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Abstract: This paper is devoted to numerical algorithms based on harmonic transformations
with two goals: (1) face boundary formulation by blending techniques based on the known
characteristic nodes and (2) some challenging examples of face resembling. The formulation
of the face boundary is imperative for face recognition, transformation, and combination.
Mapping between the source and target face boundaries with constituent pixels is explored
by two approaches: cubic spline interpolation and ordinary differential equation (ODE)
using Hermite interpolation. The ODE approach is more flexible and suitable for handling
different boundary conditions, such as the clamped and simple support conditions. The
intrinsic relations between the cubic spline and ODE methods are explored for different face
boundaries, and their combinations are developed. Face combination and resembling are
performed by employing blending curves for generating the face boundary, and face images
are converted by numerical methods for harmonic models, such as the finite difference
method (FDM), the finite element method (FEM) and the finite volume method (FVM)
for harmonic models, and the splitting–integrating method (SIM) for the resampling of
constituent pixels. For the second goal, the age effects of facial appearance are explored
to discover that different ages of face images can be produced by integrating the photos
and images of the old and the young. Then, the following challenging task is targeted.
Based on the photos and images of parents and their children, can we obtain an integrated
image to resemble his/her current image as closely as possible? Amazing examples of
face combination and resembling are reported in this paper to give a positive answer.
Furthermore, an optimal combination of face images of parents and their children in the
least-squares sense is introduced to greatly facilitate face resembling. Face combination and
resembling may also be used for plastic surgery, finding missing children, and identifying
criminals. The boundary and numerical techniques of face images in this paper can be
used not only for pattern recognition but also for face morphing, morphing attack detection
(MAD), and computer animation as Sora to greatly enhance further developments in AI.

Keywords: face boundary formulation; blending curves; ODE using Hermite interpolation;
splitting–integrating method; harmonic models; age effects; face combination and resembling;
face morphing; morphing attack detection

J. Imaging 2025, 11, 14 https://doi.org/10.3390/jimaging11010014

https://doi.org/10.3390/jimaging11010014
https://doi.org/10.3390/jimaging11010014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-3292-0464
https://orcid.org/0000-0001-6192-0546
https://doi.org/10.3390/jimaging11010014
https://www.mdpi.com/article/10.3390/jimaging11010014?type=check_update&version=1


J. Imaging 2025, 11, 14 2 of 24

1. Introduction
1.1. Review of Previous Work

The face is the most prominent feature of a human being. Therefore, studies regarding
face fusion and morphing remain active. In particular, face representation has been studied
by Gabor wavelets in Du and Ward [1], and face recognition and ear recognition have
been also reported by Chang et al. [2]. For face recognition and face morphing, we also
cite some recent reports: Aloraibi [3], Indrawal and Sharma [4], Patel and Lapsiwala [5],
Scherhag et al. [6,7], Tuncer et al. [8], Guo and Zhang [9], You et al. [10], and Venkatesh
et al. [11]. This paper is a continued study of Li, Chiang, and Suen [12] who studied face
image transformations using three steps of numerical techniques.

Step I: Find the face boundary.

Step II: Carry out harmonic transformations by FEM, FDM, FVM, etc.

Step III: Transmit facial grayness by splitting algorithms.

We have devoted great efforts to splitting algorithms in Step III (see [13,14]) and har-
monic transformations by numerical methods in Step II (see [12]). This paper will focus on
Step I, which is to find face boundaries and their conversions during harmonic transformations.

Numerical methods are the main tools to perform face image transformation. For
image transformation, new numerical methods have been studied since Li et al. [14],
and a number of papers have been published. Among them, the splitting–integrating
method (SIM) and harmonic transformation are the most powerful and advanced. The
boundary is most important in describing and recognizing the pattern, the individual
person, and the transformed models. Harmonic transformations consist of a couple of
Laplace’s equations in the face domains and face boundaries. In fact, once the interior and
exterior boundaries of face images are known, face domains are defined. Moreover, for
each person, the formulation of face boundaries in digital images may be discriminative,
complicated, and laborious.

For the boundary of the harmonic model, we solicit the blending curves. Surfaces and
curves identified by interpolation are well-known and described in many reports [15,16]. In
this paper, new methods for blending curves will be explored for generating face boundaries
based on ordinary differential equations (ODE) and their numerical solutions [17]. It
is worth pointing out that since the publication of [14], the basic numerical methods
for geometric image transformations have been studied and developed, and the face
transformations in this paper and [12] are important applications and developments of our
basic research. The image examples of face combinations and face resembling in this paper
can also find applications in many areas, such as criminal identification, finding missing
children, plastic surgery, marriage counseling by predicting possible offspring images, etc.
Evidently, the numerical techniques of face boundary in this paper can be used not only for
pattern recognition but also for face fusion, face resampling, imaging morphing, morphing
attack detection (MAD), and computer animation as Sora. It is also worth pointing out that
the numerical algorithms in this paper are beneficial not only to face transformations but
also to image geometric transformations.

1.2. Outlines of Numerical Face Transformations

Consider the nonlinear transformation as the harmonic transformation in [14]:

Ω T→ S, ∂Ω T→ ∂S, (1)

where T : (ξ, η)→ (x, y), and the harmonic functions

x = x(ξ, η), y = y(ξ, η) (2)
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satisfy the Laplace equations with the following Dirichlet conditions:

∆x = ∂2x
∂ξ2 + ∂2x

∂η2 = 0, x|∂Ω = x̄, (3)

∆y = ∂2y
∂ξ2 +

∂2y
∂η2 = 0, y|∂Ω = ȳ, (4)

and x̄ and ȳ are given. For Steps I–III, the detailed techniques are described in the follow-
ing sections.

Step I: Generate blending curves for mapping source and target face boundaries.
Boundary images have been treated by segmentation techniques, where superquadric

models are explored, and the simple boundary is studied in [18] by affine kernel trans-
formations. Furthermore, the symmetry of the boundary was explored in [19], and the
piecewise linear approximation was used for planar curves for pattern recognition. These
studies are confined to some special and simple types of image boundaries. This paper will
deal with a rather general boundary of face images.

Let us briefly address the ideas of the blending techniques used in this paper. Based on
the scattered 2D points, formulating a smooth curve is one of the basic topics in numerical
analysis. Interpolation techniques, such as the Lagrange, Hermite, and spline interpolations,
can be used. However, in this paper, we mimic a thin and flexible beam to be blended to
pass through these given points exactly. Such a blending beam can be described as an ODE
of order four with suitable boundary conditions. We choose the piecewise cubic Hermite
polynomials as the admissible functions for the fourth-order ODE. The advantages of this
technique are as follows: (1) the global curvature of the blending curve is minimal, and
(2) the blending boundary has continuous derivatives (i.e., continuous slopes), thus fitting
better and more naturally to the face boundary. The blending techniques are used for
shaped evolution with structural and topological changes in [20] to “glue” two or several
cutting surfaces together as one uniform subject. In fact, traditional techniques of blending
surfaces in [15,21] can also be employed. However, we may also solicit the numerical PDE
of biharmonic equations to better “glue” the cutting surfaces. Details are omitted.

