Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (673)

Search Parameters:
Keywords = seeds inoculation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8778 KB  
Article
Herbicidal Control Potential of the Endophytic Bacterium B. pseudorignonensis BFYBC-8 Isolated from E. crus-galli Seeds
by Dashan Yang, Quanlong He, Qingling Wang, Jing Zhou, Haiyan Ke, Xin Wen, Jiawei Pan, Yi Zhou and Jianwei Jiang
Microorganisms 2025, 13(10), 2293; https://doi.org/10.3390/microorganisms13102293 - 2 Oct 2025
Abstract
The long-term application of traditional chemical herbicides has caused a significant escalation in herbicide resistance of barnyard grass (Echinochloa crus-galli). As an eco-friendly alternative, biological herbicides demonstrate substantial application potential. Acknowledging the growing herbicide resistance of E. crus-galli, this study [...] Read more.
The long-term application of traditional chemical herbicides has caused a significant escalation in herbicide resistance of barnyard grass (Echinochloa crus-galli). As an eco-friendly alternative, biological herbicides demonstrate substantial application potential. Acknowledging the growing herbicide resistance of E. crus-galli, this study aimed to screen target bacteria with inhibitory effects on the growth for bio-herbicide development. By using ungerminated E. crus-galli seeds as the screening substrate, a bacterial strain (BFYBC-8) with potent inhibitory activity was isolated and identified as Brucella pseudorignonensis. Pot experiments revealed that inoculation with B. pseudorignonensis BFYBC-8 significantly suppressed E. crus-galli growth, reducing plant height by 16.7% and root length by 85.1%, while markedly inhibiting biomass accumulation. Fluorescent labeling with green fluorescent protein (GFP) showed that BFYBC-8 successfully colonized the root intercellular spaces of E. crus-galli and extended continuously along the tissue matrix. Additionally, the strain’s supernatant metabolic products exhibited exceptional thermostability: inhibitory activity against E. crus-galli was maintained after thermal treatment at 28 °C, 60 °C, 80 °C, and 100 °C. Crucially, the bacterium displayed no toxicity to agronomically important crops such as rice, wheat, and corn. This study highlights B. pseudorignonensis BFYBC-8 as a promising candidate for bioherbicide development and provides an important reference for applying seed-associated pathogenic bacteria in developing bioherbicides for sustainable weed management. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

18 pages, 11690 KB  
Article
Preparation and Herbicidal Evaluation of Butyl Hydroxybenzoate Emulsion
by Tianqi Wang, Haixia Zhu, Lijuan Bao, Suifang Zhang and Yongqiang Ma
Plants 2025, 14(19), 3041; https://doi.org/10.3390/plants14193041 - 1 Oct 2025
Abstract
In order to develop a new environmentally friendly microbial herbicide for the field of weed control, this study used the metabolite butyl hydroxybenzoate (BP) of the HY-02 strain of Alternaria as the research object. The BP emulsion formula was determined to be a [...] Read more.
In order to develop a new environmentally friendly microbial herbicide for the field of weed control, this study used the metabolite butyl hydroxybenzoate (BP) of the HY-02 strain of Alternaria as the research object. The BP emulsion formula was determined to be a mixture of BP, methanol, and Tween-20 in a ratio of 1:1:2 g/mL. The seed germination inhibition effect, the phytotoxicity of living plants, crop safety, and the field effect of the emulsion were studied. Research has found that adding 0.75% BP emulsion to the seed culture medium inhibits the germination of weed seeds such as Amaranthus retroflexus L., Malva verticillata L. var., and Chenopodium album L. While Brassica campestris L. seeds were unaffected, Triticum aestivum L and Hordeum vulgare L. stem and leaf growth were inhibited. Cucumis sativus L., Lactuca sativa L. var. asparagina, Spinacia oleracea L., and Capsicum annuum L. seeds are significantly inhibited, with germination rates below 20%. We sprayed 0.75% BP emulsion onto live potted plants; among the weeds, the incidence of Amaranthus retroflexus L., Lepyrodiclis holosteoides, Thlaspi arvense L, Galium spurium L., Malva verticillata L. var. Crispa, Chenopodium album L., and Avena fatua L reached 100%. The Pisum sativum L. and Triticum aestivum L. crops were not affected (NS), and they had slight plant height inhibition and slight susceptibility (LS) to highland Hordeum vulgare L. and peppers. They were highly phytotoxicity to Cucumis sativus L. and Spinacia oleracea L. Some plant leaves became infected and died, with incidences of 85% and 82%, respectively. The field experiment showed that after diluting the BP emulsifiable concentrate, the seedling stage spray was inoculated into the Triticum aestivum L. field, and it was found that the BP emulsifiable concentrate at the concentration of 1.00%~0.75% had a herbicidal effect on weeds such as Chenopodium album L., Elsholtzia densa Benth, and Amaranthus retroflexus L. in the Triticum aestivum L. field, and it was safe for Triticum aestivum L. crops in the field. These results indicate that BP emulsion could be developed into a new environmentally friendly microbial herbicide for field application in grass (Triticum aestivum L. and Hordeum vulgare L.) crops. At the same time, BP’s excellent antibacterial, low-toxicity, hydrolysis, and other effects can promote diversification in herbicide development. Full article
(This article belongs to the Special Issue Biopesticides for Plant Protection)
Show Figures

