Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = second harmonic generation imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6195 KB  
Article
From Chains to Chromophores: Tailored Thermal and Linear/Nonlinear Optical Features of Asymmetric Pyrimidine—Coumarin Systems
by Prescillia Nicolas, Stephania Abdallah, Dong Chen, Giorgia Rizzi, Olivier Jeannin, Koen Clays, Nathalie Bellec, Belkis Bilgin-Eran, Huriye Akdas-Kiliç, Jean-Pierre Malval, Stijn Van Cleuvenbergen and Franck Camerel
Molecules 2025, 30(21), 4322; https://doi.org/10.3390/molecules30214322 - 6 Nov 2025
Viewed by 523
Abstract
Eleven novel asymmetric pyrimidine derivatives were synthesized. The pyrimidine core was functionalized with a coumarin chromophore and a pro-mesogenic fragment bearing either chiral or linear alkyl chains of variable length and substitution patterns. The thermal properties were investigated using polarized optical microscopy, differential [...] Read more.
Eleven novel asymmetric pyrimidine derivatives were synthesized. The pyrimidine core was functionalized with a coumarin chromophore and a pro-mesogenic fragment bearing either chiral or linear alkyl chains of variable length and substitution patterns. The thermal properties were investigated using polarized optical microscopy, differential scanning calorimetry, and small-angle X-ray scattering, revealing that only selected derivatives exhibited liquid crystalline phases with ordered columnar or smectic organizations. Linear and nonlinear optical properties were characterized by UV–Vis absorption, fluorescence spectroscopy, two-photon absorption, and second-harmonic generation. Optical responses were found to be highly sensitive to the substitution pattern: derivatives functionalized at the 4 and 3,4,5 positions exhibited enhanced 2PA cross-sections and pronounced SHG signals, whereas variations in alkyl chain length exerted only a minor influence. Notably, compounds forming highly ordered non-centrosymmetric mesophases produced robust SHG-active thin films. Importantly, strong SHG responses were obtained without the need for a chiral center, as the inherent asymmetry of the linear alkyl chain derivatives was sufficient to drive self-organization into non-centrosymmetric materials. These results demonstrate that asymmetric pyrimidine-based architectures combining π-conjugation and controlled supramolecular organization are promising candidates for nonlinear optical applications such as photonic devices, multiphoton imaging, and optical data storage. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

24 pages, 4764 KB  
Article
Mask-Guided Teacher–Student Learning for Open-Vocabulary Object Detection in Remote Sensing Images
by Shuojie Wang, Yu Song, Jiajun Xiang, Yanyan Chen, Ping Zhong and Ruigang Fu
Remote Sens. 2025, 17(19), 3385; https://doi.org/10.3390/rs17193385 - 9 Oct 2025
Viewed by 1257
Abstract
Open-vocabulary object detection in remote sensing aims to detect novel categories not seen during training, which is crucial for practical aerial image analysis applications. While some approaches accomplish this task through large-scale data construction, such methods incur substantial annotation and computational costs. In [...] Read more.
Open-vocabulary object detection in remote sensing aims to detect novel categories not seen during training, which is crucial for practical aerial image analysis applications. While some approaches accomplish this task through large-scale data construction, such methods incur substantial annotation and computational costs. In contrast, we focus on efficient utilization of limited datasets. However, existing methods such as CastDet struggle with inefficient data utilization and class imbalance issues in pseudo-label generation for novel categories. We propose an enhanced open-vocabulary detection framework that addresses these limitations through two key innovations. First, we introduce a selective masking strategy that enables direct utilization of partially annotated images by masking base category regions in teacher model inputs. This approach eliminates the need for strict data separation and significantly improves data efficiency. Second, we develop a dynamic frequency-based class weighting that automatically adjusts category weights based on real-time pseudo-label statistics to mitigate class imbalance issues. Our approach integrates these components into a student–teacher learning framework with RemoteCLIP for novel category classification. Comprehensive experiments demonstrate significant improvements on both datasets: on VisDroneZSD, we achieve 42.7% overall mAP and 41.4% harmonic mean, substantially outperforming existing methods. On DIOR dataset, our method achieves 63.7% overall mAP with 49.5% harmonic mean. Our framework achieves more balanced performance between base and novel categories, providing a practical and data-efficient solution for open-vocabulary aerial object detection. Full article
Show Figures