First, the following preliminary work is prepared:

(a) Input a source, which is a 2D face image.
(b) Choose a target face frame to be transformed (or resembled).
(c) Locate the control and characteristic points along open or closed curves on the face

boundary and the important facial features.

In (c), the characteristic nodes on the face are related not only to the geometrical
properties of facial features, such as the eyes, eyebrows, nose, mouth, etc., but also to the
muscle structure of the human face. The significant characteristic nodes are provided in [22].
Those nodes may be found using skeleton techniques and by locating the boundary nodes,
the sharp nodes of curves, and the nodes of inflection. Since the number of pixels contained
in an image boundary is large, it is laborious to manually establish pixel correspondence
between two boundaries to be matched, as shown in Figures 1 and 2. New methods
are solicited to formulate and map the two boundary curves only by a few matching
characteristic points given.

Suppose that the given (n + 1) matching pairs of characteristic points Ai and Bi satisfy

Ai
T→ Bi, i = 0, 1, . . . , n,

where Ai ∈ ∂Ω, and Bi ∈ ∂S. In Section 2, we will describe the numerical methods
used to generate ∂Ω, ∂S, and their mapping in (1). We will use two methods: (M1)
the cubic spline in [21] and (M2) ordinary differential equations (ODE) using Hermite
interpolation by following [17]. Method (M2) is more flexible and advanced because it
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can be applied in parametric forms and is well suited to complicated curves, such as the
contours of the head, eyes, eyebrows, nose, and ears. The new techniques of ODE can
handle complicated boundary conditions for given slopes and curvatures and allow cubic
splines to be embedded in the blending curves.

A0
A1

Ai

An−1

An

T

B0
B1

Bi

Bn−1

Bn

O O

η

ξ X

Y

Ω S

Figure 1. Face transformation from a source face image to a target one.

In [12], the boundary curves of face images of a male (man) and a female (woman) are
formulated, as shown in Figure 2, and the face transformation from the female to the male
in shape is given in the center of Figure 3. Face boundary formulation and mapping are
completed based on the techniques described in this paper.

Figure 2. The corresponding exterior and boundary curves of face images of the male (man) and
female (woman), where the left shows the blending curves with characteristic nodes, and the right
shows the blending curves (with the permission from Z.C. Li).

Figure 3. The face transformation from female to male, where the center one is the fusion image (with
the permission from Z.C. Li).

Step II: Carry out the harmonic model.
Since the image pixels are distributed uniformly, we may simply choose pixel points as

the different nodes (i, j) = (ξi, ηj) = (iH, jH), where H is the pixel size. Denote xi,j = x(i, j)
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and yi,j = y(i, j). Take the Laplace equation ∆x = 0 in (3) as an example. The simple interior
difference equations are given by the following:

xi+1,j + xi−1,j + xi,j+1 + xi,j−1 − 4xi,j = 0, (i, j) ∈ Ω, (5)

x(i, j) = x̄ij, (i, j) ∈ ∂Ω, (6)

where x̄ij is known. Note that the number of (5) is nearly that of the total pixels of the
original image used to solve the above difference equations. The successive over-relaxation
iteration (SOR) in [23] can be used to solve (5) and (6):

x(k+1)
ij = x(k)ij −

wopt

4

{
4x(k)ij − (x(k+1)

i−1,j + x(k+1)
i,j−1 + x(k)i+1,j + x(k)i,j+1)

}
,

where wopt is the optimal relaxation parameter, and x(0)ij are the given initial values. For the
arbitrary face domain Ω, although the optimal parameter wopt in [23] is unknown, some
new numerical techniques in Chen [24] are provided to seek the optimal wopt easily by
trial computation.

To reduce computation complexity, we may choose some pixels (ī, j̄) as the difference
nodes and establish the non-uniform difference equations. We define (i, j) = (ξi, ηj),
xij = x(ξi, ηj), where ξi = īH and ηj = j̄H are not uniform. The mesh spacings are denoted

by hi = ξi+1 − ξi and k j = ηj+1 − ηj. Hence, for ∂2x
∂ξ2 + ∂2x

∂η2 = f in Poisson’s model, the
interior difference equations are obtained by direct difference approximations (see Li [25]):

2
hi + hi−1

(
xi+1,j − xi,j

hi
− xi,j − xi−1,j

hi−1
) +

2
k j + k j−1

(
xi,j+1 − xi,j

k j
− xi,j − xi,j−1

k j−1
) = fij. (7)

We multiply two sides of (7) by the factor −( hi+hi−1
2 )(

kj+kj−1
2 ) to yield the symmetric

difference equations:

−( k j + k j−1

2
)(

xi+1,j − xi,j

hi
− xi,j − xi−1,j

hi−1
)− (

hi + hi−1

2
)(

xi,j+1 − xi,j

k j
− xi,j − xi,j−1

k j−1
)

= −(hi + hi−1

2
)(

k j + k j−1

2
) fij, (i, j) ∈ S.

FDM is simpler than FEM and FVM, and its programming is easy. As a result, FDM
is beneficial to the images of medium size converted by harmonic transformations. For
example, in Section 4, with near 500× 500 pixels, the computation of FDM by the SOR with
the optimal parameter wopt can be computed very quickly by using a personal computer.

After the solutions (xi,j, yi,j) have been obtained from FDM, the piecewise bilinear
transformations are given by x = x̂(ξ, η) and y = ŷ(ξ, η). The functions (x̂(ξ, η), ŷ(ξ, η)) are

approximated to (x(ξ, η), y(ξ, η)) of the harmonic transformation with Ai
0

T→ Bi
0, i = 0, 1, 2, 3.

The functions x̂ and ŷ inside are obtained by the bilinear interpolations in Figure 4 or simply
by the linear interpolations in Figure 5. Note that Ai

0 should be located at the pixel points in
ξOη, but it is not necessary for Bi

0 in XOY.
Step III: Use combinations of the SIM in Li [13] to obtain the distorted and

restored images.
It is worth pointing out that the numerical algorithms via Steps I–III in this paper are

beneficial not only to face transformations but also to image geometric transformations.
We cite the following related reports: Castleman [26], Lakemond et al. [27], Rosa et al. [28],
Luhmann et al. [29], Holden [30], Li et al. [31], Ma et al. [32], Gao et al. [33], Fang et al. [34],
Chen et al. [35], Tian et al. [36], You et al. [37], and Püspöki [38].
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Figure 5. Piecewise bilinear transformations on a square.

