Sustainable Nutrition and Food Allergy: A State-of-the-Art Review
Abstract
1. Introduction
2. Methodology
3. Results and Discussion
3.1. Cutured Meat
3.2. Seaweed
3.3. Single-Cell Proteins
3.4. Plant-Based Proteins
Plant-Derived Food Allergen Components
3.5. Insects
3.6. Regulation of Alternative Protein Consumption
3.7. Allergenicity Assessment of Alternative Proteins
- (1)
- Gene source analysis: identifying the origin of the protein
- (2)
- Sequence homology: comparing amino acid sequences with recognised allergens
- (3)
- IgE binding tests: evaluating how proteins interact with IgE antibodies from allergic subjects
- (4)
- Pepsin resistance testing: assessing protein stability in simulated gastric fluid, as resistant proteins are more likely to be allergenic.
- (1)
- Bioinformatic screening: utilised to identify potential allergenic sequences by comparing new proteins to known allergens using databases such as AllergenOnline, Allermatch, or UniProt. Criteria include at least 35% identity over an 80-amino acid segment or eight or more consecutive identical amino acids.
- (2)
- Omics technologies, especially:
- ○
- Proteomics is the large-scale study of the complete set of proteins (proteome) expressed by a cell or tissue. Techniques include:
- Mass Spectrometry (MS): for identifying and quantifying proteins.
- 2D-Gel Electrophoresis (2D-GEL): for separating proteins by charge and mass.
- LC-MS/MS (Liquid Chromatography with Tandem Mass Spectrometry): for in-depth protein analysis.
- ○
- Transcriptomics: the investigation of RNA transcripts to comprehend gene expression.
3.8. Alternative Proteins Projections to 2050
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3. 2022. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf (accessed on 22 June 2025).
- FAO. The State of Food Security and Nutrition in the World. 2022. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/67b1e9c7-1a7f-4dc6-a19e-f6472a4ea83a/content (accessed on 22 June 2025).
- Turner, N.D.; Lloyd, S.K. Association between red meat consumption and colon cancer: A systematic review of experimental results. Exp. Biol. Med. 2017, 242, 813–839. [Google Scholar] [CrossRef]
- Witte, B.; Obloj, P.; Koktenturk, S.; Morach, B.; Brigl, M.; Rogg, J.; Schulze, U.; Walker, D.; Von Koeller, E.; Dehnert, N.; et al. Food for Thought: The protein transformation. Ind. Biotechnol. 2021, 17, 125–133. [Google Scholar] [CrossRef]
- Calvani, M.; Anania, C.; Cuomo, B.; D’Auria, E.; Decimo, F.; Indirli, G.C.; Marseglia, G.; Mastrorilli, V.; Sartorio, M.U.A.; Santoro, A.; et al. Non-IgE- or Mixed IgE/Non-IgE-Mediated Gastrointestinal Food Allergies in the First Years of Life: Old and New Tools for Diagnosis. Nutrients 2021, 13, 226. [Google Scholar] [CrossRef]
- Boyce, J.; Assa’ad, A.; Burks, A.W.; Jones, S.M.; Sampson, H.A.; Wood, R.A.; Plaut, M.; Cooper, S.F.; Fento, M.J.; Arshad, S.H.; et al. Guidelines for the diagnosis and management of food allergy in the United States: Report of the NIAID- sponsored expert panel. J. Allergy Clin. Immunol. 2010, 126, S1–S58. [Google Scholar] [CrossRef]
- Cianferoni, A. Non-IgE Mediated Food Allergy. Curr. Pediatr. Rev. 2020, 16, 95–105. [Google Scholar] [CrossRef]
- Mennini, M.; Fiocchi, A.G.; Cafarotti, A.; Montesano, M.; Mauro, A.; Villa, M.P.; Di Nardo, G. Food protein-induced allergic proctocolitis in infants: Literature review and proposal of a management protocol. World Allergy Organ. J. 2020, 13, 100471. [Google Scholar] [CrossRef]
- Fox, V.L. Gastrointestinal bleeding in infancy and childhood. Gastroenterol. Clin. N. Am. 2000, 29, 37–66. [Google Scholar] [CrossRef]
- Kaya, A.; Toyran, M.; Civelek, E.; Misirlioglu, E.; Kirsaclioglu, C.; Kocabas, C. Characteristics and prognosis of allergic proctocolitis in infants. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 69–73. [Google Scholar] [CrossRef]