Figure 1

18 pages, 2228 KB  
Article
Linking Elastin in Skeletal Muscle Extracellular Matrix to Metabolic and Aerobic Function in Type 2 Diabetes: A Secondary Analysis of a Lower Leg Training Intervention
by Nicholas A. Hulett, Leslie A. Knaub, Irene E. Schauer, Judith G. Regensteiner, Rebecca L. Scalzo and Jane E. B. Reusch
Metabolites 2025, 15(10), 655; https://doi.org/10.3390/metabo15100655 - 2 Oct 2025
Viewed by 710
Abstract
Background: Type 2 diabetes (T2D) is associated with reduced cardiorespiratory fitness (CRF), a critical predictor of cardiovascular disease and all-cause mortality. CRF relies upon the coordinated action of multiple systems including the skeletal muscle where the mitochondria metabolize oxygen and substrates to sustain [...] Read more.
Background: Type 2 diabetes (T2D) is associated with reduced cardiorespiratory fitness (CRF), a critical predictor of cardiovascular disease and all-cause mortality. CRF relies upon the coordinated action of multiple systems including the skeletal muscle where the mitochondria metabolize oxygen and substrates to sustain ATP production. Yet, previous studies have shown that impairments in muscle bioenergetics in T2D are not solely due to mitochondrial deficits. This finding indicates that factors outside the mitochondria, particularly within the local tissue microenvironment, may contribute to reduced CRF. One such factor is the extracellular matrix (ECM), which plays structural and regulatory roles in metabolic processes. Despite its potential regulatory role, the contribution of ECM remodeling to metabolic impairment in T2D remains poorly understood. We hypothesize that pathological remodeling of the skeletal muscle ECM in overweight individuals with and without T2D impairs bioenergetics and insulin sensitivity, and that exercise may help to ameliorate these effects. Methods: Participants with T2D (n = 21) and overweight controls (n = 24) completed a 10-day single-leg exercise training (SLET) intervention. Muscle samples obtained before and after the intervention were analyzed for ECM components, including collagen, elastin, hyaluronic acid, dystrophin, and proteoglycans, using second harmonic generation imaging and immunohistochemistry. Results: Positive correlations were observed with elastin content and both glucose infusion rate (p = 0.0010) and CRF (0.0363). The collagen area was elevated in participants with T2D at baseline (p = 0.0443) and showed a trend toward reduction following a 10-day SLET (p = 0.0867). Collagen mass remained unchanged, suggesting differences in density. Dystrophin levels were increased with SLET (p = 0.0256). Conclusions: These findings identify that structural proteins contribute to aerobic capacity and identify elastin as an ECM component linked to insulin sensitivity and CRF. Full article
(This article belongs to the Special Issue Effects of Nutrition and Exercise on Cardiometabolic Health)
Show Figures

Figure 1

11 pages, 1849 KB  
Article
Miniaturized Multicolor Femtosecond Laser Based on Quartz-Encapsulated Nonlinear Frequency Conversion
by Bosong Yu, Siying Wang, Aimin Wang, Yizhou Liu and Lishuang Feng
Photonics 2025, 12(9), 836; https://doi.org/10.3390/photonics12090836 - 22 Aug 2025
Viewed by 3650
Abstract
Ultrafast lasers operating at 740 nm and 820 nm have attracted widespread attention as two-photon light sources for the detection of biological metabolism. Here, we report on a solid-like quartz-encapsulated femtosecond laser with a repetition rate of 80 MHz, delivering 740 nm and [...] Read more.
Ultrafast lasers operating at 740 nm and 820 nm have attracted widespread attention as two-photon light sources for the detection of biological metabolism. Here, we report on a solid-like quartz-encapsulated femtosecond laser with a repetition rate of 80 MHz, delivering 740 nm and 820 nm femtosecond laser pulses. This home-built laser system was realized by employing an erbium-doped 1560 nm fiber laser as the fundamental laser source. A quartz-encapsulated nonlinear frequency conversion stage, consisting of a second-harmonic generation (SHG) stage and self-phase modulation (SPM)-based nonlinear spectral broadening stage, was utilized to deliver 30 mW, 53.7 fs, 740 nm laser pulses and the 15 mW, 60.8 fs, 820 nm laser pulses. Further imaging capabilities of both wavelengths were validated using a custom-built inverted two-photon microscope. Clear imaging results were obtained from mouse kidney sections and pollen samples by collecting the corresponding fluorescence signals. The achieved results demonstrate the great potential of this laser source for advanced two-photon microscopy in metabolic detection. Full article
(This article belongs to the Special Issue Advances in Solid-State Laser Technology and Applications)
Show Figures