This paper is organized as follows: in Section 2, the blending techniques and their
applications are explored for Step I. In Section 3, the numerical methods for Steps II and III
are addressed. In Section 4, some image examples of face transformations and resembling
are provided. In Section 5, a few concluding remarks are addressed. In Appendix A, a
proof of Theorem 1 is presented, and in Appendix B, the combinations of cubic splines and
ODE approaches are discussed.

2. Curves for Face Boundaries
For simplicity, we consider the right boundary of a face in XOY in Figure 6. We choose

the nose’s central point as the origin of polar coordinates, where z⃗ is parallel to direction x⃗.
The right-half boundary ∂S of the half-face contour can be denoted by

r = r(θ), −π

2
≤ θ ≤ π

2
.

We assume the ending conditions of ∂S are just horizontal,

r′(−π

2
) = r′(

π

2
) = 0. (8)

Equation (8) makes the curve figuration easier to connect the right half-face contour, see
Figure 1.

B0

B1

Bi

Bn−1

Bn

O X

Y

r

Zθ
(x̄0, ȳ0)

Figure 6. Right half of face contour.
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Suppose that Bi is located in (xi, yi) in XOY, where xi = ki H, and yi = ji H. The origin
of the (Cartesian) coordinates is located at (x̄0, ȳ0), with x̄0 = īH and ȳ0 = j̄H, where H is
the mesh resolution. Hence, the polar coordinates of point Bi = (r, θ) are given by

r = r(Bi) =
√
(xi − x̄0)2 + (yi − ȳ0)2 =

√
(ki − ī)2 + (ji − j̄)2H,

θ = θ(Bi) = arctan
yi − ȳ
xi − x̄

= arctan
ji − j̄
ki − ī

.

For simplicity, we only choose the beginning and end points located at the vertical line:
x(B0) = x(Bn) = x̄0, see Figure 6. Two interpolation methods are provided below. The
cubic splines are well-known, and the ODE using the Hermite interpolation for blending
curves is new and developed from [17].

2.1. Cubic Spline Interpolation

Consider the piecewise cubic polynomials s(x) ∈ C2[a, b], where Ck[a, b] denotes the
set of functions having k-order continuous derivatives. Choose a = x0 < x1 < . . . < xn = b
and hi = xi − xi−1. Assume that (xi, yi), i = 0, 1, . . . , n are given and the derivatives y′0
and y′n on two boundary nodes are known (e.g., y′0 = y′n = 0 in Figure 7). For the function
s(x), denote

s(xi) = yi, s′(xi) = mi, s′′(xi) = Mi, i = 0, 1, 2, . . . , n.

Then, the piecewise cubic polynomials s(x) are given by (see Su and Liu [21] p. 13)

s(x) =
Mi−1

6hi
(xi − x)3 +

Mi
6hi

(x− xi−1)
3 +

(yi−1

hi
− hi Mi−1

6

)
(xi − x)

+
(yi

hi
− hi Mi

6

)
(x− xi−1), in [xi−1, xi]. (9)

a = x0 xix1 xi+1 xn−1 xn = bx2

Figure 7. Cubic spline interpolation.

For the given boundary derivatives m0 and mn, the values of mi, i = 1, . . . , n− 1 can
be obtained from the linear algebraic system,

λimi−1 + 2mi + µimi+1 = Ci, i = 1, 2, . . . , n− 1, (10)

where the constants are

λi =
hi+1

hi + hi+1
, µi =

hi
hi + hi+1

, Ci = 3
(

λi
yi − yi−1

hi
+ µi

yi+1 − yi
hi+1

)
.
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Equations (10) can be easily solved due to the tri-diagonal coefficient matrix. Then, the
values Mi, i = 1, . . . , n− 1 of second-order derivatives can be found by

Mi = s′′(x−i ) =
2mi−1

hi
+

4mi
hi
− 6

yi − yi−1

h2
i

,

or

Mi = s′′(x+i ) = − 4mi
hi+1

− 2mi+1

hi+1
+ 6

yi+1 − yi

h2
i+1

,

where x−i and x+i are the one-side limit of xi from the left and right, respectively. Once mi

and Mi are given, the entire function s(x) in (9) is provided.

2.2. Ordinary Differential Equations Using the Hermite Interpolation

For general 2D curves, since suitable Cartesian coordinates (or polar coordinates)
cannot be found, the parametric functions are chosen instead (see Figure 8).

��
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��
��

����

��

�
�
�
� ����

����

i

Y

O

B
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B B

B

1

0

ni-1

Figure 8. General 2D curves.

x = x(S), y = y(S), 0 ≤ S ≤ 1.

In [21] (p. 69), the cumulative chord length can be chosen as the following variables:

ti =
∣∣∣BiBi−1

∣∣∣ =
√
(xi − xi−1)2 + (yi − yi−1)2, 1 ≤ i ≤ n.

Define

Si =
∑i

j=1 tj

∑n
j=1 tj

;

then, 0 ≤ Si ≤ 1. We follow [17] to form the Hermite functions satisfying ODE. Consider
x(S) and y(S) on [0, 1] with the nodes Si, 0 = S0 < S1 < . . . < Sn = 1. On [Si, Si+1], we
choose the Hermite interpolations

xi
h(S) = xiϕ0(

S− Si
hi+1

) + xi+1ϕ1(
S− Si
hi+1

) + hi+1

[
x′iψ0(

S− Si
hi+1

) + x′i+1ψ1(
S− Si
hi+1

)

]
, (11)

where hi+1 = Si+1 − Si, xi = x(Si), and x′i = x′(Si). The Hermite basis functions are

ϕ0(S̄) = 2S̄3 − 3S̄2 + 1, ϕ1(S̄) = −2S̄3 + 3S̄2, ψ0(S̄) = S̄3 − 2S̄2 + S̄, ψ1(S̄) = S̄3 − S̄2, (12)

where S̄ ∈ [0, 1]. Assume that

dy
dx

∣∣∣∣
S=0,1

=
y′(S)
x′(S)

= 0.
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Then, we have the following boundary conditions:

(1) x0, xn, y0, and yn are given, y′0 = y′(0) = 0, y′n = y′(1) = 0. (13)

(2) x′0 and x′n arbitrary. (14)

Equations (13) and (14) enable us to separate the ODE.
The blending curves are modeled as follows. Consider the single equation of the

fourth-order ODE

d2

dS2

(
px(S)

d2

dS2 x(S)
)
= f x(S), 0 ≤ S ≤ 1,

where px(S)(> 0) is the reflection coefficient of the material, and f x(S) denotes the outward
force. The boundary conditions x0 and xn are given, but x′0 and x′n may be zero or arbitrary.
Hence, the variational description is employed. Denote Vh as the space of the piecewise
Hermite functions (11) satisfying the given boundary conditions. Also, define the energy
as follows:

Ix(x(S)) =
1
2

∫ 1

0
px(S)

(
d2x
dS2

)2

dS−
∫ 1

0
f x(S)x(S) dS.

