Response of Solanum lycopersicum L. to Fusarium oxysporum During Germination and Seedling Stages
Abstract
1. Introduction
2. Materials and Methods
2.1. Response of Tomato Genotypes to F. oxysporum During Germination
2.2. Response of Tomato Genotypes to F. oxysporum During Seedling Stage
2.3. Statistical Analysis
3. Results and Discussion
3.1. Morphological and Molecular Characterization of F. oxysporum
3.2. Response of Tomato Genotypes to F. oxysporum During Germination
3.3. Response of Tomato Genotypes to F. oxysporum During Seedling Stage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerszberg, A.; Hnatuszko-Konka, K.; Kowalczyk, T.; Kononowicz, A.K. Tomato (Solanum lycopersicum L.) in the service of biotechnology. Plant Cell Tissue Organ Cult. 2015, 120, 881–902. [Google Scholar] [CrossRef]
- FAOSTAT. Crops and Livestock Products—Tomatoes: Production (Tonnes). Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 10 August 2025).
- Ramírez-Ojeda, G.; Rodríguez-Pérez, J.E.; Rodríguez-Guzmán, E.; Sahagún-Castellanos, J.; Chávez-Servia, J.L.; Peralta, I.E.; Barrera-Guzmán, L.Á. Distribution and climatic adaptation of wild tomato (Solanum lycopersicum L.) populations in Mexico. Plants 2022, 11, 2007. [Google Scholar] [CrossRef]
- Tamburino, R.; Sannino, L.; Cafasso, D.; Cantarella, C.; Orrù, L.; Cardi, T.; Cozzolino, S.; D’Agostino, N.; Scotti, N. Cultivated tomato (Solanum lycopersicum L.) suffered a severe cytoplasmic bottleneck during domestication: Implications from chloroplast genomes. Plants 2020, 9, 1443. [Google Scholar] [CrossRef]
- Rezk, A.; Abhary, M.; Akhkha, A. Tomato (Solanum lycopersicum L.) breeding strategies for biotic and abiotic stresses. In Advances in Plant Breeding Strategies: Vegetable Crops; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer: Cham, Switzerland, 2021; pp. 363–405. [Google Scholar]
- Lamichhane, J.R.; Dürr, C.; Schwanck, A.A.; Robin, M.-H.; Sarthou, J.-P.; Cellier, V.; Messéan, A.; Aubertot, J.-N. Integrated management of damping-off diseases: A review. Agron. Sustain. Dev. 2017, 37, 10. [Google Scholar] [CrossRef]
- Kamil, D.; Toppo, R.S.; Devi, T.P.; Kumari, A. Diversity of seed-borne fungal phytopathogens. In Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management; Springer: Singapore, 2020; pp. 293–306. [Google Scholar]
- Bawa, I. Management strategies of Fusarium wilt disease of tomato incited by Fusarium oxysporum f. sp. lycopersici (Sacc.): A review. Int. J. Adv. Acad. Res. 2016, 2, 31–42. [Google Scholar]
- Husaini, A.M.; Sakina, A.; Cambay, S.R. Host–pathogen interaction in Fusarium oxysporum infections: Where do we stand? Mol. Plant Microbe Interact. 2018, 31, 889–898. [Google Scholar] [CrossRef]
- McGovern, R.J. Management of tomato diseases caused by Fusarium oxysporum. Crop Prot. 2015, 73, 78–92. [Google Scholar] [CrossRef]
- Gordon, T.R. Fusarium oxysporum and the Fusarium wilt syndrome. Annu. Rev. Phytopathol. 2017, 55, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, C.; Nirmala Devi, D.; Narasimha Murthy, K.; Mohan, C.D.; Lakshmeesha, T.R.; Singh, B.; Kalagatur, N.K.; Niranjana, S.R.; Hashem, A.; Alqarawi, A.A.; et al. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity–A review. Saudi J. Biol. Sci. 2019, 26, 1315–1324. [Google Scholar] [CrossRef]
