Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (656)

Search Parameters:
Keywords = seed nutritional quality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 13964 KB  
Article
Phosphorus Alters the Metabolism of Sugars and Amino Acids in Elite Wheat Grains
by Jialian Wei, Xiangchi Zhang, Gang Li, Kaiyong Fu, Mei Yan, Cheng Li and Chunyan Li
Plants 2025, 14(20), 3152; https://doi.org/10.3390/plants14203152 - 13 Oct 2025
Abstract
Phosphorus supply significantly influences starch and amino acid accumulation in wheat grains, yet the mechanisms coordinating sugar–amino acid metabolic crosstalk under differential phosphorus availability remain elusive. To address this knowledge gap, we conducted a controlled trial on phosphorus supplementation using wheat (Triticum aestivum [...] Read more.
Phosphorus supply significantly influences starch and amino acid accumulation in wheat grains, yet the mechanisms coordinating sugar–amino acid metabolic crosstalk under differential phosphorus availability remain elusive. To address this knowledge gap, we conducted a controlled trial on phosphorus supplementation using wheat (Triticum aestivum L. cv. Xindong 20) with three treatments: P0 (0 kg·ha−1, phosphorus deficiency), LP (105 kg·ha−1, normal phosphorus), and HP (210 kg·ha−1, phosphorus excess). Seed samples were collected at 7, 14, and 21 days post-anthesis (DPA). This design enabled a systematic analysis of how phosphorus availability modulates the metabolic relationship between amino acids and sugars during grain development. Proteomic profiling of starch granule-associated proteins (SGAPs) demonstrated that wheat reprograms carbohydrate allocation in response to phosphorus availability. Notably, differentially expressed proteins (DEPs) exhibited tissue-specific regulation patterns: pericarp-localized DEPs were predominantly up-regulated, whereas endosperm-associated DEPs showed down-regulation under phosphorus modulation. Mechanistically, phosphorus application triggered accelerated starch catabolism in the pericarp (Pe) concomitant with enhanced starch anabolism in the endosperm (En), thereby altering the temporal dynamics of starch granule development. These findings elucidate key regulatory patterns of phosphorus nutrition in wheat grain metabolism, establishing a biochemical framework for the optimization of starch quality parameters. The identified phosphorus-responsive metabolic networks reveal pivotal mechanisms that support the development of precision breeding strategies and phosphorus-efficient cultivation practices. This research offers novel pathways to simultaneously improve both grain yield and nutritional quality in wheat production systems. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

24 pages, 2427 KB  
Article
Plasma-Activated Water (PAW) Enhances Seed Germination and Improves Biochemical Quality in Kangkong (Ipomoea aquatica Forssk.) Microgreens
by Prapasiri Ongrak, Nopporn Poolyarat, Bhornchai Harakotr, Yaowapha Jirakiattikul and Panumart Rithichai
Horticulturae 2025, 11(10), 1218; https://doi.org/10.3390/horticulturae11101218 - 10 Oct 2025
Viewed by 123
Abstract
Plasma-activated water (PAW) is an eco-friendly technology with potential to improve seed germination and nutritional quality in microgreens. This study investigated the effects of PAW on three cultivars of kangkong (Ipomoea aquatica Forssk.). PAW activated for 10 min (PAW10) significantly enhanced seed [...] Read more.
Plasma-activated water (PAW) is an eco-friendly technology with potential to improve seed germination and nutritional quality in microgreens. This study investigated the effects of PAW on three cultivars of kangkong (Ipomoea aquatica Forssk.). PAW activated for 10 min (PAW10) significantly enhanced seed germination and vigor, with effects comparable to those of a 15-min treatment. PAW10 treatment not only improved the accumulation of bioactive compounds—including total phenolics, flavonoids, ascorbic acid, chlorophylls, and carotenoids—but also enhanced antioxidant activity. These improvements were accompanied by elevated hydrogen peroxide (H2O2) levels and increased enzymatic activities, specifically catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX). Principal component analysis revealed cultivar-specific responses to PAW10. The Senafore 20 (SF) cultivar showed the most pronounced increases in antioxidant and antiglycation activities, as well as key bioactive compounds. The Phai-ngern (PN) cultivar exhibited elevated SOD activity and fiber content, while the Senee 20 (SN) cultivar showed minimal changes. These findings suggest that PAW10 effectively promotes germination and antioxidant-related biochemical responses in kangkong microgreens, with varying responses depending on cultivar. This study highlights PAW treatment as a promising approach to improve microgreen production and antioxidant capacity, supporting sustainable agriculture. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