We seek the minimum solution xh by

Ix(xh(S)) = min
∀x(S)∈Vh

Ix(x(S)). (15)

For conditions (13) and (14), xi and yi are given, but x′i (i = 0, 1, . . . , n) and
y′i (i = 1, . . . , n− 1) are unknown, for which the difference equations will be established.
Take the difference equations for x′i , for example, since the equations for y′i are similar.
The equations for x′i can be obtained from (15) (see [17]) and given as follows. We choose
Simpson’s rule to approximate the integration and denote Ĩx (≈ Ix). The interior difference
equations for i = 1, 2, . . . , n− 1 are given by the following:

0 =
∂

∂x′i
Ĩx(X⃗) = āx

i xi−1 + b̄x
i xi + c̄x

i xi+1 + d̄x
i x′i−1 + ēx

i x′i + ḡx
i x′i+1 + r̄x

i , (16)

where the constants are as follows:

āx
i =

2
h2

i

(
2px

i + px
i−1
)
, b̄x

i = −(āx
i + c̄x

i ),

c̄x
i = − 2

h2
i+1

(
px

i+1 + 2px
i
)
, d̄x

i =
4
3

1
hi

(
px

i + px
i−1
)
− 2

3

px
i− 1

2

hi
,

ēx
i =

1
3hi+1

(
2px

i+1 + 8px
i
)
+

1
3hi

(
8px

i + 2px
i−1
)
+

2
3

( px
i+ 1

2

hi+1
+

px
i− 1

2

hi

)
,

ḡx
i =

4
3

1
hi+1

(
px

i+1 + px
i
)
− 2

3

px
i+ 1

2

hi+1
, r̄x

i = − 1
12

(
f x
i+ 1

2
h2

i+1 − f x
i− 1

2
h2

i

)
.

Next, the boundary difference equation for x′0 is given by

0 =
∂

∂x′0
Ĩx(X⃗) = b̄x

0 x0 + c̄x
0 x1 + ēx

0 x′0 + ḡx
0 x′1 + r̄x

0 , (17)
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where the constants are as follows:

b̄x
0 =

1
h2

1
(4px

0 + 2px
1), c̄x

0 = −b̄x
0 , ēx

0 =
2

3h1

(
4px

0 + px
1 + px

1
2

)
,

ḡx
0 =

2
3h1

(
2px

0 + 2px
1 − px

1
2

)
, r̄x

0 = − 1
12

f x
1
2
h2

1 .

Last, the boundary difference equation for x′n is given by

0 =
∂

∂x′n
Ĩx(X⃗) = āx

nxn−1 + b̄x
nxn + d̄x

nx′n−1 + ēx
nx′n + r̄x

n, (18)

where the constants are as follows:

āx
n =

1
h2

n

(
2px

n−1 + 4px
n
)
, b̄x

n = −āx
n, d̄x

n =
2

3hn

(
2px

n−1 + 2px
n − px

n− 1
2

)
,

ēx
n =

2
3hn

(
px

n−1 + 4px
n + px

n− 1
2

)
, r̄x

n =
1

12
h2

n f x
n− 1

2
.

For the right half boundary, we may use the ODE techniques as in Figure 9 to seek
more intermediate points. Once xi and x′i are obtained, we find the intermediate points
from the Hermite functions in (11). Note that the curves of the Hermite functions by ODE
have minimal energy, which grants the curves good smooth properties. For the given slope
and curvature at the curve boundary in Figure 10, the numerical techniques are provided
by Chen [24].

We provide the following theorem, whose proofs are given in Appendix A.

Theorem 1. Denote the energy

E∗(y(S)) =
1
2

∫ 1

0
p(S)

(
d2y
dS2

)2

dS−
∫ 1

0
f (S)y(S) dS. (19)

Let yh(S) be the Hermite functions given by E∗(yh(S)) = min
∀y(S)∈Vh

E∗(y(S)) with p(S) ≡ 1

and f ≡ 0. Then, the minimal solution of E∗(y) gives the exact cubic spline functions satisfying
y ∈ C2[0, 1] and (13).

Furthermore, the new combinations of cubic splines and ODE approaches are explored
in Appendix B.

B0

B1

Bn−1

Bn

B2

S0 S2
S∗
0 Sn−1 S∗

n−1 SnS1

X

Y

O S∗∗
1S∗

1

Figure 9. Adding intermediate points.
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Figure 10. A face contour (left) and nose contour (right).

2.3. Intermediate Pixel–Pixel Correspondence Between Two Face Boundaries

To map two face boundaries (1), the intermediate points between Ai and Ai+1 and Bi

and Bi+1 can also be used (see Figure 11):

ξ = ξ(t), η = η(t), ti < ti+1, Ai → Ai+1,

x = x(S), y = y(S), Si < Si+1, Bi → Bi+1.

Consider the function S = S(t), 0 < ti < ti+1 < 1, 0 < Si < Si+1 < 1. The simplest
function of S(t) is the piecewise linear interpolation:

S = Si +
Si+1 − Si
ti+1 − ti

(t− ti).

However, the spline cubic interpolation and the ODE using the Hermite interpolation
provide better intermediate pixels.
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Figure 11. Intermediate points.

3. Splitting–Integrating Method for the Image Grayness of Harmonic
Transformations

The splitting–integrating method (SIM) originated in [14] and was then developed
in both algorithms and error analysis in [13]. The image grayness Φij and BI J can be
represented by the mean of continuous (or piecewise continuous) intensity functions
ϕ(ξ, η) and b(x, y):

Φij =
1

H2

∫∫

□ij

ϕ(ξ, η) dξdη, BI J =
1

H2

∫∫

□I J

b(x, y) dxdy, (20)
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where b(x, y) = ϕ(ξ(x, y), η(x, y)), and

□ij =
{
(ξ, η)

∣∣(i− 1
2
)H ≤ ξ < (i +

1
2
)H, (j− 1

2
)H ≤ η < (j +

1
2
)H
}

, (21)

□I J =
{
(x, y)

∣∣(I − 1
2
)H ≤ x < (I +

1
2
)H, (J − 1

2
)H ≤ y < (J +

1
2
)H
}

. (22)

Consider an image with 256 gray levels. Numerical methods are used to evaluate image
grayness under harmonic transformation. In [12], the splitting–shooting method (SSM)
and the splitting–integrating method (SIM) are used for harmonic transformation T and its
inversion transformation T−1, respectively. In this paper, we choose the SIM for both T and
T−1. The SIM is well suited to harmonic transformation since the sequential convergence
of O(N−2) is higher than O(N−1.5) in the SSM (see [13]).

