Phosphorus Alters the Metabolism of Sugars and Amino Acids in Elite Wheat Grains
Abstract
1. Introduction
2. Results
2.1. Phosphorus Supply Levels Affected Morphology of Starch Granules
2.2. Phosphorus Supply Levels Affected the Content of Starch and Soluble Sugars in Wheat Grains
2.3. Phosphorus Supply Levels Affected Amino Acid Content of Wheat Grains
2.4. Phosphorus Supply Levels Affected the Phosphorus Content in Wheat Grains
2.5. Phosphorus Supply Levels Affected the Metabolic Characteristics of Starch Granule-Associated Proteins in Wheat Pericarp and Endosperm
2.6. Phosphorus Supply Levels Affected on the Redistribution of Carbohydrates
2.7. Metabolic Adaptations in Pericarp and Endosperm Under Phosphorus Application: Insights from Starch Granule Proteomics
3. Discussion
4. Materials and Methods
4.1. Experimental Site and Experimental Design
4.2. Observation of Starch Morphology
4.3. Measurements of Starch Granule Size Distribution and Amylopectin Chain Length Distribution
4.4. Determination of Starch and Soluble Sugar Content
4.5. Sucrose Synthase (SuSy) Assay
4.6. Determination of ADP-Glucose Pyrophosphorylase (AGPase) and Soluble Starch Synthase (SSS) Activity
4.7. Determination of Starch-Degrading Enzyme Activity
4.8. Determination of Amino Acid Content
4.9. Determination of Phosphorus Content and Acid Phosphatase (APase) Activity
4.10. RNA Extraction and Determination of Gene Expression
4.11. Extraction of Starch Granule-Associated Proteins and Quantitative Proteomic Profiling with Data-Independent Acquisition (DIA)
4.12. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SPAGs | starch granule-associated proteins |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
GO | Gene Ontology |
DPA | days post-anthesis |
1,3-P2G | 1,3-bisphosphoglyceric acid |
1,4-GBE | 1,4-alpha-glucan-branching enzyme |
2-OG | α-ketoglutaric acid |
2-PGA | 2-phosphoglyceric acid |
3-PGA | 3-phosphoglyceric acid |
ACO | Aconitase |
ADP-G | Adenosine Diphosphate Glucose |
AGPase | ADP-Glucose Pyrophosphorylase |
AGPL | Glucose-1-phosphate adenylyltransferase |
ALDO | Aldolase |
asdA | Aspartate Semialdehyde Dehydrogenase A |
asdB | Aspartate Semialdehyde Dehydrogenase B |
CS | Citrate synthase |
DEPs | differentially expressed proteins |
D-F-1,6P2 | D-fructose-1,6-diphosphate |
D-F-6P | D-Fructose-6 phosphate |
D-G | D-Glucose |
D-G-1P | D-Glucose-1 phosphate |
D-G-6P | D-Glucose-6 phosphate |
DHAP | dihydroxyacetone phosphate |
DLST | Dihydrolipoamide Succinyltransferase |
EG | Endoglucanase |
ENO | Enolase |
FUM | Fumarase |
G3P | glyceraldehyde-3-phosphate |
G6PI | Glucose-6-phosphate isomerase 6 |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase |
GBSS | Granule-bound Starch synthase |
GELPs | GDSL esterase/lipase |
GLT | Glutamate Synthase |
GOT | Glutamate Oxaloacetate Transaminase |
GPI | Glucose-6-phosphate isomerase |
IDH | Isocitrate Dehydrogenase |
LSC | Succinyl—CoA Ligase |
lysA | Diaminopimelate Decarboxylase |
MDH | Malate Dehydrogenase |
OAA | Oxaloacetic acid |
OGOH | α-Ketoglutarate Dehydrogenase |
PEP | Phosphoenol-pyruvate |
PFP | Fructose 6-phosphate 1-phosphotransferase 6 |
PGAM | Phosphoglycerate mutase |
PGK | Phosphoglycerate kinase |
PGM | Phosphoglucomutase |
PK | pyruvate kinase |
PT | Phosphotransferase |
S-6P | Sucrose-6 phosphate |
SBE | Starch branching enzyme |
SBE IIb | starch branching enzyme IIb |
SDH | Succinate Dehydrogenase |
SEM | Scanning electron micrographs |
SGAPs | starch granule-associated proteins |
SPS | Sucrose-phosphate synthase |
SS | Starch synthase |
SSGs | small starch granules |
SSS | Soluble starch synthase |
SuSy | Sucrose synthase |
T-6P | Trehalose-6 phosphate |
TEM | Transmission electron micrographs |