- Razak, N.J.; Abass, M.H.; Awad, K.M. Multifactorial stressors: Linking Fusarium infection, heavy metals, and salinity to physiological dysfunction in tomato (Solanum lycopersicum L.). Thi-Qar J. Agric. Res. 2025, 14, 248–259. [Google Scholar]
- Yahaya, N.; Hayatu, M. Effect of Trichoderma harzianum on the incidence of Fusarium wilt disease, growth, and yield of selected tomato (Lycopersicon esculentum) varieties. Dutse J. Pure Appl. Sci. 2019, 5, 74–83. [Google Scholar]
- Tabassum, N.; Blilou, I. Cell-to-cell communication during plant-pathogen interaction. Mol. Plant Microbe Interact. 2022, 35, 98–108. [Google Scholar] [CrossRef]
- Ghosh, S.; Malukani, K.K.; Chandan, R.K.; Sonti, R.V.; Jha, G. How plants respond to pathogen attack: Interaction and communication. In Sensory Biology of Plants; Springer: Singapore, 2019; pp. 537–568. [Google Scholar]
- López-Zapata, S.P.; García-Jaramillo, D.J.; López, W.R.; Ceballos-Aguirre, N. Tomato (Solanum lycopersicum L.) and Fusarium oxysporum f. sp. lycopersici interaction: A review. Rev. UDCA Act. Divulg. Cient. 2021, 24. [Google Scholar] [CrossRef]
- Chitwood-Brown, J.; Vallad, G.E.; Lee, T.G.; Hutton, S.F. Breeding for resistance to Fusarium wilt of tomato: A review. Genes 2021, 12, 1673. [Google Scholar] [CrossRef]
- Cruz, J.L. Análisis de la Señalización Mediada por la Pared Celular y el Estrés Oxidativo en la Interacción Planta–Patógeno. Ph.D. Thesis, Universitat de València, Valencia, Spain, 2017. [Google Scholar]
- Naz, M.; Zhang, D.; Liao, K.; Chen, X.; Ahmed, N.; Wang, D.; Zhou, J.; Chen, Z. The past, present, and future of plant activators targeting the salicylic acid signaling pathway. Genes 2024, 15, 1237. [Google Scholar] [CrossRef] [PubMed]
- Zavala, J.A. Respuestas inmunológicas de las plantas frente al ataque de insectos. Cienc. Hoy 2010, 20, 52–59. [Google Scholar]
- Marín-Montes, I.M.; Rodríguez-Pérez, J.E.; Sahagún-Castellanos, J.; Hernández-Ibáñez, L.; Velasco-García, Á.M. Morphological and molecular variation in 55 native tomato collections from Mexico. Rev. Chapingo Ser. Hortic. 2016, 22, 117–132. [Google Scholar] [CrossRef]
- Gallé, Á.; Pelsőczi, A.; Benyó, D.; Podmaniczki, A.; Szabó-Hevér, Á.; Poór, P.; Tóth, B.; Horváth, E.; Erdei, L.; Csiszár, J. Systemic response to Fusarium graminearum and culmorum inoculations: Changes in detoxification of flag leaves in wheat. Cereal Res. Commun. 2022, 50, 1055–1063. [Google Scholar] [CrossRef]
- Driouich, A.; Follet-Gueye, M.L.; Vicré-Gibouin, M.; Hawes, M. Root border cells and secretions as critical elements in plant host defense. Curr. Opin. Plant Biol. 2013, 16, 489–495. [Google Scholar] [CrossRef]
- Ficke, A.; Gadoury, D.M.; Seem, R.C. Ontogenic resistance and plant disease management: A case study of grape powdery mildew. Phytopathology 2002, 92, 671–675. [Google Scholar] [CrossRef]
- Calonnec, A.; Jolivet, J.; Vivin, P.; Schnee, S. Pathogenicity traits correlate with the susceptible Vitis vinifera leaf physiology transition in the biotroph fungus Erysiphe necator: An adaptation to plant ontogenic resistance. Front. Plant Sci. 2018, 9, 1808. [Google Scholar] [CrossRef]