21 pages, 328 KB  
Article
Sunflower (Helianthus annuus) Seed Supplementation in Corn Silage-Based Diets for Dairy Ewes Modifies Milk and Cheese Fatty Acid Profile and Sensory Properties of Cheese
by Manuel Gonzalez-Ronquillo, Beatriz Schettino Bermudez, Jose J. Perez Gonzalez, Alondra Cristel Narvaez Lopez, Lizbeth E. Robles Jimenez and Navid Ghavipanje
Foods 2025, 14(19), 3443; https://doi.org/10.3390/foods14193443 - 8 Oct 2025
Viewed by 241
Abstract
Consumers increasingly demand dairy products with improved nutritional quality, particularly regarding their fatty acid (FA) composition, due to recognized implications for human health. This study aimed to evaluate the modification in the composition, FA profile, and sensory profile of cheeses elaborated with ewe [...] Read more.
Consumers increasingly demand dairy products with improved nutritional quality, particularly regarding their fatty acid (FA) composition, due to recognized implications for human health. This study aimed to evaluate the modification in the composition, FA profile, and sensory profile of cheeses elaborated with ewe milk, through the diet inclusion of crushed sunflower (Helianthus annuus) seeds and sunflower seed silage in corn silage-based diets. The study was conducted with six East-Friesian ewes in a double 3 × 3 Latin square design, including three 21-day periods. Three diets were based on ad libitum corn silage as follows: control (CTRL, without supplementation), sunflower seeds (SFS, supplemented with 86 g/kg crushed sunflower seeds), and sunflower seed silage (SFSS, supplemented with 137 g/kg sunflower seed silage). The composition and FA profile of milk and cheese, and the sensory properties of cheese, together with the sensory profile, were evaluated. Dietary feeding with SFS and SFSS did not affect milk production and milk fat percentage but increased protein percentage. SFS and/or SFSS increased C18:0, C18:1 trans-9, and C18:1 cis-9 compared to CTRL in milk and cheese. Cheeses from SFS ewes showed improved taste and total acceptability, while odor, color, and texture of cheese remained unaffected. Therefore, SFS and SFSS appeared as a viable strategy to increase the contribution of FA with beneficial effects for health in milk and cheeses. Full article
22 pages, 834 KB  
Review
Proteomic Insights into Edible Nut Seeds: Nutritional Value, Allergenicity, Stress Responses, and Processing Effects
by Qi Guo and Bronwyn J. Barkla
Agronomy 2025, 15(10), 2353; https://doi.org/10.3390/agronomy15102353 - 7 Oct 2025
Viewed by 284
Abstract
Nuts, including tree nuts such as almonds, walnuts, cashews, and macadamias, as well as peanuts, are widely consumed for their health benefits owing to their high-quality protein content. Globally, the nut industry represents a multi-billion-dollar sector, with increasing demand driven by consumer interest [...] Read more.
Nuts, including tree nuts such as almonds, walnuts, cashews, and macadamias, as well as peanuts, are widely consumed for their health benefits owing to their high-quality protein content. Globally, the nut industry represents a multi-billion-dollar sector, with increasing demand driven by consumer interest in nutrition, functional foods, and plant-based diets. Recent advances in proteomic technologies have enabled comprehensive analyses of nut seed proteins, shedding light on their roles in nutrition, allergenicity, stress responses, and food functionality. Seed storage proteins such as 2S albumins, 7S vicilins, and 11S legumins, are central to nutrition and allergenicity. Their behavior during processing has important implications for food safety. Proteomic studies have also identified proteins involved in lipid and carbohydrate metabolism, stress tolerance, and defense against pathogens. Despite technical challenges such as high lipid content and limited genomic resources for many nut species, progress in both extraction methods and mass spectrometry has expanded the scope of nut proteomics. This review underscores the central role of proteomics in improving nut quality, enhancing food safety, guiding allergen risk management, and supporting breeding strategies for sustainable crop improvement. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

