Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (855)

Search Parameters:
Keywords = seaweeds extract

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
50 pages, 2592 KiB  
Review
Applied Microbiology for Sustainable Agricultural Development
by Barbara Sawicka, Piotr Barbaś, Viola Vambol, Dominika Skiba, Piotr Pszczółkowski, Parwiz Niazi and Bernadetta Bienia
Appl. Microbiol. 2025, 5(3), 78; https://doi.org/10.3390/applmicrobiol5030078 (registering DOI) - 1 Aug 2025
Abstract
Background: Developments in biology, genetics, soil science, plant breeding, engineering, and agricultural microbiology are driving advances in soil microbiology and microbial biotechnology. Material and methods: The literature for this review was collected by searching leading scientific databases such as Embase, Medline/PubMed, Scopus, and [...] Read more.
Background: Developments in biology, genetics, soil science, plant breeding, engineering, and agricultural microbiology are driving advances in soil microbiology and microbial biotechnology. Material and methods: The literature for this review was collected by searching leading scientific databases such as Embase, Medline/PubMed, Scopus, and Web of Science. Results: Recent advances in soil microbiology and biotechnology are discussed, emphasizing the role of microorganisms in sustainable agriculture. It has been shown that soil and plant microbiomes significantly contribute to improving soil fertility and plant and soil health. Microbes promote plant growth through various mechanisms, including potassium, phosphorus, and zinc solubilization, biological nitrogen fixation, production of ammonia, HCN, siderophores, and other secondary metabolites with antagonistic effects. The diversity of microbiomes related to crops, plant protection, and the environment is analyzed, as well as their role in improving food quality, especially under stress conditions. Particular attention was paid to the diversity of microbiomes and their mechanisms supporting plant growth and soil fertility. Conclusions: The key role of soil microorganisms in sustainable agriculture was highlighted. They can support the production of natural substances used as plant protection products, as well as biopesticides, bioregulators, or biofertilizers. Microbial biotechnology also offers potential in the production of sustainable chemicals, such as biofuels or biodegradable plastics (PHA) from plant sugars, and in the production of pharmaceuticals, including antibiotics, hormones, or enzymes. Full article
27 pages, 4169 KiB  
Article
Biostimulatory Effects of Foliar Application of Silicon and Sargassum muticum Extracts on Sesame Under Drought Stress Conditions
by Soukaina Lahmaoui, Rabaa Hidri, Hamid Msaad, Omar Farssi, Nadia Lamsaadi, Ahmed El Moukhtari, Walid Zorrig and Mohamed Farissi
Plants 2025, 14(15), 2358; https://doi.org/10.3390/plants14152358 (registering DOI) - 31 Jul 2025
Viewed by 126
Abstract
Sesame (Sesamum indicum L.) is widely cultivated for its valuable medicinal, aromatic, and oil-rich seeds. However, drought stress remains one of the most significant abiotic factors influencing its development, physiological function, and overall output. This study investigates the potential of foliar applications [...] Read more.
Sesame (Sesamum indicum L.) is widely cultivated for its valuable medicinal, aromatic, and oil-rich seeds. However, drought stress remains one of the most significant abiotic factors influencing its development, physiological function, and overall output. This study investigates the potential of foliar applications of silicon (Si), Sargassum muticum (Yendo) Fensholt extracts (SWE), and their combination to enhance drought tolerance and mitigate stress-induced damage in sesame. Plants were grown under well-watered conditions (80% field capacity, FC) versus 40% FC (drought conditions) and were treated with foliar applications of 1 mM Si, 10% SWE, or both. The results showed that the majority of the tested parameters were significantly (p < 0.05) lowered by drought stress. However, the combined application of Si and SWE significantly (p < 0.05) enhanced plant performance under drought stress, leading to improved growth, biomass accumulation, water status, and physiological traits. Gas exchange, photosynthetic pigment content, and photosystem activity (PSI and PSII) all increased significantly when SWE were given alone; PSII was more significantly affected. In contrast, Si alone had a more pronounced impact on PSI activity. These findings suggest that Si and SWE, applied individually or in combination, can effectively alleviate drought stress’s negative impact on sesame, supporting their use as promising biostimulants for enhancing drought tolerance. Full article
(This article belongs to the Special Issue The Role of Exogenous Silicon in Plant Response to Abiotic Stress)
Show Figures