Figure 1

19 pages, 7933 KB  
Article
Optimized Co-Fermentation of Seed Melon and Z. bungeanum Seed Meal with Saccharomyces cerevisiae L23: Valorization into Functional Feed with Enhanced Antioxidant Activity
by Liping Lu, Xue Zhang, Ziyi Yin, Rui Zhou, Yanli Zhu, Shanshan Liu and Dandan Gao
Fermentation 2025, 11(9), 533; https://doi.org/10.3390/fermentation11090533 - 12 Sep 2025
Viewed by 388
Abstract
This study aimed to enhance the value of agricultural by-products by developing seed melon compound fermented feed (SMFF) using Saccharomyces cerevisiae L23. A two-stage optimization strategy was implemented. First, seed melon juice seed culture medium (SMCM) composition and fermentation conditions were optimized to [...] Read more.
This study aimed to enhance the value of agricultural by-products by developing seed melon compound fermented feed (SMFF) using Saccharomyces cerevisiae L23. A two-stage optimization strategy was implemented. First, seed melon juice seed culture medium (SMCM) composition and fermentation conditions were optimized to maximize S. cerevisiae L23 biomass through single-factor and response surface methodology (RSM) approaches. The SMCM medium was optimized to contain 0.06% MgSO4·7H2O, 0.2% KH2PO4, 0.65% (NH4)2SO4, 0.1% pectinase, and 1.0% urea, and fermentation conditions with inoculation amount, fermentation time, fermentation temperature, and glucose addition were 6%, 28 h, 30 °C, and 0.5%, respectively. Furthermore, SMFF fermentation parameters were optimized via RSM, achieving S. cerevisiae L23 (10.35 lg CFU/g) and sensory evaluation score (83.1) at substrate ratio of 7:3 (seed melon juice: Zanthoxylum bungeanum seed meal), inoculation amount of 8%, and fermentation time of 36 h. Fermentation process significantly improved the nutritional profile of SMFF, increasing crude protein (13%) and vitamin C (VC) content (21%) while reducing neutral detergent fiber/acid detergent fiber (NDF/ADF) levels. SMFF also improved in vitro antioxidant capacity, with higher DPPH, ABTS, hydroxyl radical, and superoxide anion scavenging activities compared to SMFF control. This process efficiently valorized agricultural by-products into nutritionally enriched functional feed. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

30 pages, 5327 KB  
Article
Seed-Derived Synthetic Microbial Communities (SynComs) from Medicago Wild Relatives Modulate Early Plant Microbiome Assembly and Phenotypic Traits in Lucerne (Medicago sativa L.)
by Shenali Subodha Herath Dissanayakalage, Jatinder Kaur, Tongda Li, Adam M. Dimech and Timothy I. Sawbridge
Microorganisms 2025, 13(9), 2114; https://doi.org/10.3390/microorganisms13092114 - 10 Sep 2025
Viewed by 511
Abstract
Seed-associated microbiomes represent an underexplored frontier in synthetic community (SynCom) design, particularly in forage legumes such as lucerne (Medicago sativa L.), where early microbial assembly can shape plant development. Crop wild relatives (CWRs) harbour more diverse seed microbiomes and may contain microbes [...] Read more.
Seed-associated microbiomes represent an underexplored frontier in synthetic community (SynCom) design, particularly in forage legumes such as lucerne (Medicago sativa L.), where early microbial assembly can shape plant development. Crop wild relatives (CWRs) harbour more diverse seed microbiomes and may contain microbes with greater functional potential than domesticated lucerne. To test this, SynComs were constructed from seed-borne bacteria isolated from M. laciniata (drought-resilient) and M. littoralis (salt-tolerant). Two three-strain SynComs were assembled from taxa consistently shared across lucerne and its CWRs, and a third six-strain ‘Mix’ SynCom combined both sets. The aim of this study was to assess whether these SynComs exert phenotypic effects on lucerne growth when used as seed inocula alongside the native microbiome during early development and later vegetative stages under well-watered and drought conditions. Inoculation enhanced germination and early growth, with the Mix SynCom producing the strongest gains. Microbiome profiling at 24 days revealed treatment-specific restructuring, with enrichment of beneficial taxa and microbial coalescence. While early-stage benefits diminished at later stages, and drought ultimately reduced biomass across all treatments, the findings demonstrate that CWR-derived SynComs can enhance lucerne establishment and early growth while restructuring host microbiomes, providing a framework for seed-applied microbial solutions in sustainable agriculture. Full article
(This article belongs to the Special Issue Advances in Agro-Microbiology)
Show Figures