18 pages, 3197 KB  
Article
Transcriptome Analysis Revealed the Molecular Mechanism of Cyanogenic Glycoside Synthesis in Flax
by Xixia Song, Jinhao Zhang, Lili Tang, Hongmei Yuan, Dandan Yao, Weidong Jiang, Guangwen Wu, Lili Cheng, Dandan Liu, Lie Yang, Zhongyi Sun, Caisheng Qiu, Jian Zhang, Liuxi Yi and Qinghua Kang
Agronomy 2025, 15(10), 2327; https://doi.org/10.3390/agronomy15102327 - 1 Oct 2025
Viewed by 239
Abstract
This study aims to elucidate the molecular mechanisms underlying cyanogenic glycoside accumulation in flax. As an important oil and fiber crop, the nutritional value of flax is compromised by the toxicity of cyanogenic glycoside. To clarify the key genetic regulators and temporal patterns [...] Read more.
This study aims to elucidate the molecular mechanisms underlying cyanogenic glycoside accumulation in flax. As an important oil and fiber crop, the nutritional value of flax is compromised by the toxicity of cyanogenic glycoside. To clarify the key genetic regulators and temporal patterns of cyanogenic glycoside biosynthesis, transcriptomic sequencing was performed on seeds from high- and low-cyanogenic glycoside flax varieties (‘MONTANA16’ and ‘Xilibai’) at three developmental stages: bud stage, full flowering stage, and capsule-setting stage. A total of 127.25 Gb of high-quality data was obtained, with an alignment rate exceeding 87.80%. We identified 31,623 differentially expressed genes (DEGs), which exhibited distinct variety- and stage-specific expression patterns. Principal component analysis (PCA) and hierarchical clustering demonstrated strong reproducibility among biological replicates and revealed the seed pod formation stage as the period with the most significant varietal differences, suggesting it may represent a critical regulatory window for cyanogenic glycoside synthesis. GO and KEGG enrichment analyses indicated that DEGs were primarily involved in metabolic processes (including secondary metabolism and carbohydrate metabolism), oxidoreductase activity, and transmembrane transport functions. Of these, the cytochrome P450 pathway was most significantly enriched at the full bloom stage (H2 vs. L2). A total of 15 LuCYP450 and 13 LuUGT85 family genes were identified, and their expression patterns were closely associated with cyanogenic glycoside accumulation: In high-cyanogenic varieties, LuCYP450-8 was continuously upregulated, and LuUGT85-12 was significantly activated during later stages. Conversely, in low-cyanogenic varieties, high expression of LuCYP450-2/14 may inhibit synthesis. These findings systematically reveal the genetic basis and temporal dynamics of cyanogenic glycoside biosynthesis in flax and highlight the seed pod formation stage as a decisive regulatory window for cyanogenic glycoside synthesis. This study provides new insights into the coordinated regulation of cyanogenic pathways and establishes a molecular foundation for breeding flax varieties with low CNG content without compromising agronomic traits. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