Figure 1

21 pages, 576 KiB  
Review
Role of Enzyme Technologies and Applied Enzymology in Valorising Seaweed Bioproducts
by Blessing Mabate, Lithalethu Mkabayi, Deandra Rochelle Goddard, Coleen Elizabeth Grobler and Brett Ivan Pletschke
Mar. Drugs 2025, 23(8), 303; https://doi.org/10.3390/md23080303 - 29 Jul 2025
Viewed by 248
Abstract
Seaweeds, classified as non-vascular plants, have definite advantages over terrestrial plants as they grow rapidly, can be cultivated in coastal environments, and are dependable and non-endangered sources of biomass. Algal bioproducts, which include a wide range of bioactive compounds, have drawn much interest [...] Read more.
Seaweeds, classified as non-vascular plants, have definite advantages over terrestrial plants as they grow rapidly, can be cultivated in coastal environments, and are dependable and non-endangered sources of biomass. Algal bioproducts, which include a wide range of bioactive compounds, have drawn much interest because of their applications in nutraceuticals, pharmaceuticals, agriculture, and cosmetics. Particularly in the pharmaceutical and nutraceutical fields, algal bioproducts have shown tremendous activity in regulating enzymes involved in human diseases. However, the drawbacks of conventional extraction methods impede the complete exploitation of seaweed biomass. These include low efficiency, high cost, and potential harm to the environment. Enzyme technology developments in recent years present a viable way to overcome these challenges. Enzymatic processes improve product yields and reduce the environmental impact of processing, while facilitating the more effective extraction of valuable bioactive compounds as part of an integrated biorefinery approach. Enzyme-assisted biorefinery techniques can greatly advance the creation of a circular bioeconomy and increase the yield of extracted seaweed bioproducts, thus improving their value. With the potential to scale up to industrial levels, these biotechnological developments in enzymatic extraction are developing rapidly and can advance the sustainable exploitation of seaweed resources. This review emphasises the increasing importance of enzyme technologies in the seaweed biorefinery and their contribution to developing more environmentally friendly, economically feasible, and sustainable methods for valorising products derived from seaweed. In the biorefinery industry, enzyme-assisted methods have enormous potential for large-scale industrial applications with further development, opening the door to a more sustainable, circular bioeconomy. Full article
(This article belongs to the Special Issue Research on Seaweed-Degrading Enzymes)
Show Figures

Figure 1

22 pages, 1054 KiB  
Review
Sustainable Nutrition and Food Allergy: A State-of-the-Art Review
by Caterina Anania, Barbara Cuomo, Enza D’Auria, Fabio Decimo, Giuliana Giannì, Giovanni Cosimo Indirli, Enrica Manca, Filippo Mondì, Erica Pendezza, Marco Ugo Andrea Sartorio and Mauro Calvani
Nutrients 2025, 17(15), 2448; https://doi.org/10.3390/nu17152448 - 27 Jul 2025
Viewed by 201
Abstract
Alternative proteins denote non-traditional, high-protein foods. These innovative sources aim to compete with conventional animal products by providing protein-rich, sustainable, nutritious, and flavorful options. Currently, five main categories of alternative proteins are being developed: plant-based proteins, cultured meat, single-cell proteins, edible insects, and [...] Read more.
Alternative proteins denote non-traditional, high-protein foods. These innovative sources aim to compete with conventional animal products by providing protein-rich, sustainable, nutritious, and flavorful options. Currently, five main categories of alternative proteins are being developed: plant-based proteins, cultured meat, single-cell proteins, edible insects, and seaweed. Nonetheless, several chemical and microbiological food safety hazards are associated with these alternatives Incorporating novel protein sources into food products may heighten the prevalence of existing food allergies. This could arise from extracting proteins from their natural matrices and utilizing them at significantly higher concentrations. Additionally, the introduction of new proteins may lead to the development of novel food allergies. Proteins that are currently seldom or never consumed may cause primary sensitisation or trigger cross-reactivity with known allergens. To date, alternative proteins have not been thoroughly studied for their allergenic potential, and there is no standardised method for assessing this risk. This review aims to explore non-traditional protein sources, discussing their nutritional and functional properties, as well as their potential allergenicity based on available research. We conducted a literature search in PubMed and Embase databases. We used specific keywords and MESH terms. A total of 157 studies were included in the review. The studies reviewed in our analysis reveal significant limitations, such as inconsistent methodologies, limited participant numbers, and a lack of long-term data, which hinder the ability to make clear conclusions regarding the safety of these new proteins for individuals with allergies. To address current challenge, future research should integrate food science, regulatory perspectives and advanced technologies. Full article
(This article belongs to the Special Issue Relationship Between Food Allergy and Human Health)
Show Figures