Figure 1

22 pages, 4172 KB  
Article
Impact of Plasmodiophora brassicae on Canola Root and Rhizosphere Microbiomes and Its Implications for Clubroot Biocontrol
by Jorge Cordero-Elvia, Leonardo Galindo-González, Rudolph Fredua-Agyeman, Sheau-Fang Hwang and Stephen E. Strelkov
Pathogens 2025, 14(9), 904; https://doi.org/10.3390/pathogens14090904 - 9 Sep 2025
Viewed by 446
Abstract
Clubroot, caused by the obligate parasite Plasmodiophora brassicae, is a soilborne disease affecting canola (Brassica napus) and other crucifers. Although planting resistant cultivars remains the primary strategy for managing clubroot, the emergence of resistance-breaking P. brassicae pathotypes continues to threaten [...] Read more.
Clubroot, caused by the obligate parasite Plasmodiophora brassicae, is a soilborne disease affecting canola (Brassica napus) and other crucifers. Although planting resistant cultivars remains the primary strategy for managing clubroot, the emergence of resistance-breaking P. brassicae pathotypes continues to threaten canola production. In this context, soil and root microorganisms may play a role in suppressing the disease. This study investigated the impact of P. brassicae infection on the microbial communities of soil, seeds, roots, and the rhizosphere in susceptible and resistant canola lines, with the aim of analyzing host–pathogen–microbiome interactions and identifying microbial taxa potentially associated with disease resistance. Our findings showed that resistant canola lines inoculated with P. brassicae (pathotype 3A) exhibited reduced disease severity compared to their susceptible counterparts. Diversity analyses of microbial communities revealed that clubroot-resistant canola lines tended to maintain more stable and diverse fungal communities, with a higher Shannon index than susceptible lines. Inoculation with P. brassicae induced more pronounced changes in the root microbiome than in the rhizosphere. Additionally, the seed microbiomes of resistant and susceptible lines displayed distinct bacterial and fungal profiles, suggesting that clubroot susceptibility may influence seed-associated microbial community composition. Differential abundance analysis of root and rhizosphere microbiomes indicated that certain microbial taxa, including bacterial genera such as Acidovorax, Bacillus, Cupriavidus, Cytophaga, Duganella, Flavobacterium, Fluviicola, Luteimonas, Methylotenera, Pedobacter, and Peredibacter, as well as fungal genera such as Aspergillus, Candida, Fusicolla, Paecilomyces, and Rhizophlyctis, may be recruited or enriched in resistant canola lines following P. brassicae inoculation, potentially contributing to reduced clubroot severity. Full article
Show Figures