13 pages, 561 KB  
Article
Impact of Coated Phosphorus Fertilizers and Application Methods on Soil Fertility, Yield, and Ionic Regulation of Common Beans (Phaseolus vulgaris L.) Grown in Saline Soil
by Sara A. El-Shabasy, Tamer H. Khalifa, Tarek M. El-Zehery and Alaa El-Dein Omara
Crops 2025, 5(5), 68; https://doi.org/10.3390/crops5050068 - 29 Sep 2025
Viewed by 223
Abstract
Salinity is a major limitation on common bean productivity, while phosphorus in many soils is often immobilized, limiting its availability to plants. This study investigated the effects of coated and uncoated superphosphate fertilizers, applied at different rates and using distinct methods, on soil [...] Read more.
Salinity is a major limitation on common bean productivity, while phosphorus in many soils is often immobilized, limiting its availability to plants. This study investigated the effects of coated and uncoated superphosphate fertilizers, applied at different rates and using distinct methods, on soil properties, plant growth, and ion regulation in common beans grown in saline soil over two seasons (2023–2024). Treatments combined two fertilizer types (coated with potassium sulfate and uncoated), two P rates (360 and 480 kg/ha), and two application methods: (1) conventional application, broadcasting followed by plowing to 30 cm depth during soil preparation; (2) surface application, broadcasting without incorporation. Six treatments were applied: T1: 360 kg/ha of uncoated superphosphate (conventional method); T2: 480 kg/ha of uncoated superphosphate (conventional method); T3: 360 kg/ha of coated superphosphate (conventional method); T4: 480 kg/ha of coated superphosphate (conventional method); T5: 360 kg/ha of coated superphosphate (surface method); and T6: 480 kg/ha of coated superphosphate (surface method). The results demonstrated that soil pH was unaffected across treatments. However, T4 and T6 significantly improved nutrient availability (N, P, and K), biomass, grain yield, and seed nutritional quality (protein, P, K, and Ca). Despite increased soil EC, these treatments enhanced ionic balance (higher K/Na and Ca/Na ratios) indicating improved stress tolerance. Importantly, T3 (360 kg/ha coated) performed comparably to T2 (480 kg/ha uncoated), suggesting that coated superphosphate at lower rates can reduce input costs without compromising yield. These results demonstrate the agronomic and environmental benefits of coated superphosphate, particularly under saline conditions, through enhanced nutrient use efficiency and improved crop performance. Full article
Show Figures

Figure 1

33 pages, 12871 KB  
Review
Dietary Plant-Based Protein Supplements: Sources, Processing, Nutritional Value, and Health Benefits
by Kartik Sharma, Wanli Zhang and Saroat Rawdkuen
Foods 2025, 14(18), 3259; https://doi.org/10.3390/foods14183259 - 19 Sep 2025
Viewed by 1137
Abstract
With the global population reaching 10 billion in 25 years, food production must increase 70% while addressing sustainability concerns. This review uniquely integrates advanced processing technologies—including precision fermentation, AI-driven optimization, and 3D printing—with comprehensive analysis of nutritional quality and health outcomes of plant-based [...] Read more.
With the global population reaching 10 billion in 25 years, food production must increase 70% while addressing sustainability concerns. This review uniquely integrates advanced processing technologies—including precision fermentation, AI-driven optimization, and 3D printing—with comprehensive analysis of nutritional quality and health outcomes of plant-based protein supplements (PBPSs). Common sources include legumes, cereals, and nuts/seeds, each with amino acid profiles requiring strategic protein complementation. Advanced processing technologies including high-pressure processing, ultrasound-assisted extraction, pulsed electric field, precision fermentation, and AI-driven optimization enhance protein digestibility, solubility, and functional properties while reducing antinutritional factors. PBPSs demonstrate comparable muscle protein synthesis to animal proteins while providing superior cardiovascular, metabolic, and gut health benefits due to bioactive compounds, fibers, and antioxidants. Integrating advanced processing with traditional methods presents opportunities to develop high-quality, sustainable protein supplements meeting global demands while promoting human health and environmental sustainability. Full article
(This article belongs to the Special Issue Plant Proteins: Functions in Disease Prevention and Treatment)
Show Figures