Figure 1

12 pages, 2171 KiB  
Article
Use of Foliar Biostimulants in Durum Wheat: Understanding Its Potential in Improving Agronomic and Quality Responses Under Mediterranean Field Conditions
by Angelo Rossini, Roberto Ruggeri and Francesco Rossini
Plants 2025, 14(15), 2276; https://doi.org/10.3390/plants14152276 - 24 Jul 2025
Viewed by 263
Abstract
Foliar application of biostimulants can be a valid option to reach the goal of sustainable intensification in agriculture, especially in extensive crops such as durum wheat. However, due to the wide range of active ingredients and their mixtures available in the market, the [...] Read more.
Foliar application of biostimulants can be a valid option to reach the goal of sustainable intensification in agriculture, especially in extensive crops such as durum wheat. However, due to the wide range of active ingredients and their mixtures available in the market, the need to select the most efficient product in a specific growing environment is of dramatic importance to achieve remarkable results in yield and grain quality. To analyze the potential of different active ingredients, a field trial was performed in two consecutive growing seasons (2023 and 2024) under Mediterranean climatic conditions. A randomized block design with three replicates was used. Durum wheat cultivar “Iride” was treated with the following five foliar biostimulants in comparison with the untreated control (T0): seaweed and plant extracts (T1); micronized vaterite (T2); culture broth of Pseudomonas protegens (T3); humic and fulvic acids (T4); organic nitrogen fertilizer (N 5%) containing glycine betaine (T5). Biostimulant treatment was applied at the end of tillering and at heading. Root length, chlorophyll content, grain yield, yield components and grain quality were measured and subjected to a one-way analysis of variance. As compared to the control, seaweed and plant extracts as well as micronized vaterite showed the best results in terms of grain yield (29% and 24% increase, respectively), root length (120% and 77% increase, respectively) and grain protein content (one percentage point increase, from approx. 12% to 13%). The results from this study can help Mediterranean farmers and researchers to develop new fertilization protocols to reach the goals of the “Farm to Fork” European strategy. Full article
Show Figures

Figure 1

13 pages, 1446 KiB  
Article
Characterization of Brown Seaweed (Ascophyllum nodosum) and Sugar Kelp (Saccharina latissima) Extracts Using Temporal Check-All-That-Apply
by Zach Adams, Nicoletta Faraone and Matthew B. McSweeney
Foods 2025, 14(15), 2565; https://doi.org/10.3390/foods14152565 - 22 Jul 2025
Viewed by 148
Abstract
Seaweed is a sustainable ingredient that has been suggested to improve the nutritional aspects as well as the sensory properties of different food products. The objective of this study was to evaluate the flavor properties of extracts from brown seaweed (Ascophyllum nodosum [...] Read more.
Seaweed is a sustainable ingredient that has been suggested to improve the nutritional aspects as well as the sensory properties of different food products. The objective of this study was to evaluate the flavor properties of extracts from brown seaweed (Ascophyllum nodosum) and sugar kelp (Saccharina latissimi) obtained at different temperatures. These varieties commonly grow in the Atlantic Ocean. The seaweed samples were extracted using water at three different temperatures (50 °C, 70 °C, and 90 °C). The volatile fraction of the extracts was extracted with headspace solid-phase microextraction and analyzed by gas chromatography–mass spectrometry. The headspace chemical composition varies significantly among seaweed extracts and at different extraction temperatures. Major classes of identified compounds were aldehydes, ketones, alcohols, hydrocarbons, and halogenated compounds. Extracts were also evaluated using temporal check-all-that-apply (with 84 untrained participants). The different temperatures had minimal impact on the flavour properties of the brown seaweed samples, but the extraction temperature did influence the properties of the sugar kelp samples. Increasing the extraction temperature seemed to lead to an increase in bitterness, savouriness, and earthy flavor, but future studies are needed to confirm this finding. This study continues the exploration of the flavor properties of seaweeds and identifies the dynamic flavor profile of brown seaweed and sugar kelp under different extraction conditions. Full article
Show Figures