Figure 1

15 pages, 4666 KB  
Article
Alleviation of Saline–Alkaline Stress in Alfalfa by a Consortium of Plant-Growth-Promoting Rhizobacteria
by Lingjuan Han, Yixuan Li, Zheng Ma, Bin Li, Yinping Liang, Peng Gao and Xiang Zhao
Plants 2025, 14(17), 2744; https://doi.org/10.3390/plants14172744 - 2 Sep 2025
Viewed by 488
Abstract
Soil salinization critically threatens global agricultural productivity by impairing plant growth and soil fertility. This study investigated the potential of a consortium, comprising Acinetobacter calcoaceticus DP25, Staphylococcus epidermidis DP28, and Enterobacter hormaechei DP29, to enhance the saline–alkali tolerance of alfalfa and improve soil [...] Read more.
Soil salinization critically threatens global agricultural productivity by impairing plant growth and soil fertility. This study investigated the potential of a consortium, comprising Acinetobacter calcoaceticus DP25, Staphylococcus epidermidis DP28, and Enterobacter hormaechei DP29, to enhance the saline–alkali tolerance of alfalfa and improve soil properties. The experiments comprised five germination treatments (saline control, each strain alone, consortium) and three pot treatments (non-saline control, saline control, consortium). Under saline–alkali stress, co-inoculation with the consortium significantly (p < 0.05) increased alfalfa seed germination rates, emergence rates, and biomass (shoot and root dry weight), while promoting root development. Physiological analyses revealed that the bacterial consortium mitigated stress-induced damage by enhancing photosynthetic efficiency, chlorophyll content, and antioxidant enzyme activities (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)), while decreasing malondialdehyde (MDA) levels. Moreover, the inoculant improved osmoprotectant accumulation (soluble sugars, soluble proteins, and proline) and modulated soil properties by reducing pH and electrical conductivity (EC), while elevating nutrient availability and soil enzyme activities. Correlation and principal component analyses (PCA) confirmed strong associations among improved plant growth, physiological traits, and soil health. These findings demonstrate that the bacterial consortium effectively alleviates saline–alkali stress in alfalfa by improving soil health, offering a sustainable strategy for ecological restoration and improving agricultural productivity in saline–alkali regions. Full article
(This article belongs to the Special Issue Horticultural Plant Physiology and Molecular Biology—2nd Edition)
Show Figures

Figure 1

13 pages, 529 KB  
Article
Evaluating the Impact of Lactobacillus acidophilus on Fusarium Mycotoxins in Raw Vegan Pumpkin–Sunflower Seed Flour Blends
by Iveta Brožková, Marek Pernica, Sylvie Běláková, Markéta Vydržalová, Petra Moťková, Ivana Stará, Lenka Husáková and Libor Červenka
Foods 2025, 14(17), 3077; https://doi.org/10.3390/foods14173077 - 1 Sep 2025
Viewed by 715
Abstract
A blend with pumpkin and sunflower seed flours was prepared and dried at 41.5 °C for 5 h to create a minimally heat-treated blend for a raw food diet. The blend was inoculated with Lactobacillus acidophilus and Fusarium langsethiae to assess the effect [...] Read more.
A blend with pumpkin and sunflower seed flours was prepared and dried at 41.5 °C for 5 h to create a minimally heat-treated blend for a raw food diet. The blend was inoculated with Lactobacillus acidophilus and Fusarium langsethiae to assess the effect of L. acidophilus on Fusarium growth and mycotoxin production. Drying did not affect the content of naturally occurring microorganisms but significantly reduced water activity (p < 0.05) and increased total phenolic content in samples with external microorganisms. Lactobacilli content remained unchanged after drying (4.8 log CFU/g), while F. langsethiae increased by 1.5 log CFU/g. Principal component analysis showed PC1 explained 95.1% of total variance, driven by Fusarium mycotoxin production. A significant difference in total mycotoxin was found between samples with F. langsethiae alone and those with both F. langsethiae and L. acidophilus (p < 0.05). Lactic acid bacteria could reduce fusarium mycotoxin risk in raw food diet mixtures. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

16 pages, 4261 KB  
Article
A Plant Growth-Promoting Bacterial Isolate, Bacillus velezensis 41S2, Enhances Seed Protein, Isoflavone Accumulation, and Stress Resilience in Soybean Under Salt–Alkaline Soil Conditions
by Han Zheng, Shutian Hua, Zhe Li, Ziyan Wang, Donglin Zhao, Changliang Jing, Yiqiang Li, Chengsheng Zhang, Yanfen Zheng, Youqiang Wang and Mingguo Jiang
Agronomy 2025, 15(9), 2103; https://doi.org/10.3390/agronomy15092103 - 31 Aug 2025
Viewed by 724
Abstract
Salt–alkaline soil poses a significant challenge to soybean productivity. While plant growth-promoting rhizobacteria (PGPR) offer a sustainable strategy for stress mitigation, their field-level application remains underexplored. Here, a field experiment was conducted in the Yellow River Delta of Shandong, China, a typical salt–alkaline [...] Read more.
Salt–alkaline soil poses a significant challenge to soybean productivity. While plant growth-promoting rhizobacteria (PGPR) offer a sustainable strategy for stress mitigation, their field-level application remains underexplored. Here, a field experiment was conducted in the Yellow River Delta of Shandong, China, a typical salt–alkaline region. In this study, we evaluated the effectiveness of Bacillus velezensis 41S2 in enhancing soybean performance under salt–alkaline soil through integrated field trials and transcriptomic analysis. Inoculation with strain 41S2 significantly improved plant biomass, yield components, and seed yield under salt–alkaline soil, and notably increased seed protein and isoflavone contents. Physiological analyses revealed that strain 41S2 markedly reduced hydrogen peroxide (H2O2) accumulation, indicating alleviation of oxidative stress. Moreover, strain 41S2 modulated the levels of soluble sugars and amino acids, contributing to osmotic regulation and carbon–nitrogen (C-N) metabolic balance. Transcriptome profiling further indicated that strain 41S2 upregulated genes involved in antioxidant response, C–N metabolism, and phenylpropanoid biosynthesis, highlighting its role in coordinating multilayered stress response pathways. Overall, these findings highlight the potential of B. velezensis 41S2 as a multifunctional bioinoculant for improving salt tolerance and presents a promising tool for sustainable crop production and ecological restoration in salt–alkaline soil. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