Figure 1

20 pages, 1203 KB  
Article
Production and Evaluation of Green Soybean (Glycine max L.) Powder Fortified with Encapsulated Crude Procyanidin Extract Powder
by Saritanot Kosonphong, Noppol Leksawasdi, Sarana Rose Sommano, Charin Techapun, Pornchai Rachtanapun, Nutsuda Sumonsiri and Julaluk Khemacheewakul
Processes 2025, 13(9), 2955; https://doi.org/10.3390/pr13092955 - 17 Sep 2025
Viewed by 445
Abstract
Green soybean (Glycine max L.), commonly known as edamame, is recognized for its rich phytochemical content and nutritional and functional benefits. However, its limited shelf life and susceptibility to quality degradation restrict its commercial potential in fresh form. To address this, green [...] Read more.
Green soybean (Glycine max L.), commonly known as edamame, is recognized for its rich phytochemical content and nutritional and functional benefits. However, its limited shelf life and susceptibility to quality degradation restrict its commercial potential in fresh form. To address this, green soybean seeds can be processed into extract and powder forms, which offer greater stability and added value. The preparation of crude procyanidin extract was examined in this study along with the effects of three distinct extraction techniques: enzyme incubation, ultrasonic-assisted extraction (UAE), and enzymatic hydrolysis followed by ultrasonic-assisted extraction (EUAE). Additionally, the effects of two drying methods (drum-drying and spray-drying) on the retention of bioactive compounds and antioxidant activity were assessed. Optimal conditions for each drying method were selected to enhance antioxidant properties by fortifying instant green soybean powder (GSP) with encapsulated crude procyanidin extract (ECPE). The chemical, physical, and sensory properties of ECPE-fortified GSP were analyzed. Results indicated that the EUAE method was the most effective for procyanidin extraction. Encapsulation allowed for procyanidin retention of over 83% after storage at 25 and 35 °C for 12 weeks. The optimal conditions were determined to be drum-drying at 3 rpm and spray-drying at an inlet temperature of 200 °C for the drying techniques. Fortification of GSP with 3–5% ECPE powder positively correlated with increased phytochemical content and antioxidant activity. Both drum- and spray-dried GSP maintained color integrity comparable to the control. Drum-dried GSP preserved greater concentrations of bioactive compounds and exhibited superior antioxidant activity compared to spray-dried GSP. All powdered products had acceptable water activity (≤0.60) and moisture content (≤12%), suggesting suitability for long-term storage. Although spray-dried powders exhibited greater hygroscopicity, they demonstrated lower emulsion stability and solubility compared to drum-dried powders. Drum-dried GSP retained higher levels of carbohydrate, fat, fiber, and ash compared with spray-dried powder, while protein content was similarly preserved by both methods. In conclusion, ECPE powder serves as a promising functional ingredient in instant green soybean powder. Both drum-dried and spray-dried GSP products exhibit potential for application in a variety of functional food products. Full article
(This article belongs to the Special Issue Food Processing and Ingredient Analysis)
Show Figures

Graphical abstract

21 pages, 2661 KB  
Article
Tree Peony as an Efficient Organic Selenium Bioreactor: Selenium Uptake, Accumulation, Speciation, and Nutritional Enhancement via Foliar Sodium Selenite Application
by Kun Hu, Wenbin Zhou, Shiqi Li, Shuaiying Shi, Mengqiang Shi, Shuangcheng Gao and Guoan Shi
Horticulturae 2025, 11(9), 1112; https://doi.org/10.3390/horticulturae11091112 - 13 Sep 2025
Viewed by 550
Abstract
Selenium (Se) is an essential micronutrient for human health, yet its deficiency remains prevalent worldwide. Biofortification through foliar Se application is an effective strategy to enhance Se levels in crops. Paeonia ostii ‘Fengdan’ is a multifunctional woody plant with potential for Se enrichment, [...] Read more.
Selenium (Se) is an essential micronutrient for human health, yet its deficiency remains prevalent worldwide. Biofortification through foliar Se application is an effective strategy to enhance Se levels in crops. Paeonia ostii ‘Fengdan’ is a multifunctional woody plant with potential for Se enrichment, though its Se uptake and transformation mechanisms remain unclear. This study systematically investigated the effects of foliar-applied Na2SeO3 (0–200 mg L−1) on Se uptake, accumulation, speciation, and nutritional quality in tree peony. Results showed that Se uptake increased with higher Na2SeO3 concentrations, displaying a clear dose-dependent pattern across all organs. Se accumulation significantly enhanced, with a pronounced shift in distribution towards above-ground organs under experimental conditions. Notably, tree peony exhibited strong biotransformation capacity, converting over 73% of Se in leaves and over 81% in seeds into organic forms, primarily SeCys2 and SeMet, with minor MeSeCys. Comprehensive evaluation indicated that 100 mg L−1 Na2SeO3 yielded optimal results, significantly enhancing leaf and seed biomass, increasing seed nutrient contents (soluble proteins, sugars, phenolics), and improving the unsaturated fatty acid profile of seed oil. These findings highlight tree peony’s potential as an efficient bioreactor for organic Se and provide a theoretical foundation for developing Se-enriched products from tree peony. Full article
Show Figures