- Kus, J.V.; Zaton, K.; Sarkar, R.; Cameron, R.K. Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. Plant Cell 2002, 14, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Deanda-Tovar, A.A.; Rodríguez-Pérez, J.E.; Sahagún-Castellanos, J.; Colinas-y-León, M.T.B.; Pérez-Rodríguez, P.; Paredes-Cervantes, A.E. Tomato lines tolerant to sodium chloride at early growth stages. Horticulturae 2025, 11, 532. [Google Scholar] [CrossRef]
- Isaac, M.R.; Leyva-Mir, S.G.; Sahagun-Castellanos, J.; Camara-Correia, K.; Tovar-Pedraza, J.M.; Rodriguez-Perez, J.E. Occurrence, identification, and pathogenicity of Fusarium spp. associated with tomato wilt in Mexico. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 484–493. [Google Scholar] [CrossRef]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Robles-Yerena, L.; Leyva Mir, S.G.; Cruz Gómez, A.; Camacho Tapia, M.; Nieto Ángel, D.; Tovar Pedraza, J.M. Fusarium oxysporum Schltdl. y Fusarium solani (Mart.) Sacc. causantes de la marchitez de plántulas de Pinus spp. en vivero. Rev. Mex. Cienc. For. 2016, 7, 25–36. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef]
- Gayosso-Barragán, O.; López-Benítez, A.; Marroquín-Morales, J.Á.; Lopéz-Aguilar, K.; Hidalgo-Ramos, D.M.; Chávez-Aguilar, G. Evaluación de la respuesta de diferentes genotipos de tomate a Fusarium oxysporum raza 3. Rev. Mex. Cienc. Agríc. 2021, 12, 409–420. [Google Scholar]
- Maguire, J.D. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
- Cadahia López, C. Fertirrigación: Cultivos Hortícolas y Ornamentales, 1st ed.; Ediciones Mundi-Prensa: Madrid, España, 2000. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Gower, J.C. A comparison of some methods of cluster analysis. Biometrics 1967, 23, 623. [Google Scholar] [CrossRef]
- Hotelling, H. A generalized T test and measure of multivariate dispersion. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 31 July–12 August 1950; University of California Press: Berkeley, CA, USA, 1951; Volume 1, pp. 23–41. [Google Scholar]
- Johnson, D.E. Métodos Multivariados Aplicados al Análisis de Datos, 1st ed.; Thompson Editores: Ciudad de México, México, 2000. [Google Scholar]
- Dabire, T.G.; Neya, B.F.; Somda, I.; Legrève, A. Pathogenicity study of some seed-borne fungi of onion (Allium cepa L.) from Burkina Faso. Int. J. Biol. Chem. Sci. 2021, 15, 1062–1072. [Google Scholar] [CrossRef]
- Nayyar, B.G.; Woodward, S.; Mur, L.A.; Akram, A.; Arshad, M.; Naqvi, S.S.; Akhund, S. Identification and pathogenicity of Fusarium species associated with sesame (Sesamum indicum L.) seeds from the Punjab, Pakistan. Physiol. Mol. Plant Pathol. 2018, 102, 128–135. [Google Scholar] [CrossRef]
- Chen, H.; White, J.F.; Malik, K.; Li, C. Molecular assessment of oat head blight fungus, including a new genus and species in a family of Nectriaceae. Int. J. Food Microbiol. 2024, 417, 110715. [Google Scholar] [CrossRef]
- Yasir, A.M.; Nasruddin, A. The evaluation effect of Fusarium verticillioides on seed quality in new high-yielding maize varieties. IOP Conf. Ser. Earth Environ. Sci. 2023, 1192, 012028. [Google Scholar] [CrossRef]