TPI | Triosephosphate isomerase |
UDP-G | Uridine Diphosphate Glucose |
UTP-GPUT | UTP-glucose-1-phosphate uridylyltransferase |
α-1,4-GP | Alpha-1,4-glucan phosphorylase |
α-TPS | Alpha-trehalose-phosphate synthase |
β-FFase | Beta-fructofuranosidase |
β-Gls | Beta-glucosidase |
References
- Tariq, A.; Zeng, F.; Graciano, C.; Ullah, A.; Sadia, S.; Ahmed, Z.; Murtaza, G.; Ismoilov, K.; Zhang, Z. Regulation of Metabolites by Nutrients in Plants; Wiley: Hoboken, NJ, USA, 2023; pp. 1–18. [Google Scholar]
- Khan, F.; Siddique, A.B.; Shabala, S.; Zhou, M.; Zhao, C. Phosphorus Plays Key Roles in Regulating Plants’ Physiological Responses to Abiotic Stresses. Plants 2023, 12, 2861. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, L.; Wang, Z. Comparison of starch granule development and physicochemical properties of starches in wheat pericarp and endosperm. J. Sci. Food Agric. 2015, 95, 148–157. [Google Scholar] [CrossRef]
- Zhuo, J.; Wang, K.; Wang, N.; Xing, C.; Peng, D.; Wang, X.; Qu, G.; Kang, C.; Ye, X.; Li, Y.; et al. Pericarp Starch Metabolism Is Associated with Caryopsis Development and Endosperm Starch Accumulation in Common Wheat. Plant Sci. 2023, 330, 111622. [Google Scholar] [CrossRef]
- Yu, X.; Li, B.; Wang, L.; Chen, X.; Wang, W.; Wang, Z.; Xiong, F. Systematic Analysis of Pericarp Starch Accumulation and Degradation during Wheat Caryopsis Development. PLoS ONE 2015, 10, e0138228. [Google Scholar] [CrossRef]
- Huang, L.; Tan, H.; Liu, Q. Starch biosynthesis in cereal endosperms: An updated review over the last decade. Plant Commun. 2021, 2, 100237. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ghatak, A.; Mohammadi Bazargani, M.; Kramml, H.; Zang, F.; Gao, S.; Ramšak, Ž.; Gruden, K.; Varshney, R.K.; Jiang, D.; et al. Cell-type Proteomic and Metabolomic Resolution of Early and Late Grain Filling Stages of Wheat Endosperm. Plant Biotechnol. J. 2024, 22, 555–571. [Google Scholar] [CrossRef] [PubMed]
- Keres, I.; Alaru, M.; Loit, E. Impact of Weather Conditions and Farming Systems on Size Distribution of Starch Granules and Flour Yield of Winter Wheat. Agriculture 2020, 10, 22. [Google Scholar] [CrossRef]
- Zhang, B.; Qiao, D.; Xie, F. Starch-based food matrices containing protein: Recent understanding of morphology, structure, and properties. Trends Food Sci. Technol. 2021, 114, 212–231. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Fan, X. Effects of endogenous proteins on the hydrolysis of gelatinized starch and their mechanism of inhibition. Process Biochem. 2022, 113, 134–140. [Google Scholar] [CrossRef]
- Sun, L.; Xu, Z.; Corke, H. Removal of starch granule associated proteins alters the physicochemical properties of annealed rice starches. Int. J. Biol. Macromol. 2021, 185, 412–418. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, L.; Li, J. Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice. Proc. Natl. Acad. Sci. USA 2016, 113, 12844–12849. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J. Understanding Wheat Starch Metabolism in Properties, Environmental Stress Condition, and Molecular Approaches for Value-Added Utilization. Plants 2021, 10, 2282. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, P.; Qin, P. Integrated Metabolome and Transcriptome Analyses Reveal Amino Acid Biosynthesis Mechanisms during the Physiological Maturity of Grains in Yunnan Hulled Wheat (Triticum aestivum ssp. yunnanense King). Int. J. Mol. Sci. 2023, 24, 13475. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.; Chen, Z.; Famiani, F. Gluconeogenesis in Plants: A Key Interface between Organic Acid/Amino Acid/Lipid and Sugar Metabolism. Molecules 2021, 26, 5129. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Loo, E.; Wudick, M. Cellular export of sugars and amino acids: Role in feeding other cells and organisms. Plant Physiol. 2021, 187, 1893–1915. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yi, K. Unloading phosphate for starch synthesis in cereal grains. Mol. Plant 2021, 14, 1232–1233. [Google Scholar] [CrossRef]