Figure 1

15 pages, 683 KiB  
Article
Differential Effects of Non-Microbial Biostimulants on Secondary Metabolites and Nitrate Content in Organic Arugula Leaves
by Michele Ciriello, Luana Izzo, Abel Navarré Dopazo, Emanuela Campana, Giuseppe Colla, Giandomenico Corrado, Stefania De Pascale, Youssef Rouphael and Christophe El-Nakhel
Foods 2025, 14(14), 2489; https://doi.org/10.3390/foods14142489 - 16 Jul 2025
Viewed by 273
Abstract
Arugula leaves (Diplotaxis tenuifolia L. and Eruca sativa L.) are a must-have ingredient in ready-to-eat salads, as they are prized for their appearance, taste, and flavor. The nutraceutical properties of this leafy vegetable are attributed to the presence of valuable secondary metabolites, [...] Read more.
Arugula leaves (Diplotaxis tenuifolia L. and Eruca sativa L.) are a must-have ingredient in ready-to-eat salads, as they are prized for their appearance, taste, and flavor. The nutraceutical properties of this leafy vegetable are attributed to the presence of valuable secondary metabolites, such as phenolic acids and glucosinolates. Using UHPLC-Q-Orbitrap HRMS analysis and ion chromatography, we characterized the content of phenolic acids, glucosinolates, nitrates, and organic acids in organic arugula [Diplotaxis tenuifolia (L.) DC] and evaluated how the foliar application of three different non-microbial biostimulants (a seaweed extract, a vegetable protein hydrolysate, and a tropical plant extract) modulated the expression of these. Although the application of vegetable protein hydrolysate increased, compared to control plants, the nitrate content, the application of the same biostimulant increased the total content of glucosinolates and phenolic acid derivatives by 5.2 and 17.2%. Specifically, the foliar application of the plant-based biostimulant hydrolyzed protein significantly increased the content of glucoerucin (+22.9%), glucocheirolin (+76.8%), and ferulic acid (+94.1%). The highest values of flavonoid derivatives (173.03 μg g−1 dw) were recorded from plants subjected to the exogenous application of seaweed extract. The results obtained underscore how biostimulants, depending on their origin and composition, can be exploited not only to improve agronomic performance but also to enhance the nutraceutical content of vegetables, guaranteeing end consumers a product with premium quality characteristics. Full article
(This article belongs to the Special Issue Health Benefits of Bioactive Compounds from Vegetable Sources)
Show Figures