Figure 1

13 pages, 2635 KB  
Article
Structure and Nonlinear Optical Characterization of a New Acentric Crystal of a 4-Hydroxybenzohydrazide Derivative
by Emanuela Santagata, Yovan de Coene, Stijn Van Cleuvenbergen, Koen Clays, Emmanuele Parisi, Fabio Borbone and Roberto Centore
Crystals 2025, 15(8), 739; https://doi.org/10.3390/cryst15080739 - 20 Aug 2025
Viewed by 821
Abstract
We report the crystal structure and nonlinear optical (NLO) characterization of the monohydrate form of N′-[(E)-(2-fluorophenyl)methylidene]-4-hydroxybenzohydrazide (o-FHH), an organic compound showing strong potential for second-order nonlinear optical applications. The compound crystallizes in a non-centrosymmetric tetragonal space group. The supramolecular features of [...] Read more.
We report the crystal structure and nonlinear optical (NLO) characterization of the monohydrate form of N′-[(E)-(2-fluorophenyl)methylidene]-4-hydroxybenzohydrazide (o-FHH), an organic compound showing strong potential for second-order nonlinear optical applications. The compound crystallizes in a non-centrosymmetric tetragonal space group. The supramolecular features of the novel crystal structure are strongly related to the role of the water molecule that stabilized columns of o-FHH through strong hydrogen bonding interactions. This structural feature is reflected in the high thermal stability of the compound, which is evidenced by its ability to withstand temperatures in excess of 100 °C without losing the water molecule. Second-harmonic generation (SHG) imaging confirms bulk nonlinearity throughout the entire volume of the crystal, consistent with the acentric class of the novel compound. The combination of a dense hydrogen-bonding network, structural robustness, and the ability to grow millimeter-sized single crystals makes o-FHH a good candidate for further development as an organic NLO material. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Graphical abstract

9 pages, 2121 KB  
Article
Using Second-Harmonic Generation Microscopy Images of Bee Honey Crystals to Detect Fructose Adulteration
by Manuel H. De la Torre-I, J. M. Flores-Moreno, C. Frausto-Reyes and Rafael Casillas-Peñuelas
Crystals 2025, 15(7), 634; https://doi.org/10.3390/cryst15070634 - 10 Jul 2025
Viewed by 732
Abstract
Second-harmonic generation microscopy is applied to mesquite honey samples with different fructose adulteration concentrations. As a proof of principle, mesquite honey is selected for this test, as it has a monofloral and spreadable-like-butter consistency, besides its economic relevance in the central region of [...] Read more.
Second-harmonic generation microscopy is applied to mesquite honey samples with different fructose adulteration concentrations. As a proof of principle, mesquite honey is selected for this test, as it has a monofloral and spreadable-like-butter consistency, besides its economic relevance in the central region of Mexico. Second-harmonic generation microscopy is an optical method that images microstructures, such as sugar crystals in bee honey, without the interference of the liquid phase. Each recorded image is spectrally registered using the photomultiplier detector of the microscope, resulting in several gray-level histograms that are numerically analyzed using signal and image processing techniques. Several samples are prepared, adulterated, and analyzed for this purpose. The inspection requires only a microscopic amount of honey, making it a suitable technique for rare and exotic honey samples that are harvested in limited quantities. The analysis of the experimental results reveals that the second-harmonic generation microscopy signal is sensitive to liquid fructose adulteration in honey, with its signal decreasing as the amount of added fructose increases. Full article
(This article belongs to the Section Industrial Crystallization)
Show Figures