3.1. Splitting–Integrating Method (SIM) for T−1

First, consider the inverse transformation T−1 : (x, y)−→(ξ, η). From the known
distorted image pixels {ẐI J}, the approximate functions

b(x, y) ≈ bµ(x, y) = ϕµ(ξ(x, y), η(x, y)),

where µ is the order of grayness interpolations, and µ = 0 and µ = 1 denote the constant
and the linear interpolation, respectively (see [14]). Below, the composite centroid rule
will be used to evaluate the integration values in (20). Let □ij in (21) be split into N × N
uniform squares □ij,kℓ, i.e., □ij =

⋃
k,ℓ□ij,kℓ, where

□ij,kℓ =

{
(ξ, η), (i− 1

2 )H + (k− 1)h ≤ ξ < (i− 1
2 )H + kh,

(j− 1
2 )H + (ℓ− 1)h ≤ η < (j− 1

2 )H + ℓh

}
,

where h is the boundary length of □ij,kℓ given by h = H
N . For small subpixels □ij,kℓ, the

coordinates of the center of gravity are given by

ξĠ = ξĠij,kℓ
= (i− 1

2
)H + (k− 1

2
)h, ηĠ = ηĠij,kℓ

= (j− 1
2
)H + (ℓ− 1

2
)h.

Based on the composite centroid rule, we have

∫∫

□ij,kℓ

ϕ(ξ, η) dξdη =
∫∫

□ij,kℓ

b(x(ξ, η), y(ξ, η)) dξdη

≈ h2b
(

x(ξĠij,kℓ
, ηĠij,kℓ

), y(ξĠij,kℓ
, ηĠij,kℓ

)
)

. (23)

Hence, the normalized image grayness of Ŵij at pixel (i, j) is obtained by

Φij ≈
h2

H2

N

∑
k,ℓ=1

bµ

(
x(ξĠij,kℓ

, ηĠij,kℓ
), y(ξĠij,kℓ

, ηĠij,kℓ
)
)

.

Note that the computational algorithms (23) do not involve any nonlinear solutions, and
the sequential errors as µ = 1 are proven to be O(N−2) in [13].

3.2. Harmonic Face Image Transformation T

Let □I J in (22) be split into N × N uniform squares, i.e., □I J =
⋃

k,ℓ□I J,kℓ. The pixel
grayness via T is also evaluated by the composite centroid rule,
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BI J =
1

H2

N

∑
k,ℓ=1

∫∫

□I J,kℓ

b(x, y) dxdy (24)

≈ 1
H2

N

∑
k,ℓ=1

∫∫

□I J,kℓ

ϕµ(ξ(x, y), η(x, y)) dxdy

≈ (
h
H
)2

N

∑
k,ℓ=1

ϕµ(ξ(xġ, yġ), η(xġ, yġ)):= B(N)
I J ,

where (xġ, yġ) is the gravity center of □I J,kℓ. In (24), we do need the values ξ ġ = ξ(xġ, yġ)

and ηġ = η(xġ, yġ), where xġ = x(ξ ġ, ηġ) and yġ = y(ξ ġ, ηġ). In general, to find (ξ ġ, ηġ), we
need to solve the two nonlinear equations in (2) for the SIM. However, since the approximate
harmonic functions are piecewise linear functions, as in Figure 5, the nonlinear solutions
are bypassed. Hence, for the harmonic transformation T as µ = 1, we may retain the
convergence rate O(N−2) by the SIM in [13], higher than O(N−1.5) by the SSM in [12].

Under the harmonic models, the approximate values x̂ġ and ŷġ, are obtained from
the FDM in x̂(ξ, η) ≈ x(ξ, η) and ŷ(ξ, η) ≈ y(ξ, η), see Section 1.2. Suppose that the
transformation T is approximated by the piecewise bilinear transformation T̂. Then, when
the values (x̂ij, ŷij)(← (ξij, ηij)) are known, the values of (ξ ġ, ηġ) can be easily found. In fact,
the FDM can be regarded as a special kind of finite element method using piecewise linear
and bilinear interpolant functions and using special rules of integration approximations
(see [25]). Therefore, the FDM solutions (x̂ij, ŷij) may formulate the piecewise linear
transformation T̂:

(ξ, η)→ (x̂(ξ, η), ŷ(ξ, η)), (ξij, ηij)
T̂−→ (x̂ij, ŷij).

Based on the piecewise bilinear interpolation functions, (ξ̂, η̂) are formulated from the
known (ξ̂ I J , η̂I J) by the following:

ξ(x, y) ≈ ξ̂(x, y) = ξ̂ I+1,J+1
(x− IH)(y− JH)

H2 + ξ̂ I,J+1
((I + 1)H − x)(y− JH)

H2

+ξ̂ I+1,J
(x− IH)(y− (J + 1)H)

H2 + ξ̂ I,J
((I + 1)H − x)((J + 1)H − y)

H2 .

Then, the redesigned SIM of (24) is given by

BI J ≈ B̂(N)
I J =

h2

H2 ∑
k,ℓ

ϕ̂µ(ξ̂(xġ, yġ), η̂(xġ, yġ)) =
h2

H2 ∑
k,ℓ

b̂µ(xġ, yġ), (25)

where ġ = ġI J,kℓ and b̂µ(x, y) = ϕ̂µ(ξ̂(x, y), η̂(x, y)). Note that no nonlinear solutions are
needed in (25) either. Here, only one question remains: How do we find (ξ̂ I J , η̂I J) from the
FDM solutions (x̂ij, ŷij)? Now, we propose a new technique consisting of four mini steps.

Step (a): Compute all x̂ij and ŷij by the FDM in Step II of Section 2.1,

x̂ij = x̂(ξi, ηj) = x̂(iH, jH), ŷij = ŷ(ξi, ηj) = ŷ(iH, jH).

Step (b): Find potential candidates (I, J) ∈ Ω̂I J (Ω̂ij
T̂←− □ij), which may be determined

by Imin ≤ I ≤ Imax and Jmin ≤ J ≤ Jmax, where



J. Imaging 2025, 11, 14 14 of 24

Imax = max
{
⌊ x̂ij

H
⌋, ⌊ x̂i+1,j

H
⌋, ⌊ x̂i,j+1

H
⌋, ⌊ x̂i+1,j+1

H
⌋
}

,

Jmax = max
{
⌊ ŷij

H
⌋, ⌊ ŷi+1,j

H
⌋, ⌊ ŷi,j+1

H
⌋, ⌊ ŷi+1,j+1

H
⌋
}

.