23 pages, 4303 KB  
Article
Seed Surface Sterilization Can Alter Root Microbiomes, Increase Endophyte Diversity and Enhance Plant Growth
by David Johnston-Monje and Jorge Iván Martínez
Appl. Sci. 2025, 15(17), 9545; https://doi.org/10.3390/app15179545 - 30 Aug 2025
Viewed by 1327
Abstract
With the goal of bioprospecting for growth-promoting endophytes that could become yield-enhancing inoculants in maize agriculture, we isolated 129 endophytic bacteria from 22 wild plants growing in a nature preserve and an urban park in Cali, Colombia. These strains were put through a [...] Read more.
With the goal of bioprospecting for growth-promoting endophytes that could become yield-enhancing inoculants in maize agriculture, we isolated 129 endophytic bacteria from 22 wild plants growing in a nature preserve and an urban park in Cali, Colombia. These strains were put through a bioassay with surface-sterilized seeds of perennial ryegrass (Lolium perenne) grown in sealed tubes, and growth promotion assessed by measuring plant fresh weight. The top two strains Pseudomonas delhiensis and Serratia marcescens, along with five different subcultured root endophytic communities, were put into a secondary screen along with two uninoculated controls of untreated and surface-sterilized seed of both the turfgrass and a commercial maize hybrid. Impact on plant microbiomes was assessed using molecular fingerprinting and high-throughput sequencing. This second bioassay indicated that plant growth promotion was corelated not with inoculation but with seed surface sterilization which shifted root microbiomes, increased endophyte diversity and probably eliminated pathogens. Inoculating maize (but not ryegrass) seed with either pure bacteria or microbial communities was also able to shift the root microbiome. Because the majority of plant microbiome researchers employ seed surface sterilization as a method to standardize their experiments, they could be inadvertently studying unusual plant phenotypes and microbiomes; a possible reason why field trials correlate poorly with those of lab tests. Full article
(This article belongs to the Special Issue Novel Sources of Plant Biostimulants for Sustainable Agriculture)
Show Figures

Graphical abstract

17 pages, 1800 KB  
Article
Response of Solanum lycopersicum L. to Fusarium oxysporum During Germination and Seedling Stages
by Ana Elizabeth Paredes-Cervantes, Juan Enrique Rodríguez-Pérez, Jaime Sahagún-Castellanos, Santos Gerardo Leyva-Mir, Martha Hernández-Rodríguez and Alma Aurora Deanda-Tovar
Agronomy 2025, 15(9), 2089; https://doi.org/10.3390/agronomy15092089 - 30 Aug 2025
Viewed by 596
Abstract
Due to the widespread distribution of F. oxysporum, the search for mechanisms of tolerance to this disease in Solanum lycopersicum L. is an ongoing endeavor. This research aimed to identify F. oxysporum-tolerant genotypes at the germination and seedling stages in order [...] Read more.
Due to the widespread distribution of F. oxysporum, the search for mechanisms of tolerance to this disease in Solanum lycopersicum L. is an ongoing endeavor. This research aimed to identify F. oxysporum-tolerant genotypes at the germination and seedling stages in order to use them as sources of resistance. Ninety-six tomato lines were inoculated with the F. oxysporum strain with NCBI accession key PQ187438. The germination test was carried out in a germination chamber at a constant temperature of 28 ± 2 °C with 70 ± 5% relative humidity in darkness for the first 3 days and then 7 days with light. Clustering and discriminant analysis identified 14 genotypes with tolerance, showing great seed vigor and lower disease severity. Seedling evaluation was conducted in a floating raft system for 10 days after inoculation. Nine genotypes showed greater tolerance to the pathogen by developing a larger leaf area and accumulating more dry matter (p ≤ 0.05). No genotypes with tolerance were identified at both phenological stages (germination and seedling), indicating that tolerance mechanisms are independent at both phenological stages, so genotype selection should be carried out independently. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