Figure 1

19 pages, 2326 KB  
Article
Substrate–Genotype Interaction Influences Growth and Phytochemical Composition of Wild and Commercial Purslane (Portulaca oleracea L.) Microgreens
by Ivana Kollárová, Ivana Mezeyová, Lucia Galovičová, Jana Žiarovská, Silvia Farkasová, Peter Pencák and Marcel Golian
Agronomy 2025, 15(9), 2141; https://doi.org/10.3390/agronomy15092141 - 6 Sep 2025
Viewed by 736
Abstract
Purslane is highly suitable for intensive microgreen cultivation due to its rapid growth, high germination rate, and exceptional nutritional profile, including omega-3 fatty acids, essential vitamins, and minerals. While previous studies have mostly emphasized its basic composition, our research investigated additional functional traits, [...] Read more.
Purslane is highly suitable for intensive microgreen cultivation due to its rapid growth, high germination rate, and exceptional nutritional profile, including omega-3 fatty acids, essential vitamins, and minerals. While previous studies have mostly emphasized its basic composition, our research investigated additional functional traits, such as pigment accumulation and antioxidant activity. We also explored the cultivation potential of a wild purslane genotype (G2), naturally growing in the Botanical Garden of the Slovak University of Agriculture in Nitra, as a sustainable alternative to commercially available seeds (G1). This study examined how genotype and substrate interactions influence growth performance, pigment concentration, and antioxidant capacity in Portulaca oleracea microgreens. Both genotypes were grown on two different substrates: agar mixed with perlite and mineral wool. Although conserved DNA-derived polymorphism marker analysis revealed a high degree of genetic similarity between G1 and G2, significant phenotypic differences were observed. G1 exhibited greater fresh biomass and shoot length, making it more visually appealing for commercial microgreen production. In contrast, G2 showed higher dry matter content and enhanced accumulation of chlorophylls and carotenoids. Antioxidant activity, measured by DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), and FRAP (Ferric Reducing Antioxidant Power) assays, peaked in G1 cultivated on agar–perlite mix. These findings emphasize the importance of selecting the right genotype–substrate combination to optimize both quality and productivity in microgreen systems. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

15 pages, 2020 KB  
Article
Transcriptome-Based Identification of Novel Transcription Factors Regulating Seed Storage Proteins in Rice
by Jinpyo So, Jong-Yeol Lee, Kyoungwon Cho, Suchan Park, Kyuhee Lee, Don-Kyu Kim and Oksoo Han
Plants 2025, 14(17), 2791; https://doi.org/10.3390/plants14172791 - 5 Sep 2025
Viewed by 644
Abstract
Seed storage proteins (SSPs) play a pivotal role in determining the development, quality, and nutritional value of rice seeds. In this study, we conducted a transcriptome-based correlation analysis to identify novel transcription factors (TFs) potentially involved in the biosynthesis and accumulation of SSPs. [...] Read more.
Seed storage proteins (SSPs) play a pivotal role in determining the development, quality, and nutritional value of rice seeds. In this study, we conducted a transcriptome-based correlation analysis to identify novel transcription factors (TFs) potentially involved in the biosynthesis and accumulation of SSPs. Our analysis revealed nine TFs—OsGATA8, OsMIF1, OsMIF2, OsGZF1, OsbZIP58, OsS1Fa1, OsS1Fa2, OsICE2, and OsMYB24—that exhibit strong co-expression with key SSP genes, including those encoding glutelin and prolamin. Gene expression profiling using quantitative RT-PCR and GUS reporter assays revealed that these TFs are predominantly expressed during seed development, with peak expression observed at 10 days after flowering (DAF). Promoter analysis further demonstrated an enrichment of seed-specific and hormone-responsive cis-regulatory elements, reinforcing the seed-preferential expression patterns of these TFs. Collectively, our findings identify a set of candidate TFs likely involved in SSP regulation and seed maturation, providing a foundation for the genetic enhancement of rice seed quality and nutritional content through targeted breeding and biotechnological approaches. Full article
(This article belongs to the Special Issue Molecular Breeding and Germplasm Improvement of Rice—2nd Edition)
Show Figures