Here, ⌊x⌋ is the largest integer ≤ x. The definitions of Imin and Jmin are similar.
Step (c): Split □ij into two triangles: △ij,1 and△ij,2 in XOY in Figure 12, where △̂ij,ℓ are

also triangles, and find all possible (I, J) in XOY such that

(IH, JH) ∈ △̂ij,ℓ. (26)

The λ1, λ2, and λ3 are obtained from the following equations:





xI = λ1xa + λ2xb + λ3xc,
yJ = λ1ya + λ2yb + λ3yc,
1 = λ1 + λ2 + λ3,

where a, b, c are the vertices of triangles △̂ij,ℓ, ℓ = 1, 2, and (xa, ya) are the coordi-
nates of the vertices in Figure 12. The sufficient and necessary conditions for (26)
are 0 ≤ λi ≤ 1, i = 1, 2, 3.

O ξ

η

ā

c̄

b̄

O X

Y
(I, J)a

b

c
T̂−1

△ij,1

△ij,2

Figure 12. The inverse transformation at (I, J) in XOY.

Step (d): Obtain the approximate values of (ξ I J , ηI J) related to (IH, JH) in (26) by

ξ̂ I J = λ1ξ ā + λ2ξ b̄ + λ3ξ c̄, η̂I J = λ1ηā + λ2ηb̄ + λ3ηc̄,

where ā, b̄, and c̄ are the vertices of△ij,ℓ, as shown in Figure 12.

Note that Steps (a)–(d) above are easy to perform. The computation complexity is also
only O(M2), where M2 is the total pixel number. More importantly, the computations for
faces resembling under T and T−1 do not involve any nonlinear solutions.

4. Image Experiments of Age Effects and Face Resembling
The second goal of this paper is to develop and extend the face transformations

in [12]. In Figure 3, we converted the female image using the face boundary of the male. By
harmonic transformations, the numerical algorithms are given in Steps I–III in Section 1.1,
where the finite volume method (FVM) with Delaunay triangulation was used. An image
of a teenage girl was produced and is shown in the center of Figure 3. She looks pretty, but
she is virtual. No such girl exists in the world.
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Encouraged by Figure 3, we propose a new challenging task. Based on the photos of
the parents at 50 years old and the child at five years old at the top of Figure 13, we will
seek the integrated image to resemble the current image of her at 20 years old at the bottom
of Figure 13 as closely as possible. This face resembling is more challenging than the face
transformation in [12]. Furthermore, age effects can also be found in Palumbo et al. [39]
and Taskiran et al. [40]. Now, we report two image experiments.

Experiment I: Age Effects of Face Appearance. First, we choose the images of the parents
only. The images of the father and mother are converted to the same frame of the young
girl, and the combined images with different ratios are provided in Figure 14, where
“father:mother = 0.1:0.9” denotes the proportions of grayness values given by 10% of the
father’s image and 90% of the mother’s image. Disappointedly, the combined images look
like a 50-year-old, not like a 20-year-old. Second, we choose images of the mother and child;
the combined images are provided in Figure 15. Surprisingly, the images with different
ages between teenagers and adults at 50 years old can be observed clearly.
Experiment II: Face Resembling. Based on Experiment I, we add the child’s image and
choose three bases of images at the top of Figure 13 to resemble the young girl’s image.
Since the young girl looks more like her mother, we may assume that the proportion
(i.e., contribution) of her father is less, say about 10% and 20%. Then, we may select the
resembling images among many possible combinations, which are provided in Figure 16
with their grayness proportion values. However, this selection requires a great deal of
computational work. Also, the resemblance selection purely by our eyes may not be
trustworthy and reasonable. New numerical techniques are required to choose optimal
images automatically.

Figure 13. The pictures of a young girl (original girl), her father (Father), her mother (Mother), and
her childhood (Child) (with the permission from C.C. Chen).
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Figure 14. Age effects of parents’ images (with the permission from C.C. Chen).

Figure 15. Age effects of the mother and child (with the permission from C.C. Chen).

Father : Mother : Child = 0.1 : 0.6 : 0.3 Father : Mother : Child = 0.2 : 0.4 : 0.4Original girl

Figure 16. The resembling images chosen by us (with the permission from C.C. Chen).

When three face images of father, mother, and child have been reshaped to the girl’s
face frame (see the bottom of Figure 13), we denote their pixel grayness as uij, vij, and wij

at (i, j), respectively. Also, the pixel grayness of the young girl is denoted by ϕij. The sets
of {uij}, {vij}, and {wij} are regarded as three bases, and a linear combination of them is
given by {zij} = α{uij}+ β{vij}+ γ{wij}, where α, β, and γ are positive proportions to
be sought. The optimal proportions α, β, and γ should be chosen to achieve {ϕij} ≈ {zij}
as best as possible. To this end, the least squares method (LSM) may be employed. The
LSM is a popular technique for geometric transformations.

Define the errors

E = E(α, β, γ) = ∑
ij
{ϕij − zij}2 = ∑

ij
{ϕij − (αuij + βvij + γwij)}2.

The optimal α, β, γ, satisfy the extreme conditions: ∂E
∂α = 0, ∂E

∂β = 0, and ∂E
∂γ = 0. This gives

a system of three linear algebraic equations:
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a11α + a12β + a13γ = b1, a21α + a22β + a23γ = b2, a31α + a32β + a33γ = b3, (27)

where the coefficients aij = aji, and the explicit constants are given by

a11 = ∑
ij

u2
ij, a22 = ∑

ij
v2

ij, a33 = ∑
ij

w2
ij,

a12 = ∑
ij

uijvij, a13 = ∑
ij

uijwij, a23 = ∑
ij

vijwij,

b1 = ∑
ij

uijϕij, b2 = ∑
ij

vijϕij, b3 = ∑
ij

wijϕij.

Since the total number of (i, j) is much larger than three, the linear Equation (27) are linearly
independent. Hence, the values of α, β, and γ can be easily obtained and given by α = 0.052,
β = 0.619, and γ = 0.301, as shown in Figure 17, with different hairstyles. Amazingly, two
artificial integrated images with such optimal proportions reach a good resemblance to the
girl’s original image in the center of Figure 18.

To close this section, we introduce two remarks.

Remark 1. Face resembling in this paper is critical to finding missing children and identifying
criminals via the police. Note that the face images in Figure 13 are standard photos required in a
passport: shot from the front with no smile and a closed mouth. Suppose a target and potential
patterns are given, where the patterns are of standard face images, but the face target suffers from
geometric transformations and illumination effects since it may be taken from a cell phone by chance.
The geometric transformations include basic geometric transformations (such as translation, rotation,
and scaling) and prospective transformation. Our main efforts are paid to seek these geometric
transformations and illumination effects. Then, the restored target can be found by the numerical
algorithms in this paper, and the identification of the restored target with one of the standard patterns
may be accomplished using the least squares method (LSM). Details are reported in another paper.

Original girl

Shape transformed from the father Shape transformed from the mother Shape transformed from the child

Figure 17. Images of father, mother, and child at the top, reshaped to the girl’s image at the bottom
(with the permission from C.C. Chen).