Figure 1

15 pages, 3143 KB  
Article
Quantitative Characterization of Corneal Collagen Architecture Using Intensity Gradient Modeling and Gaussian PDF Fitting
by Enrique J. Fernandez and Juan M. Bueno
Diagnostics 2025, 15(14), 1738; https://doi.org/10.3390/diagnostics15141738 - 8 Jul 2025
Viewed by 645
Abstract
Background/Objectives: The transparency and biomechanical properties of the human cornea are governed by the precise organization of collagen fibers. A novel quantitative technique to analyze corneal collagen organization, based on intensity gradient modeling and probability density function (PDF) fitting, is proposed. Methods: Derived [...] Read more.
Background/Objectives: The transparency and biomechanical properties of the human cornea are governed by the precise organization of collagen fibers. A novel quantitative technique to analyze corneal collagen organization, based on intensity gradient modeling and probability density function (PDF) fitting, is proposed. Methods: Derived from second-harmonic generation (SHG) images, the method calculates image gradients, derives PDFs of gradient orientations, and fits them to Gaussian models. Results: Tested across species and temporal healing stages, this approach is an advantageous alternative to traditional methods like Fourier transform and structure tensor analyses, particularly in noisy or low-contrast conditions. Conclusions: The technique offers a scalable, robust framework suitable for research, clinical diagnostics, and treatment monitoring. Full article
(This article belongs to the Special Issue Latest Advances in Ophthalmic Imaging)
Show Figures

Figure 1

11 pages, 2180 KB  
Article
Impact of Mild Acid and Alkali Treatments on Cotton Fibers with Nonlinear Optical Imaging and SEM Analysis
by Huipeng Gao, Xiaoxiao Li, Rui Li, Chao Wang, Hsiang-Chen Chui and Quan Zhang
Photonics 2025, 12(7), 688; https://doi.org/10.3390/photonics12070688 - 8 Jul 2025
Viewed by 975
Abstract
This study investigates the structural effects of dilute acid and alkali treatments on cotton fibers, aiming to understand the influence of chemical pretreatment on cellulose morphology. Cotton samples were exposed to 1% sulfuric acid and 1% sodium hydroxide at 90 °C, and the [...] Read more.
This study investigates the structural effects of dilute acid and alkali treatments on cotton fibers, aiming to understand the influence of chemical pretreatment on cellulose morphology. Cotton samples were exposed to 1% sulfuric acid and 1% sodium hydroxide at 90 °C, and the resulting changes were evaluated using scanning electron microscopy and nonlinear optical imaging techniques. The results indicate that sulfuric acid causes significant fiber degradation, leading to fragmentation and reduced fiber thickness. In contrast, sodium hydroxide treatment results in a roughened, flaky surface while preserving the overall structural integrity, with fibers appearing fluffier and more accessible to enzymatic processes. Untreated cotton fibers maintained a smooth and uniform surface, confirming the chemical specificity of the observed changes. These findings are crucial for optimizing biomass pretreatment methods, demonstrating that dilute chemical treatments primarily affect macrostructural features without significantly disrupting the cellulose microfibrils. The study provides valuable insights for the development of efficient biorefining processes and sustainable bio-based materials, highlighting the importance of selecting appropriate chemical conditions to enhance enzymatic hydrolysis and biomass conversion while maintaining the core structure of cellulose. This research contributes to advancing the understanding of cellulose’s structural resilience under mild chemical pretreatment conditions. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

9 pages, 1553 KB  
Communication
Orthogonally Polarized Pr:LLF Red Laser at 698 nm with Tunable Power Ratio
by Haotian Huang, Menghan Jia, Yuzhao Li, Jing Xia, Nguyentuan Anh and Yanfei Lü
Photonics 2025, 12(7), 666; https://doi.org/10.3390/photonics12070666 - 1 Jul 2025
Cited by 1 | Viewed by 447
Abstract
A continuous-wave (CW) orthogonally polarized single-wavelength red laser (OPSRL) at 698 nm with a tunable power ratio within a wide range between the two polarized components was demonstrated using two Pr3+:LiLuF4 (Pr:LLF) crystals for the first time. Through control of [...] Read more.
A continuous-wave (CW) orthogonally polarized single-wavelength red laser (OPSRL) at 698 nm with a tunable power ratio within a wide range between the two polarized components was demonstrated using two Pr3+:LiLuF4 (Pr:LLF) crystals for the first time. Through control of the waist location of the pump beam in the active media, the output power ratio of the two polarized components of the OPSRL could be adjusted. Under pumping by a 20 W, 444 nm InGaN laser diode (LD), a maximum total output power of 4.12 W was achieved with equal powers for both polarized components, corresponding to an optical conversion efficiency of 23.8% relative to the absorbed pump power. Moreover, by a type-II critical phase-matched (CPM) BBO crystal, a CW ultraviolet (UV) second-harmonic generation (SHG) at 349 nm was also obtained with a maximum output power of 723 mW. OPSRLs can penetrate deep tissues and demonstrate polarization-controlled interactions, and are used in bio-sensing and industrial cutting with minimal thermal distortion, etc. The dual-polarized capability of OPSRLs also supports multi-channel imaging and high-speed interferometry. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