- Wang, J.; Wei, X.; Kamran, M.; Chen, T.; White, J.F.; Li, C. Quality and nutrition of oat seed as influenced by seed-borne fungal pathogens during storage. J. Plant Dis. Prot. 2022, 129, 243–252. [Google Scholar] [CrossRef]
- Ghosal, D.; Datta, B. Characterization, phylogenetic analysis and toxigenic potential of Fusarium incarnatum–equiseti species complex isolates associated with root rot disease in vegetables. J. Phytopathol. 2024, 172, e13362. [Google Scholar] [CrossRef]
- Khaledi, N.; Zare, L.; Hassani, F.; Moslemkhani, C. Current status of seed-borne Fusarium of wheat in Iran and its effect involved in seedling resistance and biochemical indicators. Indian Phytopathol. 2023, 76, 689–700. [Google Scholar] [CrossRef]
- Chhabra, R.; Kaur, N.; Bala, A. Differential biochemical response of basmati and non-basmati rice seeds upon bakanae (Fusarium fujikuroi) infection. Vegetos 2022, 36, 516–525. [Google Scholar] [CrossRef]
- Meline, V.; Hendrich, C.G.; Truchon, A.N.; Caldwell, D.; Hiles, R.; Leuschen-Kohl, R.; Tran, T.; Mitra, R.M.; Allen, C.; Iyer-Pascuzzi, A.S. Tomato deploys defence and growth simultaneously to resist bacterial wilt disease. Plant Cell Environ. 2023, 46, 3040–3058. [Google Scholar] [CrossRef]
- Gorshkov, V.; Tsers, I. Plant susceptible responses: The underestimated side of plant–pathogen interactions. Biol. Rev. 2022, 97, 45–66. [Google Scholar] [CrossRef]
- Liu, Y.; Esposto, D.; Mahdi, L.K.; Porzel, A.; Stark, P.; Hussain, H.; Scherr-Henning, A.; Isfort, S.; Bathe, U.; Acosta, I.F.; et al. Hordedane diterpenoid phytoalexins restrict Fusarium graminearum infection but enhance Bipolaris sorokiniana colonization of barley roots. Mol. Plant 2024, 17, 1307–1327. [Google Scholar] [CrossRef] [PubMed]
- Arunakumar, G.S.; Gnanesh, B.N. Evaluation of artificial inoculation methods to determine resistance reaction to dry root rot and black root rot disease in mulberry (Morus spp.). Arch. Phytopathol. Plant Prot. 2023, 56, 49–65. [Google Scholar] [CrossRef]
- López, M.M.; Aristizabal, A.M.O.; Echeverri, V.M.O. Control biológico contra Fusarium sp. en plantas de uchuva (Physalis peruviana L.) a nivel de invernadero mediante aplicación combinada de Trichoderma sp. y Bacillus sp. Rev. Investig. Agrar. Ambient. 2024, 15, 35–67. [Google Scholar] [CrossRef]
- Forero, R.; Ortiz, E.; De León, W.; Gómez, J.C.; Hoyos-Carvajal, L. Análisis de la resistencia a Fusarium oxysporum en plantas de Passiflora maliformis L. Rev. Colomb. Cienc. Hortic. 2015, 9, 197–208. [Google Scholar] [CrossRef]
- Delgado-Ortiz, J.C.; Ochoa-Fuentes, Y.M.; Cerna-Chávez, E.; Beltrán-Beache, M.; Rodríguez-Guerra, R.; Aguirre-Uribe, L.A.; Vázquez-Martínez, O. Patogenicidad de especies de Fusarium asociadas a la pudrición basal del ajo en el centro norte de México. Rev. Argent. Microbiol. 2016, 48, 222–228. [Google Scholar] [CrossRef]
- Ma, L.-J.; Geiser, D.M.; Proctor, R.H.; Rooney, A.P.; O’Donnell, K.; Trail, F.; Gardiner, D.M.; Manners, J.M.; Kazan, K. Fusarium pathogenomics. Annu. Rev. Microbiol. 2013, 67, 399–416. [Google Scholar] [CrossRef]
- Patiño-Pacheco, M.J.; Pérez-Cardona, O.Y. Evaluación de la Resistencia de Genotipos de Passifloras a Fusarium solani f. sp. passiflorae en Granadilla. Entramado 2021, 17, 256–267. [Google Scholar] [CrossRef]