24 pages, 2004 KB  
Article
Metschnikowia pulcherrima as a Tool for Sulphite Reduction and Enhanced Volatile Retention in Noble Rot Wine Fermentation
by Zsuzsanna Bene, Ádám István Hegyi, Hannes Weninger and Kálmán Zoltán Váczy
Fermentation 2025, 11(9), 491; https://doi.org/10.3390/fermentation11090491 - 23 Aug 2025
Viewed by 686
Abstract
The use of non-Saccharomyces species is gaining momentum in modern winemaking as part of broader efforts to reduce chemical inputs and adapt to climate-driven challenges. In this study, Furmint grapes were harvested at two distinct ripeness levels: an early harvest with healthy [...] Read more.
The use of non-Saccharomyces species is gaining momentum in modern winemaking as part of broader efforts to reduce chemical inputs and adapt to climate-driven challenges. In this study, Furmint grapes were harvested at two distinct ripeness levels: an early harvest with healthy berries and a late harvest that included botrytized fruit. Two oenological protocols were compared: a conventional sulphur dioxide-based protocol and an alternative bioprotection-oriented approach that minimized SO2 additions. Bioprotection was carried out using Metschnikowia pulcherrima, followed by sequential inoculation with Torulaspora delbrueckii and Saccharomyces cerevisiae. Grape-derived tannins (from skin and seed) were also added to inhibit oxidative enzymes such as laccase. Fermentation was monitored using standard analytical techniques, with volatile aroma profiles characterized by HS-SPME-GC-MS. Results showed that harvest timing and botrytization strongly influenced the chemical composition of the wines. Moreover, the treatment protocol had a marked effect on the final sensory profile. Wines produced with the bioprotection-oriented protocol displayed enhanced aromatic complexity, particularly through higher concentrations of esters and higher alcohols. Overall, the alternative protocol involving M. pulcherrima-based bioprotection resulted in wines with more pronounced floral and fruity notes, supporting its potential as a viable strategy for producing expressive wines under evolving climatic conditions. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

28 pages, 1805 KB  
Article
Maize Crops Under Rising Temperatures: Bacterial Influence on Biochemical and Lipidomic Changes Induced by Heat
by Ricardo Pinto, Paulo Cardoso, Bruno Carneiro, Glória Pinto, Carmen Bedia and Etelvina Figueira
Plants 2025, 14(16), 2593; https://doi.org/10.3390/plants14162593 - 20 Aug 2025
Viewed by 518
Abstract
Rising global temperatures are increasingly affecting plant performance, leading to reduced growth, altered metabolism, and compromised membrane integrity. Although plant growth-promoting bacteria (PGPB) show promise in enhancing thermotolerance, the underlying mechanisms remain insufficiently explored. Therefore, this study investigated the effects of PGPB inoculation [...] Read more.
Rising global temperatures are increasingly affecting plant performance, leading to reduced growth, altered metabolism, and compromised membrane integrity. Although plant growth-promoting bacteria (PGPB) show promise in enhancing thermotolerance, the underlying mechanisms remain insufficiently explored. Therefore, this study investigated the effects of PGPB inoculation on Zea mays under control (26 °C) and heat stress (36 °C) conditions. Maize plants were inoculated with two thermotolerant bacterial strains and their effects were compared to non-inoculated plants through morphometric, biochemical, and lipidomic analyses. Heat stress negatively affected germination (−35.9%), increased oxidative stress (+46% for LPO, +57% for SOD, +68% for GPx), and altered leaf lipid composition, particularly fatty acids, glycerolipids, and sphingolipids. Inoculation with Pantoea sp. improved germination by 15% for seeds exposed to heat stress, increased growth (+28% shoot and +17% root), enhanced antioxidant defenses (+35% for CAT and +38% for APx), and reduced membrane damage by 65% compared with the control. Lipidomic profiling revealed that inoculation mitigated temperature-induced lipid alterations by reducing triacylglycerol accumulation and preserving the levels of polyunsaturated galactolipids and hexosylceramides. Notably, Pantoea sp.-inoculated plants under heat stress exhibited lipid profiles that were more similar to those of control plants, suggesting enhanced heat resilience. These results underscore the importance of specific plant–microbe interactions in mitigating heat stress and highlight PGPB inoculation as a promising strategy to enhance crop performance and resilience under projected climate warming scenarios. Full article
(This article belongs to the Special Issue Beneficial Effects of Bacteria on Plants)
Show Figures