13 pages, 3840 KB  
Article
Second Harmonic Generation Imaging of Strain-Induced Domain Evolution Across Grain Boundaries in SrTiO3 Bicrystals
by Yuhang Ren and Piyali Maity
Surfaces 2025, 8(3), 47; https://doi.org/10.3390/surfaces8030047 - 1 Jul 2025
Viewed by 1038
Abstract
Understanding strain behavior near grain boundaries is critical for controlling structural distortions and oxygen vacancy migration in perovskite oxides. However, conventional techniques often lack the spatial resolution needed to analyze phase and domain evolution at the nanoscale. In this paper, polarization-dependent second-harmonic generation [...] Read more.
Understanding strain behavior near grain boundaries is critical for controlling structural distortions and oxygen vacancy migration in perovskite oxides. However, conventional techniques often lack the spatial resolution needed to analyze phase and domain evolution at the nanoscale. In this paper, polarization-dependent second-harmonic generation (SHG) imaging is employed as a tool to probe local symmetry breaking and complex domain structures in the vicinity of a low-angle grain boundary of SrTiO3 (STO) bicrystals. We show that the anisotropic strain introduced by a tilted grain boundary produces strong local distortions, leading to the coexistence of tetragonal and rhombohedral domains. By analyzing SHG intensity and variations in the second-order nonlinear optical susceptibility, we map the distribution of strain fields and domain configurations near the boundary. In pristine samples, the grain boundary acts as a localized source of strain accumulation and symmetry breaking, while in samples subjected to intentional electrical stressing, the SHG response becomes broader and more uniform, suggesting strain relaxation. This work highlights SHG imaging as a powerful technique for visualizing grain-boundary-driven structural changes, with broad implications for the design of strain-engineered functional oxide devices. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Figure 1

16 pages, 4359 KB  
Article
Nonlinear Imaging Detection of Organ Fibrosis in Minute Samples for Early Stage Utilizing Dual-Channel Two-Photon and Second-Harmonic Excitation
by Bo-Song Yu, Qing-Di Cheng, Yi-Zhou Liu, Rui Zhang, Da-Wei Li, Ai-Min Wang, Li-Shuang Feng and Xiao Jia
Biosensors 2025, 15(6), 357; https://doi.org/10.3390/bios15060357 - 4 Jun 2025
Cited by 1 | Viewed by 3564
Abstract
Histopathological staining remains the fibrosis diagnostic gold standard yet suffers from staining artifacts and variability. Nonlinear optical techniques (e.g., spontaneous fluorescence, Second Harmonic Generation) enhance accuracy but struggle with rapid trace-level detection of fibrosis. To address these limitations, a dual-channel nonlinear optical imaging [...] Read more.
Histopathological staining remains the fibrosis diagnostic gold standard yet suffers from staining artifacts and variability. Nonlinear optical techniques (e.g., spontaneous fluorescence, Second Harmonic Generation) enhance accuracy but struggle with rapid trace-level detection of fibrosis. To address these limitations, a dual-channel nonlinear optical imaging system with excitation wavelengths at 780 nm and 820 nm was developed, enabling simultaneous spontaneous fluorescence and second-harmonic generation imaging through grid localization. This study applies dual-modality nonlinear imaging to achieve label-free, high-resolution visualization of pulmonary and renal fibrosis at the ECM microstructure scale. Through leveraging this system, it is demonstrated that collagen can be rapidly detected via spontaneous fluorescence at 780 nm, whereas the spatial distribution of collagen fibrils is precisely mapped using Second Harmonic Generation at 820 nm. This approach allows for the rapid and sensitive detection of trace fibrosis in a 5-day unilateral ureteral obstruction mouse model. Additionally, we identify that the elastic fibers, which can also be visualized, provide a foundation for staging diagnosis and delivering accurate and quantitative data for pathological studies and analysis. The research findings underscore the potential of this dual-channel nonlinear optical imaging system as a powerful tool for rapid, precise, and noninvasive fibrosis detection and staging. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