- Semagn, K.; Henriquez, M.A.; Iqbal, M.; Brûlé-Babel, A.L.; Strenzke, K.; Ciechanowska, I.; Navabi, A.; N’Diaye, A.; Pozniak, C.; Spaner, D. Identification of Fusarium head blight sources of resistance and associated QTLs in historical and modern Canadian spring wheat. Front. Plant Sci. 2023, 14, 1190358. [Google Scholar] [CrossRef] [PubMed]
- Lori, G.A.; Malbran, I.; Mourelos, C.A.; Wolcan, S.M. First report of Fusarium oxysporum f. sp. apii race 2 causing Fusarium yellows on celery in Argentina. Plant Dis. 2016, 100, 1020. [Google Scholar] [CrossRef]
- Leyva-Mir, S.G.; González-Solano, C.M.; Rodríguez-Pérez, J.E.; Montalvo-Hernández, D. Comportamiento de líneas avanzadas de tomate (Solanum lycopersicum L.) a fitopatógenos en Chapingo, México. Rev. Chapingo Ser. Hortic. 2013, 19, 301–313. [Google Scholar] [CrossRef]
- Le, D.; Ameye, M.; Landschoot, S.; Audenaert, K.; Haesaert, G. Phenology-regulated defence mechanisms as drivers for Fusarium basal rot in onion (Allium cepa). Plant Pathol. 2022, 71, 1440–1453. [Google Scholar] [CrossRef]
- Zhang, J.R.; Liu, S.S.; Pan, L.L. Enhanced Age-Related Resistance to Tomato Yellow Leaf Curl Virus in Tomato Is Associated with Higher Basal Resistance. Front. Plant Sci. 2021, 12, 685382. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Li, H.; Naeem, M.; Wu, X.; Yong, T.; Song, C.; Liu, T.; Chen, W.; Yang, W. Diversity of the seedborne fungi and pathogenicity of Fusarium species associated with intercropped soybean. Pathogens 2020, 9, 531. [Google Scholar] [CrossRef] [PubMed]
- Michielse, C.B.; Rep, M. Pathogen profile update: Fusarium oxysporum. Mol. Plant Pathol. 2009, 10, 311. [Google Scholar] [CrossRef]
- Robinson, R.A. Return to Resistance: Breeding Crops to Reduce Pesticide Dependence; AgAccess: Davis, CA, USA, 1996. [Google Scholar]
- Facundo-Angel, P.; Sahagún-Castellanos, J.; Rodríguez-Pérez, J.E.; Leyva-Mir, S.G. Molecular markers of pathogen resistance for assisted breeding of tomato (Solanum lycopersicum L.). Rev. Chapingo Ser. Hortic. 2024, 30, 21–33. [Google Scholar] [CrossRef]
- Tassone, M.R.; Bagnaresi, P.; Desiderio, F.; Bassolino, L.; Barchi, L.; Florio, F.E.; Sunseri, F.; Sirangelo, T.M.; Rotino, G.L.; Toppino, L. A Genomic BSAseq Approach for the Characterization of QTLs Underlying Resistance to Fusarium oxysporum in Eggplant. Cells 2022, 11, 2548. [Google Scholar] [CrossRef]
Variable | Eigenvectors | Classification Functions | ||
---|---|---|---|---|
VD1 | VD2 | VD1 | VD2 | |
Germination (GER) | −0.547 | 0.245 | −2.841 | −4.683 |
Germination rate index (GRI) | −0.337 | 0.403 | 0.302 | 1.609 |
Damage Rate Index (DRI) | 0.928 | 0.280 | 1.735 | 2.265 |
Incidence (INC) | 0.815 | 0.120 | 0.005 | −0.070 |
Area Under the Disease Progress Curve (AUC) | 0.928 | 0.320 | 0.034 | 0.008 |
Dry weight (DW) | −0.587 | 0.641 | −0.363 | 4.459 |
Stem length (SL) | −0.292 | 0.546 | −0.098 | −7.823 |
Radicle length (RAL) | −0.514 | 0.703 | −0.383 | −0.396 |
Total length (TL) | −0.532 | 0.675 | −1.290 | 7.647 |
GRP | GER | GRI | DRI | INC | AUC | DW | SL | RAL | TL |
---|---|---|---|---|---|---|---|---|---|
1 | 0.939 b | 0.795 b | 2.23 b | 60.8 b | 44.7 b | 0.731 b | 0.740 ab | 1.72 b | 0.997 b |
