- Archie, G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. Am. Inst. Min. Metall. Pet. Eng. 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Binley, A.; Hubbard, S.S.; Huisman, J.A.; Revil, A.; Robinson, D.A.; Singha, K.; Slater, L.D. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour. Res. 2015, 51, 3837–3866. [Google Scholar] [CrossRef] [PubMed]
- Hesse, A.; Jolivet, A.; Tabbagh, A. New prospects in shallow depth electrical surveying for archaeological and pedological applications. Geophysics 1986, 51, 585–594. [Google Scholar] [CrossRef]
- Samouëlian, A.; Cousin, I.; Richard, G.; Tabbagh, A.; Bruand, A. Electrical resistivity imaging for detecting soil cracking at the centimetric scale. Soil Sci. Soc. Am. J. 2003, 67, 1319–1326. [Google Scholar] [CrossRef]
- Panissod, C.; Lajarthe, M.; Tabbagh, A. Potential focusing: A new multielectrode array concept, simulation study, and field tests in archaeological prospecting. J. Appl. Geophys. 1997, 38, 1–23. [Google Scholar] [CrossRef]
- Tabbagh, A.; Dabas, M.; Hesse, A.; Panissod, C. Soil resistivity: A non-invasive tool to map soil structure horizonation. Geoderma 2000, 97, 393–404. [Google Scholar] [CrossRef]
- Arjwech, R.; Everett, M.E. Application of 2D electrical resistivity tomography to engineering projects: Three case studies. Songklanakarin J. Sci. Technol. 2015, 37, 675–681. [Google Scholar]
- Castilho, G.P.; Maia, D.F. A successful mixed land-underwater 3D resistivity survey in an extremely challenging environment in Amazônia. In Symposium on the Application of Geophysics to Engineering and Environmental Problems; Society of Exploration Geophysicists: Houston, TX, USA, 2008; pp. 1150–1158. [Google Scholar]
- Sharma, S.; Verma, G.K. Inversion of electrical resistivity data: A review. Int. J. Comput. Syst. Eng. 2015, 9, 400–406. [Google Scholar]
- Amato, M.; Bitella, G.; Rossi, R.; Gómez, J.A.; Lovelli, S.; Gomes, J.J.F. Multi-electrode 3D resistivity imaging of alfalfa root zone. Eur. J. Agron. 2009, 31, 213–222. [Google Scholar] [CrossRef]
- Dahlin, T. The development of DC resistivity imaging techniques. Comput. Geosci. 2001, 27, 1019–1029. [Google Scholar] [CrossRef]
- Ekanem, A.M.; Wei, J.; Wang, S.; Di, B.; Li, X.Y.; Chapman, M. Fracture detection using 2-D P-wave seismic data: A seismic physical modelling study. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 2009; pp. 2647–2651. [Google Scholar]
- Chambers, J.E.; Wilkinson, P.B.; Wardrop, D.; Hameed, A.; Hill, I.; Jeffrey, C.; Loke, M.H.; Meldrum, P.I.; Kuras, O.; Cave, M.; et al. Cave. Bedrock detection beneath river terrace deposits using three-dimensional electrical resistivity tomography. Geomorphology 2012, 177, 17–25. [Google Scholar] [CrossRef]
- Elis, V.R.; Bondioli, A.; Ustra, A.T.; Carlos, I.M.; Pozzo, H.Â.P.D. Resistivity imaging for identification of fracture zones in crystalline bedrock in Brazil. Sustain. Water Resour. Manag. 2019, 5, 1089–1101. [Google Scholar] [CrossRef]