Figure 1

24 pages, 2865 KB  
Article
Isolation and Screening of the Novel Multi-Trait Strains for Future Implications in Phytotechnology
by Zhuldyz Batykova, Valentina Pidlisnyuk, Aida Kistaubayeva, Sergey Ust’ak, Irina Savitskaya, Laila Saidullayeva and Aigerim Mamirova
Microorganisms 2025, 13(8), 1902; https://doi.org/10.3390/microorganisms13081902 - 15 Aug 2025
Viewed by 597
Abstract
Plant growth-promoting rhizobacteria (PGPRs) colonise the rhizosphere and root surfaces, enhancing crop development through a variety of mechanisms. This study evaluated microbial strains isolated from Triticum aestivum L. for key plant growth-promoting traits, including indole-3-acetic acid (IAA) production, phosphate and zinc (Zn) solubilisation, [...] Read more.
Plant growth-promoting rhizobacteria (PGPRs) colonise the rhizosphere and root surfaces, enhancing crop development through a variety of mechanisms. This study evaluated microbial strains isolated from Triticum aestivum L. for key plant growth-promoting traits, including indole-3-acetic acid (IAA) production, phosphate and zinc (Zn) solubilisation, nitrogen (N2) fixation, and antifungal activity. Among 36 isolates, 3 (AS8, AS23, AS31) exhibited strong growth-promoting potential. IAA production, citrate assimilation, carbohydrate fermentation, and catalase activity were observed to a comparable extent among the selected strains. AS8 showed the highest protease, lipase, and amylolytic activity, while AS23 demonstrated superior phosphate and Zn solubilisation. Notably, AS31 emerged as the most promising multi-trait isolate, exhibiting the highest levels of IAA production, N2 fixation, antifungal activity against five phytopathogens (Fusarium graminearum, F. solani, F. oxysporum, Pythium aphanidermatum, and Alternaria alternata), potentially linked to its hydrogen sulphide (H2S) production, and cellulolytic activity. Molecular identification based on 16S rRNA gene sequencing revealed the isolates as Stenotrophomonas indicatrix AS8, Pantoea agglomerans AS23, and Bacillus thuringiensis AS31. Seed germination assays confirmed the plant growth-promoting efficacy of these PGPR strains, with vigour index increases of up to 43.4-fold. Given their positive impact on seed germination and significant Zn-solubilising abilities, the selected strains represent promising candidates for use as bio-inoculants, offering a sustainable and eco-friendly strategy to enhance agricultural productivity in nutrient-deficient soils. Future research should validate the efficacy of these PGPR strains under pot conditions to confirm their potential for practical agricultural applications. Full article
Show Figures