Figure 1

14 pages, 1722 KB  
Article
H+-ATPases Regulated by Auxin and ABA Mediate Acid Growth of Soybean Embryonic Axis During Germination
by Jacymara Lopes Pereira, Geovanna Vitória Olimpio, Fernanda Silva Coelho, Maria Luiza Carvalho Santos, Juliana Lopes Moraes, Deise Paes, Sara Sangi, Amanda Azevedo Bertolazi, Alessandro Coutinho Ramos and Clícia Grativol
Seeds 2025, 4(3), 43; https://doi.org/10.3390/seeds4030043 - 4 Sep 2025
Viewed by 488
Abstract
Soybean seeds (Glycine max) are of great economic and nutritional importance due to their high oil and protein content. Seed germination is an essential process that influences crop yield and quality. The seed embryo resumes growth when it imbibes, which induces [...] Read more.
Soybean seeds (Glycine max) are of great economic and nutritional importance due to their high oil and protein content. Seed germination is an essential process that influences crop yield and quality. The seed embryo resumes growth when it imbibes, which induces the expression of genes related to cell expansion. The role of acid growth in the embryonic axis during germination is not well characterized. Thus, the aim of this study was to verify the contribution of acid growth in the soybean embryonic axis germination. Acid growth is mediated by the acidification of extracellular medium due to the action of H+-ATPases, which activate expansins. We found that the expression of expansins was significantly increased throughout the germination. The expression of H+-ATPases was significantly increased at 3 and 24 h after imbibition (HAI), with major pumping activity at 24 HAI. The auxin and ABA signaling cascades during soybean germination suggest that these hormones are involved with the regulation of H+-ATPase in germinating soybean. To verify the influence of auxin and ABA on H+-ATPase functioning during germination, we treated seeds with IAA, 2,4D, ABA, and ATPase inhibitor, and germinated them in purple agar medium. We observed that IAA, 2,4D, and ABA affected H+-ATPase functioning, by delaying or inhibiting soybean germination. Our results indicate the role of acid growth controlled by H+-ATPase and its regulators—auxin and ABA—in the soybean embryonic axis during germination. Full article
Show Figures

Figure 1

34 pages, 2024 KB  
Review
Advances in Atmospheric Cold Plasma Technology for Plant-Based Food Safety, Functionality, and Quality Implications
by Siyao Liu, Danni Yang, Jiangqi Huang, Huiling Huang, Jinyuan Sun, Zhen Yang and Chenguang Zhou
Foods 2025, 14(17), 2999; https://doi.org/10.3390/foods14172999 - 27 Aug 2025
Viewed by 1216
Abstract
Growing global concerns over pesticide residues and microbial contamination in plant-derived foods have intensified the demand for sustainable decontamination solutions. Conventional physical, chemical, and biological methods are hampered by inherent limitations, including operational inefficiency, secondary pollution risks, and nutritional degradation. Atmospheric cold plasma [...] Read more.
Growing global concerns over pesticide residues and microbial contamination in plant-derived foods have intensified the demand for sustainable decontamination solutions. Conventional physical, chemical, and biological methods are hampered by inherent limitations, including operational inefficiency, secondary pollution risks, and nutritional degradation. Atmospheric cold plasma (ACP) has emerged as a promising non-thermal technology to address these challenges at near-ambient temperatures, leveraging the generation of highly reactive oxygen/nitrogen species (RONS), ultraviolet radiation, and ozone. This review comprehensively examines fundamental ACP mechanisms, discharge configurations, and their applications within plant-based food safety systems. It critically evaluates recent advancements in inactivating microorganisms, degrading mycotoxins and pesticides, and modulating enzymatic activity, while also exploring emerging applications in bioactive compound extraction, drying enhancement, and seed germination promotion. Crucially, the impact of ACP on the quality attributes of plant-based foods is summarized. Treatment parameters can alter physicochemical properties covering color, texture, flavor, acidity, and water activity as well as nutritional constituents such as antioxidants, proteins, lipids, and carbohydrate content. As an environmentally friendly, low-energy-consumption technology with high reactivity, ACP offers transformative potential for enhancing food safety, preserving quality, and fostering sustainable agricultural systems. Full article
Show Figures