2 | 1.012 a | 0.930 a | 1.51 c | 44.4 c | 27.5 c | 0.968 a | 0.802 a | 2.84 a | 1.284 a |
3 | 0.785 c | 0.620 c | 2.16 b | 58.8 b | 42.7 b | 0.336 d | 0.457 c | 0.73 c | 0.527 c |
4 | 0.808 c | 0.740 b | 3.55 a | 78.9 a | 80.6 a | 0.581 c | 0.681 b | 1.54 b | 0.857 b |
HSD | 0.071 | 0.076 | 0.24 | 6.4 | 5.6 | 0.102 | 0.091 | 0.37 | 0.141 |
Variable | Eigenvectors | Classification Functions | ||
---|---|---|---|---|
DV1 | DV2 | DV1 | DV2 | |
Plant height (PH) | −0.071 | 0.907 | −2.689 | 10.848 |
Aerial dry weight (ADW) | 0.737 | 0.559 | 0.057 | 2.161 |
Root dry weight (RDW) | 0.883 | 0.211 | 2.183 | 0.434 |
Root length (RL) | 0.777 | −0.147 | 7.096 | −4.512 |
Leaf area (LA) | 0.870 | 0.278 | 3.804 | −1.556 |
Growth rate (GR) | −0.446 | 0.395 | −0.965 | −0.898 |
GRP | PH | ADW | RDW | RL | LA | GR |
---|---|---|---|---|---|---|
1 | 0.834 c | 1.222 c | 1.000 b | 0.996 b | 0.912 b | 0.917 c |
2 | 0.817 c | 0.978 d | 0.668 d | 0.848 c | 0.710 c | 0.971 b |
3 | 1.031 a | 1.343 b | 0.823 c | 0.887 c | 0.853 b | 1.022 a |
4 | 0.878 b | 1.873 a | 1.825 a | 1.045 a | 1.271 a | 0.901 c |
HSD | 0.042 | 0.106 | 0.149 | 0.048 | 0.074 | 0.039 |
Germination | |||||
---|---|---|---|---|---|
Group 2 Tolerant | Group 1 Intermediate Tolerance | Group 3 Susceptible | Group 4 Susceptible | ||
Group 4 Tolerant | L1, L15, L2, L45, L53 and L74 | L61 | L76-H and L85 | ||
Seedling | Group1 Intermediate Tolerance | L5, L29, L30, L63 and L65 | L13, L21, L23, L3, L34, L36, L37, L46, L47S2, L51-H, L54, L6, L68, L69, L7, L71, L78, L88, L91, L92D, RF41, RF46 RF81 | L22, L41, L62, L72, RF38 | L10, L19, L27, L43, L4-3, L51, L52, L59, L60, L75, L80, MERM |
Group 2 Susceptible | L32, L39, L48, L89, L90, SS5 TOP | IMP, L11-4, L14, L31, L35, L40, L47SINV, L49, L56, L58, L86, L9, RF69 | L44, L47B1, RF1 | L24, L28, L55, L57 and RF48 | |
Group 3 Susceptible | L64, SS2 | L12, L33, L4-1, L42, L47S8, L50, L66, L73, L8, RF12 | L18 | L67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paredes-Cervantes, A.E.; Rodríguez-Pérez, J.E.; Sahagún-Castellanos, J.; Leyva-Mir, S.G.; Hernández-Rodríguez, M.; Deanda-Tovar, A.A. Response of Solanum lycopersicum L. to Fusarium oxysporum During Germination and Seedling Stages. Agronomy 2025, 15, 2089. https://doi.org/10.3390/agronomy15092089
Paredes-Cervantes AE, Rodríguez-Pérez JE, Sahagún-Castellanos J, Leyva-Mir SG, Hernández-Rodríguez M, Deanda-Tovar AA. Response of Solanum lycopersicum L. to Fusarium oxysporum During Germination and Seedling Stages. Agronomy. 2025; 15(9):2089. https://doi.org/10.3390/agronomy15092089
Chicago/Turabian StyleParedes-Cervantes, Ana Elizabeth, Juan Enrique Rodríguez-Pérez, Jaime Sahagún-Castellanos, Santos Gerardo Leyva-Mir, Martha Hernández-Rodríguez, and Alma Aurora Deanda-Tovar. 2025. "Response of Solanum lycopersicum L. to Fusarium oxysporum During Germination and Seedling Stages" Agronomy 15, no. 9: 2089. https://doi.org/10.3390/agronomy15092089
APA StyleParedes-Cervantes, A. E., Rodríguez-Pérez, J. E., Sahagún-Castellanos, J., Leyva-Mir, S. G., Hernández-Rodríguez, M., & Deanda-Tovar, A. A. (2025). Response of Solanum lycopersicum L. to Fusarium oxysporum During Germination and Seedling Stages. Agronomy, 15(9), 2089. https://doi.org/10.3390/agronomy15092089