Figure 1

20 pages, 2073 KB  
Article
Tomato Seed Inoculation with Bacillus subtilis Biofilm Mitigates Toxic Effects of Excessive Copper in the Substrate
by Gabriela Cristina Sarti, Antonio Paz-González, Josefina Ana Eva Cristóbal-Míguez, Gonzalo Arnedillo, Ana Rosa García and Mirta Esther Galelli
Processes 2025, 13(8), 2509; https://doi.org/10.3390/pr13082509 - 8 Aug 2025
Viewed by 593
Abstract
Accumulation of copper (Cu) in soils devoted to intensive agriculture due to anthropogenic additions is becoming a significant threat to plant productivity. Biological inoculants may play an important role in alleviating toxic effects of heavy metals on plants. The plant-growth-promoting rhizobacteria (PGPR) Bacillus [...] Read more.
Accumulation of copper (Cu) in soils devoted to intensive agriculture due to anthropogenic additions is becoming a significant threat to plant productivity. Biological inoculants may play an important role in alleviating toxic effects of heavy metals on plants. The plant-growth-promoting rhizobacteria (PGPR) Bacillus subtilis subsp. spizizenii has demonstrated the ability to reduce harmful impacts of heavy metals on crops. This study aimed to evaluate the suitability of seed inoculation with biofilm produced by this bacterium to mitigate the severity of Cu toxicity on tomato. In the laboratory, first, B. subtilis was cultivated under increased Cu concentrations. Then, germination of inoculated and non-inoculated tomato seeds was tested for Cu concentrations of 0, 50, 100, 150, and 200 ppm. Next, a greenhouse experiment was conducted for four months to assess the effects of both inoculation and excess 150 ppm Cu in the substrate. The studied treatments included control, no inoculation and Cu surplus, inoculation and no Cu surplus, and inoculation plus Cu surplus. In the laboratory, first, the bacterium’s ability to grow in a liquid medium containing Cu was confirmed. Thereafter, we verified that the germination of non-inoculated seeds was negatively affected by Cu, with higher concentrations leading to a more detrimental effect. However, seed inoculation with biofilm mitigated the adverse impact of Cu on germination. Under greenhouse conditions, excess Cu significantly reduced root dry weight, tomato number, and tomato yield compared with the control, whereas shoot dry weight, plant height, leaf area, and soluble solid concentration (Brix index) did not experience significant changes (p < 0.05). However, seed inoculation mitigated the toxic effects of excess Cu, significantly enhancing all the aforementioned plant parameters, except plant height. Seed inoculation also significantly reduced the Cu contents in the fruits of tomato plants growing in the metal contaminated substrate. The biofilm of the B. subtilis strain used demonstrated its effectiveness as a bioinoculant, attenuating the detrimental effects induced by a substrate with excess Cu. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

17 pages, 7385 KB  
Article
Microbial Alliance of Paenibacillus sp. SPR11 and Bradyrhizobium yuanmingense PR3 Enhances Nitrogen Fixation, Yield, and Salinity Tolerance in Black Gram Under Saline, Nutrient-Depleted Soils
by Praveen Kumar Tiwari, Anchal Kumar Srivastava, Rachana Singh and Alok Kumar Srivastava
Nitrogen 2025, 6(3), 66; https://doi.org/10.3390/nitrogen6030066 - 7 Aug 2025
Viewed by 604
Abstract
Salinity is a major abiotic stress limiting black gram (Vigna mungo) productivity, particularly in arid and semi-arid regions. Saline soils negatively impact plant growth, nodulation, nitrogen fixation, and yield. This study evaluated the efficacy of co-inoculating salt-tolerant plant growth-promoting bacteria Paenibacillus [...] Read more.
Salinity is a major abiotic stress limiting black gram (Vigna mungo) productivity, particularly in arid and semi-arid regions. Saline soils negatively impact plant growth, nodulation, nitrogen fixation, and yield. This study evaluated the efficacy of co-inoculating salt-tolerant plant growth-promoting bacteria Paenibacillus sp. SPR11 and Bradyrhizobium yuanmingense PR3 on black gram performance under saline field conditions (EC: 8.87 dS m−1; pH: 8.37) with low organic carbon (0.6%) and nutrient deficiencies. In vitro assays demonstrated the biocontrol potential of SPR11, inhibiting Fusarium oxysporum and Macrophomina phaseolina by 76% and 62%, respectively. Germination assays and net house experiments under 300 mM NaCl stress showed that co-inoculation significantly improved physiological traits, including germination rate, root length (61.39%), shoot biomass (59.95%), and nitrogen fixation (52.4%) in nitrogen-free media. Field trials further revealed enhanced stress tolerance markers: chlorophyll content increased by 54.74%, proline by 50.89%, and antioxidant enzyme activities (SOD, CAT, PAL) were significantly upregulated. Electrolyte leakage was reduced by 55.77%, indicating improved membrane stability. Agronomic performance also improved, with co-inoculated plants showing increased root length (7.19%), grain yield (15.55 q ha−1; 77.04% over control), total biomass (26.73 q ha−1; 57.06%), and straw yield (8.18 q ha−1). Pod number, seed count, and seed weight were also enhanced. Nutrient analysis showed elevated uptake of nitrogen, phosphorus, potassium, and key micronutrients (Zn, Fe) in both grain and straw. To the best of our knowledge, this is the very first field-based report demonstrating the synergistic benefits of co-inoculating Paenibacillus sp. SPR11 and Bradyrhizobium yuanmingense PR3 in black gram under saline, nutrient-poor conditions without external nitrogen inputs. The results highlight a sustainable strategy to enhance legume productivity and resilience in salt-affected soils. Full article
Show Figures

Graphical abstract

Back to TopTop