Figure 1

17 pages, 1483 KB  
Article
Comparative Profiling of Volatile Compounds and Fatty Acids in Pomegranate Seed Oil: Soxhlet vs. CO2/IPA Extraction for Quality and Circular Bioeconomy Goals
by Caterina Fraschetti, Antonello Filippi, Antonia Iazzetti, Giancarlo Fabrizi, Francesco Cairone and Stefania Cesa
Foods 2025, 14(17), 2951; https://doi.org/10.3390/foods14172951 - 25 Aug 2025
Viewed by 728
Abstract
This study compares the chemical profiles of pomegranate seed oil (PSO) from two cultivars, Granato (G) and Roce (R), extracted by Soxhlet and supercritical CO2/isopropanol. GC-MS and NMR analyses confirmed punicic acid as the dominant fatty acid, with α-eleostearic, oleic, and [...] Read more.
This study compares the chemical profiles of pomegranate seed oil (PSO) from two cultivars, Granato (G) and Roce (R), extracted by Soxhlet and supercritical CO2/isopropanol. GC-MS and NMR analyses confirmed punicic acid as the dominant fatty acid, with α-eleostearic, oleic, and linoleic acids in lower amounts. Supercritical extraction increased yield (about 18%) and selectively raised α-eleostearic and linoleic acids. Volatile organic compound (VOC) profiling by HS-SPME-GC-MS showed higher aldehydes, esters, and terpenes in supercritical extracts, including (E)-cinnamaldehyde (absent in Soxhlet). Soxhlet oils contained more hydrocarbons, suggesting thermal degradation. Overall, supercritical CO2/IPA proved more sustainable and selective, preserving nutritional and aromatic quality and supporting PSO’s potential in food, nutraceutical, and cosmetic uses. Full article
Show Figures

Figure 1

17 pages, 5914 KB  
Article
Comprehensive Evaluation of Nutritional Quality Diversity in Cottonseeds from 259 Upland Cotton Germplasms
by Yiwen Huang, Chengyu Li, Shouyang Fu, Yuzhen Wu, Dayun Zhou, Longyu Huang, Jun Peng and Meng Kuang
Foods 2025, 14(16), 2895; https://doi.org/10.3390/foods14162895 - 20 Aug 2025
Viewed by 607
Abstract
Cottonseeds, rich in high-quality protein and fatty acids, represent a vital plant-derived feedstuff and edible oil resource. To systematically investigate genetic variation patterns in nutritional quality and screen superior germplasm, this study analyzed 26 nutritional quality traits and 8 fiber traits across 259 [...] Read more.
Cottonseeds, rich in high-quality protein and fatty acids, represent a vital plant-derived feedstuff and edible oil resource. To systematically investigate genetic variation patterns in nutritional quality and screen superior germplasm, this study analyzed 26 nutritional quality traits and 8 fiber traits across 259 upland cotton (Gossypium hirsutum L.) accessions using multivariate statistical approaches. Results revealed significant genetic diversity in cottonseed nutritional profiles, with coefficients of variation ranging from 3.42% to 26.37%. Moreover, with advancements in breeding periods, the contents of protein, amino acids, and the proportion of unsaturated fatty acids (UFAs) increased, while oil content and C16:0 levels decreased. Correlation analyses identified significant positive associations (p < 0.05) between proteins, amino acids, UFAs, and most fiber traits, except for seed index (SI), fiber micronaire (FM), and fiber elongation (FE). Through a principal component analysis–fuzzy membership function (PCA-FMF) model, 13 elite accessions (F > 0.75) with high protein content, high UFA proportion, and excellent fiber quality were identified. These findings provide both data-driven foundations and practical germplasm resources for value-added utilization of cottonseed and coordinated breeding for dual-quality traits of nutrition and fiber. Full article
Show Figures

Figure 1

Back to TopTop