- Hsu, H.L.; Yanites, B.J.; Chen, C.C.; Chen, Y.G. Bedrock detection using 2D electrical resistivity imaging along the Peikang River, central Taiwan. Geomorphology 2010, 114, 406–414. [Google Scholar] [CrossRef]
- Singhal, B.B.S.; Gupta, R.P. Applied Hydrogeology of Fractured Rocks; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Gómez-Ortiz, D.; Martín-Crespo, T. Assessing the risk of subsidence of a sinkhole collapse using ground penetrating radar and electrical resistivity tomography. Eng. Geol. 2012, 149, 1–12. [Google Scholar] [CrossRef]
- Kaufmann, O.; Deceuster, J.; Quinif, Y. An electrical resistivity imaging-based strategy to enable site-scale planning over covered palaeokarst features in the Tournaisis area (Belgium). Eng. Geol. 2012, 133, 49–65. [Google Scholar] [CrossRef]
- Al-Fares, W. Contribution of the geophysical methods in characterizing the water leakage in Afamia B dam, Syria. J. Appl. Geophys. 2011, 75, 464–471. [Google Scholar] [CrossRef]
- Haile, T.; Atsbaha, S. Electrical resistivity tomography, VES and magnetic surveys for dam site characterization, Wukro, Northern Ethiopia. J. Afr. Earth Sci. 2014, 97, 67–77. [Google Scholar] [CrossRef]
- Marescot, L.; Monnet, R.; Chapellier, D. Resistivity and induced polarization surveys for slope instability studies in the Swiss Alps. Eng. Geol. 2008, 98, 18–28. [Google Scholar] [CrossRef]
- Perrone, A.; Lapenna, V.; Piscitelli, S. Electrical resistivity tomography technique for landslide investigation: A review. Earth-Sci. Rev. 2014, 135, 65–82. [Google Scholar] [CrossRef]
- Arjwech, R.; Everett, M.E.; Briaud, J.L.; Hurlebaus, S.; Medina-Cetina, Z.; Tucker, S.; Yousefpour, N. Electrical resistivity imaging of unknown bridge foundations. Near Surf. Geophys. 2013, 11, 591–598. [Google Scholar] [CrossRef]
- Dakir, I.; Benamara, A.; Aassoumi, H.; Ouallali, A.; Ait Bahammou, Y. Application of Induced Polarization and Resistivity to the Determination of the Location of Metalliferous Veins in the Taroucht and Tabesbaste Areas (Eastern Anti-Atlas, Morocco). Int. J. Geophys. 2019, 1, 5849019. [Google Scholar] [CrossRef]
- Tucker, S.E.; Briaud, J.L.; Hurlebaus, S.; Everett, M.E.; Arjwech, R. Electrical resistivity and induced polarization imaging for unknown bridge foundations. J. Geotech. Geoenvironmental Eng. 2015, 141, 04015008. [Google Scholar] [CrossRef]
- Debbarma, J.; Das, S.; Debbarma, C.; Roy, M.B.; Roy, P.K. Critical study of sub-surface aquifer layer for groundwater availability based on electrical resistivity survey: A part of dhalai tripura, india. ARPN J. Eng. Appl. Sci. 2017, 12, 5851–5860. [Google Scholar]
- AL-Menshed, F.H.; Thabit, J.M. The use of an azimuthal resistivity survey to detect the flow direction of hydrocarbons in the unsaturated zone at Karbala Governorate, Iraq. Environ. Earth Sci. 2016, 75, 1328. [Google Scholar] [CrossRef]
- Ait Bahammou, Y.; Benamara, A.; Ammar, A.; Dakir, I. Fracture zones detection for groundwater exploration integrating Resistivity Profiling and Very Low Frequency electromagnetic methods (Errachidia basin, Morocco). Contrib. Geophys. Geod. 2019, 49, 181–194. [Google Scholar] [CrossRef]