- Bechtaoui, N.; Rabiu, M.; Jemo, M. Phosphate-Dependent Regulation of Growth and Stresses Management in Plants. Front. Plant Sci. 2021, 12, 679916. [Google Scholar] [CrossRef]
- Roychowdhury, A.; Srivastava, R.; Kumar, R. Metabolic footprints in phosphate-starved plants. Physiol. Mol. Biol. Plants 2023, 29, 755–767. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, W.; Jin, J.; Christensen, M.J.; Gu, L.; Cheng, C.; Wang, J. Epichloë gansuensis Increases the Tolerance of Achnatherum inebrians to Low-P Stress by Modulating Amino Acids Metabolism and Phosphorus Utilization Efficiency. J. Fungi 2021, 7, 390. [Google Scholar] [CrossRef]
- Wang, R.; Zhong, Y.; Li, X. Cis-regulation of the amino acid transporter genes ZmAAP2 and ZmLHT1 by ZmPHR1 transcription factors in maize ear under phosphate limitation. J. Exp. Bot. 2021, 72, 3846–3863. [Google Scholar] [CrossRef]
- Wei, C.; Zhang, J.; Chen, Y.; Zhou, W.; Xu, B.; Wang, Y.; Chen, J. Physicochemical Properties and Development of Wheat Large and Small Starch Granules during Endosperm Development. Acta Physiol. Plant. 2010, 32, 905–916. [Google Scholar] [CrossRef]
- Solangi, F.; Zhu, X.; Kayabasi, E. The Global Dilemma of Soil Legacy Phosphorus and Its Improvement Strategies under Recent Changes in Agro-Ecosystem Sustainability. ACS Omega 2023, 8, 23271–23282. [Google Scholar] [CrossRef] [PubMed]
- Mcdowell, R.; Pletnyakov, P.; Haygarth, P. Phosphorus applications adjusted to optimal crop yields can help sustain global phosphorus reserves. Nat. Food 2024, 5, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Wasaki, J.; Yonetani, R.; Osaki, M. Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ. 2003, 26, 1515–1523. [Google Scholar] [CrossRef]
- Daba, S.; Liu, X.; Mohammadi, M. A proteomic analysis of grain yield-related traits in wheat. AoB Plants 2020, 12, plaa042. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, M.; Ruan, J. Integrated Transcriptome and Metabolic Analyses Reveals Novel Insights into Free Amino Acid Metabolism in Huangjinya Tea Cultiva. Front. Plant Sci. 2017, 8, 291. [Google Scholar] [CrossRef]
- Angelovici, R.; Galili, G.; Fait, A. Seed desiccation: A bridge between maturation and germination. Trends Plant Sci. 2010, 15, 211–218. [Google Scholar] [CrossRef]
- Galili, G. The aspartate-family pathway of plants: Linking production of essential amino acids with energy and stress regulation. Plant Signal. Behav. 2011, 6, 192–195. [Google Scholar] [CrossRef]
- Heinemann, B.; Hildebrandt, T. The role of amino acid metabolism in signaling and metabolic adaptation to stress-induced energy deficiency in plants. J. Exp. Bot. 2021, 72, 4634–4645. [Google Scholar] [CrossRef]
- Keeling, P.; Myers, A. Biochemistry and Genetics of Starch Synthesis. Annu. Rev. Food Sci. Technol. 2010, 1, 271–303. [Google Scholar] [CrossRef]
- Burger, B.; Cross, J.; Hannah, L. Relative turnover numbers of maize endosperm and potato tuber ADP-glucose pyrophosphorylases in the absence and presence of 3-phosphoglyceric acid. Planta 2003, 217, 449–456. [Google Scholar] [CrossRef]
- Tyynelä, J.; Stitt, M.; Lönneborg, A.; Smeekens, S.; Schulman, A.H. Metabolism of Starch Synthesis in Developing Grains of the Shx Shrunken Mutant of Barley (Hordeum vulgare). Physiol. Plant. 1995, 93, 77–84. [Google Scholar] [CrossRef]