Figure 1

20 pages, 2421 KiB  
Article
Mitigation of Water-Deficit Stress in Soybean by Seaweed Extract: The Integrated Approaches of UAV-Based Remote Sensing and a Field Trial
by Md. Raihanul Islam, Hasan Muhammad Abdullah, Md Farhadur Rahman, Mahfuzul Islam, Abdul Kaium Tuhin, Md Ashiquzzaman, Kh Shakibul Islam and Daniel Geisseler
Drones 2025, 9(7), 487; https://doi.org/10.3390/drones9070487 - 10 Jul 2025
Viewed by 407
Abstract
In recent years, global agriculture has encountered several challenges exacerbated by the effects of changes in climate, such as extreme water shortages for irrigation and heat waves. Water-deficit stress adversely affects the morpho-physiology of numerous crops, including soybean (Glycine max L.), which [...] Read more.
In recent years, global agriculture has encountered several challenges exacerbated by the effects of changes in climate, such as extreme water shortages for irrigation and heat waves. Water-deficit stress adversely affects the morpho-physiology of numerous crops, including soybean (Glycine max L.), which is considered as promising crop in Bangladesh. Seaweed extract (SWE) has the potential to improve crop yield and alleviate the adverse effects of water-deficit stress. Remote and proximal sensing are also extensively utilized in estimating morpho-physiological traits owing to their cost-efficiency and non-destructive characteristics. The study was carried out to evaluate soybean morpho-physiological traits under the application of water extracts of Gracilaria tenuistipitata var. liui (red seaweed) with two varying irrigation water conditions (100% of total crop water requirement (TCWR) and 70% of TCWR). Principal component analysis (PCA) revealed that among the four treatments, the 70% irrigation + 5% (v/v) SWE and the 100% irrigation treatments overlapped, indicating that the application of SWE effectively mitigated water-deficit stress in soybeans. This result demonstrates that the foliar application of 5% SWE enabled soybeans to achieve morpho-physiological performance comparable to that of fully irrigated plants while reducing irrigation water use by 30%. Based on Pearson’s correlation matrix, a simple linear regression model was used to ascertain the relationship between unmanned aerial vehicle (UAV)-derived vegetation indices and the field-measured physiological characteristics of soybean. The Normalized Difference Red Edge (NDRE) strongly correlated with stomatal conductance (R2 = 0.76), photosystem II efficiency (R2 = 0.78), maximum fluorescence (R2 = 0.64), and apparent transpiration rate (R2 = 0.69). The Soil Adjusted Vegetation Index (SAVI) had the highest correlation with leaf relative water content (R2 = 0.87), the Blue Normalized Difference Vegetation Index (bNDVI) with steady-state fluorescence (R2 = 0.56) and vapor pressure deficit (R2 = 0.74), and the Green Normalized Difference Vegetation Index (gNDVI) with chlorophyll content (R2 = 0.73). Our results demonstrate how UAV and physiological data can be integrated to improve precision soybean farming and support sustainable soybean production under water-deficit stress. Full article
(This article belongs to the Special Issue Recent Advances in Crop Protection Using UAV and UGV)
Show Figures

Graphical abstract

18 pages, 2005 KiB  
Article
Seaweed Pelvetia canaliculata as a Source of Bioactive Compounds for Application in Fried Pre-Coated Mackerel (Scomber scombrus) Fillets: A Functional Food Approach
by Catarina D. Freire, Madalena Antunes, Susana F. J. Silva, Marta Neves and Carla Tecelão
Appl. Sci. 2025, 15(13), 7623; https://doi.org/10.3390/app15137623 - 7 Jul 2025
Viewed by 294
Abstract
Fatty fish, such as mackerel (Scomber scombrus), are recommended as part of a healthy diet, providing essential fatty acids (FA). Fried fish is appreciated for its attributes, including a crispy texture, golden crust, and pleasant taste. However, frying increases the fat [...] Read more.
Fatty fish, such as mackerel (Scomber scombrus), are recommended as part of a healthy diet, providing essential fatty acids (FA). Fried fish is appreciated for its attributes, including a crispy texture, golden crust, and pleasant taste. However, frying increases the fat content and the caloric value of food. This study evaluated the use of pre-frying edible coatings on mackerel fillets aiming to: (i) reduce oil absorption, (ii) minimize water loss, preserving fish succulence, and (iii) prevent fat oxidation. For this purpose, alginate- and carrageenan-based coatings were supplemented with extracts of Pelvetia canaliculata (Pc), a seaweed with high potential as a source of bioactive compounds. The fried fillets were analysed for colour, texture, moisture, ash, lipid content, and FA profile. No significant differences were observed for colour and textural parameters. Fillets coated with Pc-supplemented carrageenan showed the highest moisture (an increase of 3%) and the lowest fat content (a decrease of 7,5%) compared to the control (fried uncoated fillets). Coated fillets also exhibited reduced saturated FA and increased monounsaturated FA. In general, linoleic acid (C18:2) decreased markedly, while the values for docosahexaenoic acid (C22:6, n-3) remained stable (11–12% of total FA). Moreover, the n3/n6 ratio and atherogenic indices (AI) were improved in the coated fillets. Full article
(This article belongs to the Special Issue Harnessing Microalgae and Seaweed for the Food Sector)
Show Figures