J. Imaging 2025, 11, 14 18 of 24

Father : Mother : Child = 0.052 : 0.619 : 0.301 Father : Mother : Child = 0.052 : 0.619 : 0.301Original girl

Figure 18. The optimal resembling images obtained by the least squares method (with the permission
from C.C. Chen).

Remark 2. In this remark, let us address the new techniques of face resembling proposed in this
paper. The algorithms in Steps I–III in Section 1 are, indeed, of numerical interpolation, numerical
integration, numerical ordinary differential equations (ODE), and numerical partial differential
equations (PDE). These numerical algorithms were developed from our previous study [13,14,25] for
geometric image transformations. From Figures 3 and 14–18, the virtual face images were created
by merging two (or more) face images; they belong to face morphing. Since numerical algorithms are
used, numerical face resembling (or morphing) may be called. The numerical algorithms in this paper
and [12] are different from those in the face recognition method in [4,8–10], where convolutional
neural networks (CNN), textual transformations, etc., are used. Our key numerical algorithms
are also different from those used in face morphing [3,5,6,11], where deep neural networks, feature
comparisons, cross-dissolve techniques, etc., are used. The numerical interpolation in this paper and
the Delaunay triangulation in [12] are found in [6]. Furthermore, the rapping techniques in [6] and
the facial landmark techniques in [11] are also related to geometrical transformations. The advanced
numerical algorithms in this paper and [12] may be used to improve the quality of face morphing.
On the other hand, their effective techniques may also be employed for better identification, as
in Figures 13 and 16. When face morphing is used by an attacker in malice, face verification
is vulnerable. Face-morphing attacks have appeared since 2014. Our numerical techniques can
also be used for morphing attack detection (MAD). To describe new numerical algorithms, some
computational formulas are essential. To display the efficiency of the algorithms, not only are some
face images with grayness errors provided, but also the error analysis of algorithms as in [13] is
needed. Nowadays, artificial intelligence (AI) is the hottest topic in research and applications since
ChatGPT and Sora appeared. AI includes three basic elements: data, models, and algorithms. In
face resembling (or morphing), geometrical and harmonic transformations are the models. We do
not deal with massive data but seek good numerical algorithms. Hence, the CPU time can be saved
greatly. In summary, the new and advanced numerical algorithms of this paper and [12] can also be
applied to Sora to greatly enhance further developments of AI.

5. Concluding Remarks
To conclude, let us address the novelties in this paper.

1. The face transformation achieved by harmonic models is shown in three steps in
Section 1; this paper focuses on Step I to generate the face boundary, which is needed
in the Dirichlet boundary condition for Laplace’s equations in harmonic models.

2. We provide two methods for blending boundary curves: the cubic spline and the ODE
using the Hermite interpolation. The latter is new and developed from our previous
study [17]. For the interior and exterior boundary of the face contour, the curves are
piecewise smooth only with second-order derivatives. Under some constraints of
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characteristic points, the remaining displacements and derivatives of the curves can
be determined uniquely by minimizing the energy (15).

3. The obtained curves have small curvatures, and they are smooth (or piecewise smooth).
Moreover, the popular cubic spline is proved in Appendix A to be a special case of the
ODE using the Hermite interpolation. A combined technique in Appendix B is then
explored to couple the cubic spline and the ODE using the Hermite interpolation.

4. By the SIM, for the general nonlinear functions x(ξ, η) and y(ξ, η) in (2), their solutions
are needed. However, the approximate harmonic functions are piecewise linear so
that the nonlinear solutions can be bypassed. Hence, the algorithms of the SIM with
µ = 1 for harmonic transformations are simple, while the convergence rate O(N−2)

may remain higher than O(N−1.5) by the SSM for T used.
5. Two image experiments are provided in Section 4. First, different ages of facial appear-

ance can be produced by the images of adults and children. Then, a young boy’s/girl’s
image can be resembled from his/her parents and those from their childhood.

6. Inspired by two successful experiments, many applications of face transformations
may follow: modifying facial appearance, plastic surgery, generating possible off-
spring images for marriage counseling, and identifying a person for different purposes,
such as finding missing children and confirming criminals.

7. The boundary techniques and the face combinations used in this paper can be applied
not only to image processing and pattern recognition but also to face fusion and
morphing, morphing attack detection (MAD), and computer animation, such as Sora,
to greatly enhance further developments in AI. See Remarks 1 and 2.
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Appendix A. Proofs for Theorem 1
In this first appendix, we will provide the direct but heuristic proofs of Theorem 1,

although other proofs can be found based on Vandergraft [41] (Theorem 4.2, p. 136). We
will derive the explicit equations for the Hermite function just as those of the cubic spline
functions, by which we will explore the combined algorithms of the two methods given
in Appendix B. First, let us derive the cubic splines from the ODE using the Hermite
interpolation. For simplicity, we use the simple function y = f (x) to denote the curve since
the parametric functions (x(S), y(S)) can be proved similarly.

Let S̄ =
x−xi−1

hi
. From [21] (p. 12), we obtain the ODE Hermite interpolation from (11)

and (12),

y(x) = mi−1
(xi − x)2(x− xi−1)

h2
i

−mi
(x− xi−1)

2(xi − x)
h2

i

+yi−1
(xi − x)2[2(x− xi−1) + hi]

h3
i

+ yi
(x− xi−1)

2[2(xi − x) + hi]

h3
i

.
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Then, we have the first- and second-order derivatives,

y′(x) = mi−1
(xi − x)(2xi−1 + xi − 3x)

h2
i

−mi
(x− xi−1)(2xi + xi−1 − 3x)

h2
i

+ 6
yi − yi−1

h3
i

(xi − x)(x− xi−1),

y′′(x) = 2mi−1
3x− 2xi − xi−1

h2
i

+ 2mi
3x− xi − 2xi−1

h2
i

+ 6
yi − yi−1

h3
i

(xi + xi−1 − 2x). (A1)

The two-sided limits of the second-order derivatives at xi are given by

y′′(x−i ) =
2mi−1

hi
+

4mi
hi
− 6

yi − yi−1

h2
i

, (A2)

y′′(x+i ) = − 4mi
hi+1

− 2mi+1

hi+1
+ 6

yi+1 − yi

h2
i+1

. (A3)

Moreover, the continuity of the second-order derivatives at an internal knot, i.e., y′′(x−i ) =

y′′(x+i ), yields

λimi−1 + 2mi + µimi+1 = ci, i = 1, 2, . . . , n− 1, (A4)

where

λi =
hi+1

hi + hi+1
, µi =

hi
hi + hi+1

, ci =
3

hi + hi+1

(
hi

yi+1 − yi
hi+1

+ hi+1
yi − yi−1

hi

)
. (A5)

Equations (A4) and (A5) are the exact cubic interpolation (10). This implies that by adding
the continuity of second-order derivatives at the nodes, the ODE Hermite solutions lead to
the cubic spline interpolant.