- Andrade, R. Delineation of Fractured Aquifer Using Numerical Analysis (Factor) of Resistivity Data in a Granite Terrain. Int. J. Geophys. 2014, 585204. [Google Scholar] [CrossRef]
- Szalai, S.; Kovács, A.; Kuslits, L.; Facskó, G.; Gribovszki, K.; Kalmár, J.; Szarka, L. Characterisation of Fractures and Fracture Zones in a Carbonate Aquifer Using Electrical Resistivity Tomography and Pricking Probe Methodes. J. Geosci. Environ. Prot. 2018, 6, 1–21. [Google Scholar] [CrossRef]
- Dahlin, T.; Zhou, B. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys. Prospect. 2004, 52, 379–398. [Google Scholar] [CrossRef]
- Daily, W.; Owen, E. Cross-borehole resistivity tomography. Geophysics 1991, 56, 1228–1235. [Google Scholar] [CrossRef]
- LaBrecque, D.J.; Miletto, M.; Daily, W.; Ramirez, A.; Owen, E. The effects of noise on Occam’s inversion of resistivity tomography data. Geophysics 1996, 61, 538–548. [Google Scholar] [CrossRef]
- Li, Y.; Oldenburg, D.W. Approximate inverse mappings in DC resistivity problems. Geophys. J. Int. 1992, 109, 343–362. [Google Scholar] [CrossRef]
- Loke, M.H.; Barker, R.D. Least-squares deconvolution of apparent resistivity pseudo-sections. Geophysics 1995, 60, 1682–1690. [Google Scholar] [CrossRef]
- Loke, M.H.; Acworth, I.; Dahlin, T. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor. Geophys. 2003, 34, 182–187. [Google Scholar] [CrossRef]
- Park, S.K.; Van, G.P. Inversion of pole-pole data for 3-D resistivity structure beneath arrays of electrodes. Geophysics 1991, 56, 951–960. [Google Scholar] [CrossRef]
- Sasaki, Y. Resolution of resistivity tomography inferred from numerical SIMULATION1. Geophys. Prospect. 1992, 40, 453–463. [Google Scholar] [CrossRef]
- Shima, H. 2-D and 3-D resistivity image reconstruction using crosshole data. Geophysics 1992, 57, 1270–1281. [Google Scholar] [CrossRef]
- Bernstone, C.; Dahlin, T. Assessment of two automated electrical resistivity data acquisition systems for landfill location surveys: Two case studies. J. Environ. Eng. Geophys. 1999, 4, 113–121. [Google Scholar] [CrossRef]
- Sørensen, K. Pulled array continuous electrical profiling. First Break 1996, 14. [Google Scholar] [CrossRef]
- Esben, A.; Foged, N.; Sørensen, K.I. Model Recognition by 1-D Laterally Constrained Inversion of Resistivity Data; 8th EEGS-ES meeting; European Association of Geoscientists & Engineers: Bunnik, The Netherlands, 2002. [Google Scholar]
- Auken, E.; Christiansen, A.V. Layered and laterally constrained 2D inversion of resistivity data. Geophysics 2004, 69, 752–761. [Google Scholar] [CrossRef]
- State of Forest Report 2021—Sikkim. 2021. Available online: http://sikenvis.nic.in/WriteReadData/UserFiles/file/2021%20ISFR%20Sikkim.pdf (accessed on 6 August 2021).
- Sikkim Forest Report. (n.d.). Available online: http://www.sikkimforest.gov.in/Forest.htm (accessed on 10 August 2022).
- GSI. Bhukosh-Geoscientific Data Repository. 2022. Available online: https://bhukosh.gsi.gov.in/ (accessed on 9 August 2022).