Figure 1

15 pages, 4009 KiB  
Article
Metabolomic Profiling and Anti-Helicobacter pylori Activity of Caulerpa lentillifera (Sea Grape) Extract
by Chananchida Thacharoen, Thisirak Inkaewwong, Watthanachai Jumpathong, Pornchai Kaewsapsak, Thiravat Rattanapot and Tippapha Pisithkul
Mar. Drugs 2025, 23(7), 282; https://doi.org/10.3390/md23070282 - 7 Jul 2025
Viewed by 666
Abstract
Helicobacter pylori is a gastric pathogen implicated in peptic ulcer disease and gastric cancer. The increasing prevalence of antibiotic-resistant strains underscores the urgent need for alternative therapeutic strategies. In this study, we investigated the chemical composition and antibacterial activity of an aqueous extract [...] Read more.
Helicobacter pylori is a gastric pathogen implicated in peptic ulcer disease and gastric cancer. The increasing prevalence of antibiotic-resistant strains underscores the urgent need for alternative therapeutic strategies. In this study, we investigated the chemical composition and antibacterial activity of an aqueous extract from Caulerpa lentillifera (sea grape), a farm-cultivated edible green seaweed collected from Krabi Province, Thailand. Ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) revealed that the extract was enriched in bioactive nucleosides and phenolic compounds. In vitro assays demonstrated dose-dependent inhibition of H. pylori growth following exposure to sea grape extract. Furthermore, untargeted intracellular metabolomic profiling of H. pylori cells treated with the extract uncovered significant perturbations in central carbon and nitrogen metabolism, including pathways associated with the tricarboxylic acid (TCA) cycle, one-carbon metabolism, and alanine, aspartate, and glutamate metabolism. Pyrimidine biosynthesis was selectively upregulated, indicating a potential stress-induced shift toward nucleotide salvage and DNA repair. Of particular note, succinate levels were markedly reduced despite accumulation of other TCA intermediates, suggesting disruption of electron transport-linked respiration. These findings suggest that bioactive metabolites from C. lentillifera impair essential metabolic processes in H. pylori, highlighting its potential as a natural source of antimicrobial agents targeting bacterial physiology. Full article
(This article belongs to the Special Issue Marine Omics for Drug Discovery and Development, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 4549 KiB  
Article
Co-Application of Seaweed Extract (Solieria filiformis) and Silicon: Effect on Sporulation, Mycorrhizal Colonization, and Initial Growth of Mimosa caesalpiniaefolia
by Isaac Alves da Silva, José Lucas Sousa de Andrade, Francisco Luan Almeida Barbosa, Murilo de Sousa Almeida, Marjory Lima Holanda Araújo, Adijailton Jose de Souza, Ademir Sergio Ferreira Araujo, Arthur Prudêncio de Araujo Pereira and Kaio Gráculo Vieira Garcia
Microorganisms 2025, 13(7), 1581; https://doi.org/10.3390/microorganisms13071581 - 4 Jul 2025
Viewed by 521
Abstract
Seaweed extracts (SEs) and silicon (Si) are known to enhance plant growth under adverse conditions. However, their combined effects on arbuscular mycorrhizal fungi (AMF) are not yet fully understood. This study evaluated the effect of the co-application of an SE and Si on [...] Read more.
Seaweed extracts (SEs) and silicon (Si) are known to enhance plant growth under adverse conditions. However, their combined effects on arbuscular mycorrhizal fungi (AMF) are not yet fully understood. This study evaluated the effect of the co-application of an SE and Si on the AMF spore abundance, mycorrhizal colonization, and early growth of Mimosa caesalpiniaefolia. Plants were grown in a greenhouse for 70 days in soil with or without an SE (Solieria filiformis) and three Si levels (0, 150, and 300 mg kg−1). Growth parameters, AMF spore abundance, mycorrhizal colonization, and plant/soil chemical composition were assessed. SE and Si increased the plant height, stem diameter, number of leaves, and shoot dry mass, while higher Si levels reduced the root dry mass and length. Mycorrhizal colonization was highest (64%) at 150 mg kg−1 Si with SE, whereas AMF spore abundance decreased as Si increased. SE and 300 mg kg−1 Si raised the Si levels in the shoot, while root Si increased only at 300 mg kg−1 Si. Shoot Na increased at 300 mg kg−1 Si without SE, whereas K was highest at 150 mg kg−1 Si with SE. The soil pH, electrical conductivity, and Na increased at 300 mg kg−1 Si, while K and P decreased at this level without SE. These findings indicate that SE and Si co-application benefits early growth and may modulate mycorrhizal symbiosis, highlighting the importance of proper management to maximize plant and soil benefits. Full article
Show Figures