19 pages, 5298 KB  
Article
Efficient Generation of Transversely and Longitudinally Truncated Chirped Gaussian Laser Pulses for Application in High-Brightness Photoinjectors
by Andreas Hoffmann, Sumaira Zeeshan, James Good, Matthias Gross, Mikhail Krasilnikov and Frank Stephan
Photonics 2025, 12(5), 460; https://doi.org/10.3390/photonics12050460 - 9 May 2025
Viewed by 797
Abstract
The optimization of photoinjector brightness is crucial for achieving the highest performance at X-ray free-electron lasers. To this end, photocathode laser pulse shaping has been identified as a key technology for enhancing photon flux and lasing efficiency at short wavelengths. Supported by beam [...] Read more.
The optimization of photoinjector brightness is crucial for achieving the highest performance at X-ray free-electron lasers. To this end, photocathode laser pulse shaping has been identified as a key technology for enhancing photon flux and lasing efficiency at short wavelengths. Supported by beam dynamics simulations, we identify transversely and longitudinally truncated Gaussian electron bunches as a beneficial bunch shape in terms of the projected emittance and 5D brightness. The realization of such pulses from chirped Gaussian pulses is studied for 514 nm and 257 nm wavelengths by inserting an amplitude mask in the symmetry plane of the pulse stretcher to achieve longitudinal shaping and an aperture for transverse beam shaping. Using this scheme, transversely and longitudinally truncated Gaussian pulses can be generated and later used for the production of up to 3 nC electron bunches in the photoinjector. The 3D pulse shape at a wavelength of 514 nm is characterized via imaging spectroscopy, and second-harmonic generation frequency-resolved optical gating (SHG FROG) measurements are also performed to analyze the shaping scheme’s efficacy. Furthermore, this pulse-shaping scheme is transferred to a UV stretcher, allowing for direct application of the shaped pulses to cesium telluride photocathodes. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

24 pages, 19590 KB  
Review
Multiphoton Tomography in Cosmetic Research
by Karsten König and Aisada König
Cosmetics 2025, 12(2), 44; https://doi.org/10.3390/cosmetics12020044 - 4 Mar 2025
Cited by 2 | Viewed by 3994
Abstract
Background: Multiphoton tomography (MPT) is a femtosecond laser imaging technique that enables high-resolution virtual biopsies of human skin. It provides a non-invasive method for analyzing cellular metabolism, structural changes, and responses to cosmetic products, providing insights into cell–cosmetic interactions. This review explores the [...] Read more.
Background: Multiphoton tomography (MPT) is a femtosecond laser imaging technique that enables high-resolution virtual biopsies of human skin. It provides a non-invasive method for analyzing cellular metabolism, structural changes, and responses to cosmetic products, providing insights into cell–cosmetic interactions. This review explores the principles, historical development, and key applications of MPT in cosmetic research. Methods: The latest MPT device combines five modalities: (i) two-photon fluorescence: visualizes cells, elastin, and cosmetic ingredients; (ii) second harmonic generation (SHG): maps the collagen network; (iii) fluorescence lifetime imaging (FLIM): differentiates eumelanin from pheomelanin and evaluates the impact of cosmetics on cellular metabolic activity; (iv) reflectance confocal microscopy (RCM): images cell membranes and cosmetic particles; and (v) white LED imaging for dermoscopy. Results: MPT enables in-depth examination of extracellular matrix changes, cellular metabolism, and melanin production. It identifies skin responses to cosmetic products and tracks the intratissue distribution of sunscreen nanoparticles, nano- and microplastics, and other cosmetic components. Quantitative measurements, such as the elastin-to-collagen ratio, provide insights into anti-aging effects. Conclusions: MPT is a powerful in vivo imaging tool for the cosmetic industry. Its superior resolution and metabolic information facilitate the evaluation of product efficacy and support the development of personalized skincare solutions. Full article
Show Figures