- Telford, W.M.; Geldart, L.P.; Sheriff, R.E.; Keys, D.A. Applied Geophysics, 2nd ed.; Cambridge University Press: Cambridge, UK, 1990; ISBN 0-521-35419-6. [Google Scholar]
- Zohdy, A.A.R.; Eaton, G.P.; Mabey, D.R. Application of Surface Geophysics to Groundwater Investigations: Techniques of Water Resources Investigations of U.S. Geolo; Survey: Book 2, Chapter D1; U.S. Government Printing Office: Washington, DC, USA, 1974; p. 66. [Google Scholar]
Sl. No. | Distance of Real Time Data Acquisition Point (m) | Resistivity (Ωm) | |
---|---|---|---|
Line 1 | Line 2 | ||
1 | 0 | 252.14 | 606.02 |
2 | 7 | 190.28 | 499.26 |
3 | 14 | 183.06 | 232.04 |
4 | 21 | 150.40 | 119.63 |
5 | 28 | 151.03 | 99.85 |
6 | 35 | 170.81 | 83.52 |
7 | 42 | 169.87 | 64.68 |
8 | 49 | 236.12 | 54.32 |
9 | 56 | 307.09 | 44.58 |
10 | 63 | 277.26 | 45.53 |
11 | 70 | 216.97 | 56.20 |
12 | 77 | 160.45 | 70.02 |
13 | 84 | 146.63 | 76.30 |
14 | 91 | 169.24 | 102.67 |
15 | 98 | 212.26 | 151.97 |
Sr. No. | Electrode Spacing | Geometric Factor, GF (K) | VES-1 (Line No.-1) | VES-2 (Line No.-2) | |||
---|---|---|---|---|---|---|---|
AB/2 | MN/2 | R (Ω) | ρa (Ωm) | R (Ω) | ρa (Ωm) | ||
1 | 2 | 1 | 4.71 | 33.3 | 156.84 | 20.8 | 97.97 |
2 | 4 | 1 | 23.55 | 6.54 | 154.02 | 1.91 | 44.98 |
3 | 6 | 1 | 54.95 | 3.54 | 194.52 | 0.738 | 40.55 |
4 | 8 | 1 | 98.91 | 2.26 | 223.54 | 0.468 | 46.29 |
5 | 10 | 1 | 155.43 | 1.49 | 231.59 | 0.362 | 56.27 |
6 | 12 | 1 | 224.51 | 0.996 | 223.61 | 0.306 | 68.70 |
7 | 14 | 1 | 306.15 | 0.69 | 211.24 | 0.269 | 82.35 |
8 | 16 | 1 | 400.35 | 0.51 | 204.18 | 0.245 | 98.09 |
9 | 18 | 1 | 507.11 | 0.421 | 213.49 | 0.227 | 115.11 |
10 | 20 | 1 | 626.43 | 0.35 | 219.25 | 0.218 | 136.56 |
11 | 20 | 2 | 310.86 | 0.729 | 226.62 | 0.423 | 131.49 |
12 | 22 | 2 | 376.8 | 0.63 | 237.38 | 0.401 | 151.10 |
13 | 24 | 2 | 449.02 | 0.566 | 254.15 | 0.38 | 170.63 |
14 | 26 | 2 | 527.52 | 0.512 | 270.09 | 0.361 | 190.43 |
15 | 28 | 2 | 612.3 | 0.474 | 290.23 | 0.343 | 210.02 |
16 | 30 | 2 | 703.36 | 0.44 | 309.48 | 0.329 | 231.41 |
17 | 32 | 2 | 800.7 | 0.404 | 323.48 | 0.318 | 254.62 |
18 | 32 | 3 | 531.18 | 0.639 | 339.43 | 0.475 | 252.31 |
19 | 34 | 3 | 600.26 | 0.564 | 338.55 | 0.46 | 276.12 |
20 | 36 | 3 | 673.53 | 0.531 | 357.64 | 0.447 | 301.07 |
21 | 38 | 3 | 750.98 | 0.499 | 374.74 | 0.435 | 326.68 |
22 | 40 | 3 | 832.62 | 0.468 | 389.67 | 0.394 | 328.05 |
23 | 42 | 3 | 918.45 | 0.44 | 404.12 | 0.405 | 371.97 |
24 | 44 | 3 | 1008.46 | 0.412 | 415.49 | 0.388 | 391.28 |
25 | 46 | 3 | 1102.66 | 0.38 | 419.01 | 0.369 | 406.88 |
26 | 46 | 4 | 824.25 | 0.518 | 426.96 | 0.496 | 408.83 |
27 | 48 | 4 | 898.04 | 0.474 | 425.67 | 0.47 | 422.08 |