- Li, C.; Fu, K.; Li, C. Impact of TaFtsZ2 overexpression and mutation on wheat starch granule characteristics and quality. Carbohydr. Polym. 2025, 353, 123267. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wei, J.; Fu, K.; Yan, M.; Liu, G.; Qu, S.; Li, C.; Li, C. Regulatory Effects of Organic Compound L-Glutamic Acid on Multi-Scale Structural Characteristics of Starch in High-Quality Wheat under Post-Anthesis Drought Stress. Carbohydr. Polym. 2025, 370, 124358. [Google Scholar] [CrossRef]
- Li, G.; Wei, J.; Li, C.; Fu, K.; Li, C.; Li, C. Amino Acid Metabolism Response to Post-Anthesis Drought Stress during Critical Periods of Elite Wheat (Triticum aestivum L.) Endosperm Development. Environ. Exp. Bot. 2024, 218, 105577. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, H.; Huang, F.; Long, J.; Song, G.; Lin, W. The 14-3-3 Protein GF14f Negatively Affects Grain Filling of Inferior Spikelets of Rice (Oryza sativa L.). Plant J. 2019, 99, 344–358. [Google Scholar] [CrossRef]
- Mahla, R.; Madan, S.; Kaur, V.; Munjal, R.; Behl, R.K.; Midathala, R. Activities of sucrose to starch metabolizing enzymes during grain filling in late sown wheat under water stress. ANSF Publ. 2017, 9, 338–343. [Google Scholar] [CrossRef]
- Çatav, S. Physiological responses of bread and durum wheat seeds to osmotic stress and salinity in the early germination stage. Bot. Serbica 2023, 47, 325–336. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, M.; Huo, R. Effects of Pretreatment on the Volatile Composition, Amino Acid, and Fatty Acid Content of Oat Bran. Foods 2022, 11, 3070. [Google Scholar] [CrossRef]
- Mohammed, S.B.; Dzidzienyo, D.K.; Yahaya, A.; Umar, M.L.; Ishiyaku, M.F.; Tongoona, P.B.; Gracen, V. High Soil Phosphorus Application Significantly Increased Grain Yield, Phosphorus Content but Not Zinc Content of Cowpea Grains. Agronomy 2021, 11, 802. [Google Scholar] [CrossRef]
- Kong, Y.; Liu, Y.; Li, W.; Du, H.; Li, X.; Zhang, C. Allelic Variation in GmPAP14 Alters Gene Expression to Affect Acid Phosphatase Activity in Soybean. Int. J. Mol. Sci. 2023, 24, 5398. [Google Scholar] [CrossRef]
- Zhang, R.; Li, C.; Fu, K.; Li, C.; Li, C. Phosphorus Alters Starch Morphology and Gene Expression Related to Starch Biosynthesis and Degradation in Wheat Grain. Front. Plant Sci. 2018, 8, 2252. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wang, T. Proteomic Dissection of Endosperm Starch Granule Associated Proteins Reveals a Network Coordinating Starch Biosynthesis and Amino Acid Metabolism and Glycolysis in Rice Endosperms. Front. Plant Sci. 2016, 7, 707. [Google Scholar] [CrossRef]
- Bancel, E.; Rogniaux, H.; Debiton, C.; Chambon, C.; Branlard, G. Extraction and Proteome Analysis of Starch Granule-Associated Proteins in Mature Wheat Kernel (Triticum aestivum L.). J. Proteome Res. 2010, 9, 3299–3310. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Zhang, X.; Li, G.; Fu, K.; Yan, M.; Li, C.; Li, C. Phosphorus Alters the Metabolism of Sugars and Amino Acids in Elite Wheat Grains. Plants 2025, 14, 3152. https://doi.org/10.3390/plants14203152
Wei J, Zhang X, Li G, Fu K, Yan M, Li C, Li C. Phosphorus Alters the Metabolism of Sugars and Amino Acids in Elite Wheat Grains. Plants. 2025; 14(20):3152. https://doi.org/10.3390/plants14203152
Chicago/Turabian StyleWei, Jialian, Xiangchi Zhang, Gang Li, Kaiyong Fu, Mei Yan, Cheng Li, and Chunyan Li. 2025. "Phosphorus Alters the Metabolism of Sugars and Amino Acids in Elite Wheat Grains" Plants 14, no. 20: 3152. https://doi.org/10.3390/plants14203152
APA StyleWei, J., Zhang, X., Li, G., Fu, K., Yan, M., Li, C., & Li, C. (2025). Phosphorus Alters the Metabolism of Sugars and Amino Acids in Elite Wheat Grains. Plants, 14(20), 3152. https://doi.org/10.3390/plants14203152