On the other hand, we may also explicitly derive the equations for the minimum
energy E∗(y(S)) in (19) to provide it exactly (A4). Since p(S) ≡ 1 and f ≡ 0, we consider
the energy E(y) = ∑n

i=1 Ei(y), where

Ei(y) =
1
2

∫ xi

xi−1

(y′′(x))2 dx.

The derivatives y′′(x) of order two in (A1) are simplified as

y′′(x) = g0(x)mi−1 + g1(x)mi + g2(x)(yi − yi−1),

with the known functions

g0(x) =
2(3x− 2xi − xi−1)

h2
i

, g1(x) =
2(3x− xi − 2xi−1)

h2
i

, g2(x) =
6
h3

i
(xi + xi−1 − 2x).

Therefore, we have

Ei(y) =
1
2
(mi−1, mi)

[
a11 a12

a21 a22

](
mi−1

mi

)
+ (mi−1, mi)

(
b1

b2

)
+ c0, (A6)
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where c0 is a constant, and

a11 =
∫ xi

xi−1

(g0(x))2 dx, a22 =
∫ xi

xi−1

(g1(x))2 dx, a12 = a21 =
∫ xi

xi−1

g0(x)g1(x) dx,

b1 = (yi − yi−1)
∫ xi

xi−1

g0(x)g2(x) dx, b2 = (yi − yi−1)
∫ xi

xi−1

g1(x)g2(x) dx. (A7)

Next, we evaluate the integrals (A7) by calculus. By using the transformation

t =
x− xi−1

hi
, hi = xi − xi−1, dx = hi dt,

the explicit entry a11 is obtained by

a11 =
∫ xi

xi−1

[
2(3x− 2xi − xi−1)

h2
i

]2

dx =
4
h4

i

∫ 1

0
[hi(3t− 2)]2hi dt =

4
hi

.

Also, we obtain other explicit entries similarly,

a22 =
4
h4

i

∫ 1

0
(hi(3t− 1))2hi dt =

4
hi

, a12 =
4
hi

∫ 1

0
(3t− 1)(3t− 2) dt =

2
hi

,

b1 =
12
h2

i
(yi − yi−1)

∫ 1

0
(3t− 2)(1− 2t)dt = − 6

h2
i
(yi − yi−1),

b2 =
12
h2

i
(yi − yi−1)

∫ 1

0
(3t− 1)(1− 2t) dt = − 6

h2
i
(yi − yi−1).

Hence, the matrix and vector in (A6) are expressed explicitly,

[
a11 a12

a21 a22

]
=

2
hi

[
2 1
1 2

]
,

[
b1

b2

]
= −6(yi − yi−1)

h2
i

[
1
1

]
. (A8)

From the derivatives

∂

∂xi
(E(y)) =

∂

∂xi

n

∑
i=1

Ei(y) = 0,

we have the algebraic equations

Ax = b. (A9)

From (A6) and (A8), the interior equations are obtained,

2
hi
[mi−1 + 2mi]−

6
h2

i
(yi − yi−1) +

2
hi+1

(2mi + mi+1)−
6

h2
i+1

(yi+1 − yi) = 0.

This is (A4) and completes the proof of Theorem 1.

Appendix B. Combinations of Cubic Splines and ODE Approaches
In the second Appendix, new combinations of cubic splines and ODE solutions are

explored, as in Figure A1. For simplicity, we only consider y = y(x) since the case of
parametric functions can be extended easily. Define an energy

E(y) =
1
2

∫ b

a
p(x)(y′′(x))2dx−

∫ b

a
f (x)y(x) dx,
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where p(x) = 1 in [a, c], f (x) = 0 in [a, c], with a < c < b. From Theorem 1 above, the
minimum of E∗(y) is exactly the cubic spline, where

E∗(y) =
1
2

∫ c

a
(y′′(x))2 dx.

We conclude that the cubic spline is just a special case when p(x) ≡ 1 and f (x) ≡ 0. Now
we may carry out a combination as in Figure A1, where point c ∈ (a, b) is the interior point
such that y′′(x) ∈ C2(a, c) ∧ y′(x) ∈ C1[a, b].

a cx1

xk
b

x0 X

Y

O

A C

BCubic Splines

Figure A1. A combination of cubic splines and ODE solutions.

Now, we give the algorithms for a combination in [a, b] in Figure A1 to couple the
cubic spline interpolant in (a, c) and the ODE approaches with the Hermite interpolant
in (c, b). Assume (xi, yi), i = 0, 1, . . . , n, xk = xc are known, but y′i are determined in the
following three cases:

Case A: The equations mi (i = 0, 1, . . . , k − 1) are obtained from the cubic splines in
Section 2.1.

Case B: The equations y′i = mi (i = k + 1, . . . , n) are obtained from (16) in Section 2.2.
Case C: For the equation mk at the intersection point c, there occurs the continuity of

second-order derivatives. Comparing the right boundary equations in (A3) with
the left boundary Equation (17), we obtain

2
hk

mk−1 + (
4
hk

+ ē0)mk + ḡ0mk+1 + r̄0 −
6(yk − yk−1)

hk
= 0,

where

ē0 =
2

3hk+1
(4p+k + p+k+1 + pk+ 1

2
),

ḡ0 =
2

3hk+1
(2pk + 2pk+1 − pk+ 1

2
), r̄0 = − 1

12
fk+ 1

2
h2

k+1.

Note that by using this combination, the coefficient matrix A in (A9) is still sparse,
positive definite, and symmetric. Therefore, the combined solutions can be easily obtained.
It is worth pointing out that the equations in Case A are obtained from (16) in cases where
p−k = 1, i ≤ k and f−k = 0, i ≤ k.

To close this appendix, let us consider the simple support boundary condition. Sup-
pose that the homogeneous simple support boundary condition is given by y′′0 = α ̸= 0,
and that y0, yk and y′k are known. We may modify the energy by

E1(y) =
1
2

∫ c

a
(y′′(x))2 dx +

αy′(a)
2
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or
∫ c

a
y′′(x)w′′(x) dx + α · w′(a) = 0, (A10)

where w(x) are the admissible functions satisfying w(a) = w(c) = 0 and w′(c) = 0. From
integration by parts, we obtain from (A10)

∫ c

a
y(4)w dx− (y′′(a)− α)w′(a) = 0.

Since w′ is arbitrary at x = a, we conclude y′′(a) = α. From (A3), we have the left
boundary equation

2
h1

[m1 + 2m0]−
6
h2

1
(y1 − y0) + α = 0,

i.e.,

2m0 + m1 = 3
(

y1 − y0

h1

)
− h1y′′0

2
,

which is exactly the same as that proposed by Su and Liu [21] (p. 13).
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