Graphical abstract

23 pages, 29165 KB  
Article
Parallax-Tolerant Weakly-Supervised Pixel-Wise Deep Color Correction for Image Stitching of Pinhole Camera Arrays
by Yanzheng Zhang, Kun Gao, Zhijia Yang, Chenrui Li, Mingfeng Cai, Yuexin Tian, Haobo Cheng and Zhenyu Zhu
Sensors 2025, 25(3), 732; https://doi.org/10.3390/s25030732 - 25 Jan 2025
Viewed by 1004
Abstract
Camera arrays typically use image-stitching algorithms to generate wide field-of-view panoramas, but parallax and color differences caused by varying viewing angles often result in noticeable artifacts in the stitching result. However, existing solutions can only address specific color difference issues and are ineffective [...] Read more.
Camera arrays typically use image-stitching algorithms to generate wide field-of-view panoramas, but parallax and color differences caused by varying viewing angles often result in noticeable artifacts in the stitching result. However, existing solutions can only address specific color difference issues and are ineffective for pinhole images with parallax. To overcome these limitations, we propose a parallax-tolerant weakly supervised pixel-wise deep color correction framework for the image stitching of pinhole camera arrays. The total framework consists of two stages. In the first stage, based on the differences between high-dimensional feature vectors extracted by a convolutional module, a parallax-tolerant color correction network with dynamic loss weights is utilized to adaptively compensate for color differences in overlapping regions. In the second stage, we introduce a gradient-based Markov Random Field inference strategy for correction coefficients of non-overlapping regions to harmonize non-overlapping regions with overlapping regions. Additionally, we innovatively propose an evaluation metric called Color Differences Across the Seam to quantitatively measure the naturalness of transitions across the composition seam. Comparative experiments conducted on popular datasets and authentic images demonstrate that our approach outperforms existing solutions in both qualitative and quantitative evaluations, effectively eliminating visible artifacts and producing natural-looking composite images. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

24 pages, 1098 KB  
Article
Face Boundary Formulation for Harmonic Models: Face Image Resembling
by Hung-Tsai Huang, Zi-Cai Li, Yimin Wei and Ching Yee Suen
J. Imaging 2025, 11(1), 14; https://doi.org/10.3390/jimaging11010014 - 8 Jan 2025
Cited by 1 | Viewed by 1497
Abstract
This paper is devoted to numerical algorithms based on harmonic transformations with two goals: (1) face boundary formulation by blending techniques based on the known characteristic nodes and (2) some challenging examples of face resembling. The formulation of the face boundary is imperative [...] Read more.
This paper is devoted to numerical algorithms based on harmonic transformations with two goals: (1) face boundary formulation by blending techniques based on the known characteristic nodes and (2) some challenging examples of face resembling. The formulation of the face boundary is imperative for face recognition, transformation, and combination. Mapping between the source and target face boundaries with constituent pixels is explored by two approaches: cubic spline interpolation and ordinary differential equation (ODE) using Hermite interpolation. The ODE approach is more flexible and suitable for handling different boundary conditions, such as the clamped and simple support conditions. The intrinsic relations between the cubic spline and ODE methods are explored for different face boundaries, and their combinations are developed. Face combination and resembling are performed by employing blending curves for generating the face boundary, and face images are converted by numerical methods for harmonic models, such as the finite difference method (FDM), the finite element method (FEM) and the finite volume method (FVM) for harmonic models, and the splitting–integrating method (SIM) for the resampling of constituent pixels. For the second goal, the age effects of facial appearance are explored to discover that different ages of face images can be produced by integrating the photos and images of the old and the young. Then, the following challenging task is targeted. Based on the photos and images of parents and their children, can we obtain an integrated image to resemble his/her current image as closely as possible? Amazing examples of face combination and resembling are reported in this paper to give a positive answer. Furthermore, an optimal combination of face images of parents and their children in the least-squares sense is introduced to greatly facilitate face resembling. Face combination and resembling may also be used for plastic surgery, finding missing children, and identifying criminals. The boundary and numerical techniques of face images in this paper can be used not only for pattern recognition but also for face morphing, morphing attack detection (MAD), and computer animation as Sora to greatly enhance further developments in AI. Full article
(This article belongs to the Special Issue Techniques and Applications in Face Image Analysis)
Show Figures

Figure 1

Back to TopTop