Figure 1

32 pages, 1859 KiB  
Review
Bibliometric Analysis Towards Industrial-Scale Use of Marine Algae and Lichens as Soil Amendments and Plant Biofertilizers for Sustainable Agriculture
by Oumaima Ouala, Yasser Essadki, Brahim Oudra, Fatima El Khalloufi and Rosario Martins
Phycology 2025, 5(3), 29; https://doi.org/10.3390/phycology5030029 - 25 Jun 2025
Viewed by 483
Abstract
The nutrient-rich composition of seaweeds and lichens makes them well-suited for agricultural applications. Their use as alternatives to synthetic fertilizers contributes to sustainable agricultural production, enabling farmers to adopt ecological practices while maintaining or increasing crop productivity. This review aims to highlight the [...] Read more.
The nutrient-rich composition of seaweeds and lichens makes them well-suited for agricultural applications. Their use as alternatives to synthetic fertilizers contributes to sustainable agricultural production, enabling farmers to adopt ecological practices while maintaining or increasing crop productivity. This review aims to highlight the status and trends of research, along with a literature analysis on the application of these biomasses in sustainable agriculture. A bibliometric analysis was performed based on two databases (Scopus and Web of Science) to overview the main research topics regarding the use of biomasses studied in agriculture, thus providing useful information for future research. The biochemical composition and agricultural applications of these biomasses have been highlighted. The analysis shows that these biomasses are rich of nutrient compounds, revealing their roles and mechanisms of action on the chemical, nutritional properties, and soil microbial activities and their effect on plant growth, using various extraction and application methods. It also highlighted the potential of seaweeds for protection against biotic and abiotic stresses. In light of all the data presented in this review, it is possible to stimulate farmers’ interest in using seaweeds and lichens as natural fertilizers, with a focus on sustainable and ecological agriculture mainly in developing countries. Full article
Show Figures

Figure 1

15 pages, 1396 KiB  
Article
Ultrasound-Assisted Extraction and Microencapsulation of Durvillaea incurvata Polyphenols: Toward a Stable Anti-Inflammatory Ingredient for Functional Foods
by Nicolás Muñoz-Molina, Javier Parada, Angara Zambrano, Carina Chipon, Paz Robert and María Salomé Mariotti-Celis
Foods 2025, 14(13), 2240; https://doi.org/10.3390/foods14132240 - 25 Jun 2025
Viewed by 362
Abstract
Durvillaea incurvata, a Chilean brown seaweed, exhibits high antioxidant activity and polyphenol content, positioning it as a promising candidate for developing bioactive food ingredients. This study evaluated the anti-inflammatory activity of an ethanolic extract of Durvillaea incurvata, produced via ultrasound-assisted extraction, [...] Read more.
Durvillaea incurvata, a Chilean brown seaweed, exhibits high antioxidant activity and polyphenol content, positioning it as a promising candidate for developing bioactive food ingredients. This study evaluated the anti-inflammatory activity of an ethanolic extract of Durvillaea incurvata, produced via ultrasound-assisted extraction, and its subsequent microencapsulation to obtain a functional food-grade ingredient. The extract’s anti-inflammatory capacity was assessed in vitro through hyaluronidase inhibition, and its cytotoxicity was evaluated using gastrointestinal cell models (HT-29 and Caco-2). Microencapsulation was performed by spray-drying with maltodextrin, and encapsulation efficiency (EE) was optimized using response surface methodology. Characterization included scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. The extract exhibited low cytotoxicity (cell viability > 75%). Optimal encapsulation conditions (inlet temperature: 198.28 °C, maltodextrin: 23.11 g/100 g) yielded an EE of 72.7% ± 1.2% and extract recovery (R) of 45.9% ± 2.4%. The microparticles (mean diameter, 2.75 µm) exhibited a uniform morphology, shell formation, glassy microstructure, and suitable physicochemical properties (moisture, 3.4 ± 0.1%; water activity, 0.193 ± 0.004; hygroscopicity, 30.3 ± 0.4 g/100 g) for food applications. These findings support the potential of microencapsulated Durvillaea incurvata extract as an anti-inflammatory ingredient for functional food development. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