28 | 50 | 4 | 974.97 | 0.442 | 430.94 | 0.44 | 428.99 |
Sl. No. | AB/2 (m) | VES-1, ρa (Ωm) | F-1 | VES-2, ρa (Ωm) | F-2 |
---|---|---|---|---|---|
1 | 2 | 156.84 | - | 97.97 | - |
2 | 4 | 154.02 | 0.981981982 | 44.98 | 0.459134615 |
3 | 6 | 194.52 | 0.625757576 | 40.55 | 0.28369028 |
4 | 8 | 223.54 | 0.442311277 | 46.29 | 0.252258727 |
5 | 10 | 231.59 | 0.317717757 | 56.27 | 0.244855292 |
6 | 12 | 223.61 | 0.232805374 | 68.70 | 0.240162018 |
7 | 14 | 211.24 | 0.178396697 | 82.35 | 0.232142857 |
8 | 16 | 204.18 | 0.14632615 | 98.09 | 0.224395237 |
9 | 18 | 213.49 | 0.133471336 | 115.11 | 0.215086978 |
10 | 20 | 219.25 | 0.120929926 | 136.56 | 0.209994423 |
11 | 20 | 226.62 | 0.111508276 | 131.49 | 0.167109277 |
12 | 22 | 237.38 | 0.105088084 | 151.10 | 0.164527726 |
13 | 24 | 254.15 | 0.101809253 | 170.63 | 0.159545029 |
14 | 26 | 270.09 | 0.098199123 | 190.43 | 0.153565094 |
15 | 28 | 290.23 | 0.096086025 | 210.02 | 0.146812371 |
16 | 30 | 309.48 | 0.093476691 | 231.41 | 0.14105402 |
17 | 32 | 323.48 | 0.089354134 | 254.62 | 0.136019961 |
18 | 32 | 339.43 | 0.086067595 | 252.31 | 0.11864728 |
19 | 34 | 338.55 | 0.079042094 | 276.12 | 0.116071664 |
20 | 36 | 357.64 | 0.077383896 | 301.07 | 0.113396317 |
21 | 38 | 374.74 | 0.075259182 | 326.68 | 0.110510682 |
22 | 40 | 389.67 | 0.072779643 | 328.05 | 0.099932502 |
23 | 42 | 404.12 | 0.070357947 | 371.97 | 0.103016423 |
24 | 44 | 415.49 | 0.067582345 | 391.28 | 0.098243943 |
25 | 46 | 419.01 | 0.063841205 | 406.88 | 0.093021734 |
26 | 46 | 426.96 | 0.061148591 | 408.83 | 0.085511981 |
27 | 48 | 425.67 | 0.057450731 | 422.08 | 0.081328966 |
28 | 50 | 430.94 | 0.055001548 | 428.99 | 0.076443014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misra, A.K.; Dutta, K.; Ranjan, R.K.; Wanjari, N.; Dhakal, S. Lake Water Depletion Linkages with Seismic Hazards in Sikkim, India: A Case Study on Chochen Lake. GeoHazards 2025, 6, 42. https://doi.org/10.3390/geohazards6030042
Misra AK, Dutta K, Ranjan RK, Wanjari N, Dhakal S. Lake Water Depletion Linkages with Seismic Hazards in Sikkim, India: A Case Study on Chochen Lake. GeoHazards. 2025; 6(3):42. https://doi.org/10.3390/geohazards6030042
Chicago/Turabian StyleMisra, Anil Kumar, Kuldeep Dutta, Rakesh Kumar Ranjan, Nishchal Wanjari, and Subash Dhakal. 2025. "Lake Water Depletion Linkages with Seismic Hazards in Sikkim, India: A Case Study on Chochen Lake" GeoHazards 6, no. 3: 42. https://doi.org/10.3390/geohazards6030042
APA StyleMisra, A. K., Dutta, K., Ranjan, R. K., Wanjari, N., & Dhakal, S. (2025). Lake Water Depletion Linkages with Seismic Hazards in Sikkim, India: A Case Study on Chochen Lake. GeoHazards, 6(3), 42. https://doi.org/10.3390/geohazards6030042