16 pages, 2141 KiB  
Article
Implementation of Sustainable Methods for the Propagation and Cultivation of Chondracanthus chamissoi “Yuyo” in La Libertad, Peru: A Transition from the Laboratory to the Sea
by Nancy Soto-Deza, Luis Cabanillas-Chirinos and Nicole Terrones-Rodríguez
J. Mar. Sci. Eng. 2025, 13(6), 1164; https://doi.org/10.3390/jmse13061164 - 13 Jun 2025
Viewed by 444
Abstract
The alga Chondracanthus chamissoi, commonly known as “yuyo” or “mococho” is found along the coasts of Peru and Chile. Due to its multiple applications in industrial, health, pharmaceutical, and productive sectors, its demand has increased, leading to the uncontrolled exploitation of natural banks [...] Read more.
The alga Chondracanthus chamissoi, commonly known as “yuyo” or “mococho” is found along the coasts of Peru and Chile. Due to its multiple applications in industrial, health, pharmaceutical, and productive sectors, its demand has increased, leading to the uncontrolled exploitation of natural banks and negatively impacting marine ecosystems. This experimental study evaluated the viability of propagating C. chamissoi propagules using the foliar fertilizer Bayfolan® from Bayer, as well as its continuous, non-seasonal cultivation in La Ramada. This initiative aims to establish a productive area in La Libertad to meet the needs of national and international markets, reducing the indiscriminate exploitation of seaweed in natural banks. The results indicated that continuous cultivation is feasible, with growth rates of 0.0369 and 0.0388 g.day−1 (0% Bayfolan) and 0.0397 and 0.0399 g.day−1 (1% Bayfolan) during propagule propagation. Slight statistically significant differences were observed in final biomass between 0% and 1% Bayfolan treatments, and Bayfolan use reduced healing time by seven days. Nutritional and microbiological assays confirmed that fresh “yuyo” is suitable for human consumption; hence, La Ramada provides suitable physical–chemical and microbiological conditions for extracting and cultivating hydrobiological species, offering a viable alternative to the seasonal overexploitation of the algae and potential economic benefits for coastal families. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

17 pages, 2589 KiB  
Article
Rhamnan Sulfate from the Seaweed Monostroma nitidum May Improve Cognitive Impairment Caused by Hyperglycemia
by Takaichi Miwa, Masaya Sato, Ning Ma, Keiichi Hiramoto, Masahiro Terasawa and Koji Suzuki
Mar. Drugs 2025, 23(6), 250; https://doi.org/10.3390/md23060250 - 12 Jun 2025
Viewed by 618
Abstract
Rhamnan sulfate (RS), extracted from the seaweed Monostroma nitidum, suppresses vascular endothelial inflammation and arteriosclerosis, decreases blood glucose levels, and improves blood lipid metabolism and the intestinal environment. We examined whether RS improves hyperglycemia-induced cognitive decline in a hyperglycemic mouse model pretreated [...] Read more.
Rhamnan sulfate (RS), extracted from the seaweed Monostroma nitidum, suppresses vascular endothelial inflammation and arteriosclerosis, decreases blood glucose levels, and improves blood lipid metabolism and the intestinal environment. We examined whether RS improves hyperglycemia-induced cognitive decline in a hyperglycemic mouse model pretreated with nicotinamide and streptozotocin and then orally administered a high-fat diet and maltodextrin (MD) for 4 months. RS was administered in an MD solution at doses of 75, 225, and 750 mg/kg of mouse body weight. Administration of RS to hyperglycemic mice significantly reduced blood glucose levels and tended to improve memory function in behavioral pharmacological tests using spontaneous locomotor activity, rotarod test, and eight-way-maze test, although the results were not significant. Brain histopathological analysis showed that RS significantly reduced atrophy of neuronal layers in each region of the hippocampus compared with untreated hyperglycemic controls. RS also significantly suppressed TNF-α expression and microglial activation in the brain. These results suggest that RS intake suppresses inflammation in the brain and alleviates the cognitive impairment associated with hyperglycemic diabetes. Full article
(This article belongs to the Special Issue Marine Anti-Inflammatory and Antioxidant Agents, 5th Edition)
Show Figures

Figure 1

Back to TopTop