- Leonard, S.A.; Nowak-Wegryn, A. Food Protein–Induced Enterocolitis Syndrome. Pediatr. Clin. N. Am. 2015, 62, 1463–1477. [Google Scholar] [CrossRef]
- Nowak-Wegrzyn, A.; Berin, M.C.; Mehr, S. Food Protein-Induced Enterocolitis Syndrome. J. Allergy Clin. Immunol. Pract. 2020, 8, 24–35. [Google Scholar] [CrossRef]
- Santos, A.F.; Riggioni, C.; Agache, I.; Akdis, C.A.; Akdis, M.; Alvarez-Perea, A.; Alvaro-Lozano, M.; Ballmer-Weber, B.; Barni, S.; Beyer, K.; et al. EAACI guidelines on the diagnosis of IgE-mediated food allergy. Allergy 2023, 78, 3057–3076. [Google Scholar] [CrossRef]
- Dearman, R.J.; Kimber, I. Animal models of protein allergenicity: Potential benefits, pitfalls and challenges. Clin. Exp. Allergy 2009, 39, 458–468. [Google Scholar] [CrossRef]
- Liguori, B.; Sancho, A.I.; Poulsen, M.; Lindholm Bøgh, K. Novel foods: Allergenicity assessment of insect proteins. EFSA J. 2022, 14, e200910. [Google Scholar] [CrossRef]
- Remington, B.; Broekman, H.C.H.; Blom, W.M.; Capt, A.; Crevel, R.W.R.; Dimitrov, I.; Faeste, C.K.; Fernandez-Canton, R.; Giavi, S.; Houben, G.F.; et al. Approaches to assess IgE mediated allergy risks (sensitization and cross-reactivity) from new or modified dietary proteins. Food Chem. Toxicol. 2018, 112, 97–107. [Google Scholar] [CrossRef]
- EFSA. Panel on Dietetic Products, Nutrition and Allergy. 2016. Guidance on the preparation and presentation of an application for authorization of a novel food in the context of Regulation (EU) 2015/2283. EFSA J. 2016, 14, 4594. [Google Scholar] [CrossRef]
- EFSA Panel on Genetically Modified Organisms (GMO); Naegeli, H.; Birch, A.N.; Casacuberta, J.; De Schrijver, A.; Gralak, M.A.; Guerche, P.; Jones, H.; Manachini, B.; Messean, A.; et al. Guidance on allergenicity assessment of genetically modified plants. EFSA J. 2017, 15, e04862. [Google Scholar] [CrossRef]
- Kopko, C.; Garthoff, J.A.; Zhou, K.; Meunier, L.; O’Sullivan, A.J.; Fattori, V. Are alternative proteins increasing food allergies? Trends, drivers and future perspectives. Trends Food Sci. Technol. 2022, 129, 126–133. [Google Scholar] [CrossRef]
- Ribeiro, J.C.B.; Sousa-Pinto, J.; Fonseca, S.; Caldas Fonseca, S.; Cunha, L.M. Edible insects and food safety: Allergy. J. Insects Food Feed. 2021, 7, 833–847. [Google Scholar] [CrossRef]
- Post, M.J.; Levenberg, S.; Kaplan, D.L.; Genovese, N.; Fu, J.; Bryant, C.J.; Negowetti, N.; Verzijden, K.; Moutsatsou, P. Scientific, sustainability and regulatory challenges of cultured meat. Nat. Food 2020, 1, 403–415. [Google Scholar] [CrossRef]
- Salter, A.M.; Lopez-Viso, C. Role of novel protein sources in sustainably meeting future global requirements. Proc. Nutr. Soc. 2021, 80, 186–194. [Google Scholar] [CrossRef]
- Post, M.J. Cultured beef: Medical technology to produce food. J. Sci. Food Agric. 2014, 94, 1039–1041. [Google Scholar] [CrossRef]
- Post, M.J. Cultured Meat from Stem Cells: Challenges and Prospects. Meat Sci. 2012, 92, 297–301. [Google Scholar] [CrossRef]
- Hadi, J.; Brightwell, G. Safety of Alternative Proteins: Technological, Environmental and Regulatory Aspects of Cultured Meat, Plant-Based Meat, Insect Protein and Single-Cell Protein. Foods 2021, 10, 1226. [Google Scholar] [CrossRef]
- Ong, K.J.; Johnston, J.; Datar, I.; Sewalt, V.; Holmes, D.; Shatkin, J.A. Food safety considerations and research priorities for the cultured meat and seafood industry. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5421–5448. [Google Scholar] [CrossRef]
- Shapiro, P. Clean meat: How growing meat without animals will revolutionize dinner and the world. Science 2018, 359, 399. [Google Scholar] [CrossRef]
- Hawkes, P.W. Fetal Bovine Serum: Geographic Origin and Regulatory Relevance of Viral Contamination. Bioresour. Bioprocess. 2015, 2, 34. [Google Scholar] [CrossRef]
- Hocquette, J.F. Is in vitro meat the solution for the future? Meat Sci. 2016, 120, 167–176. [Google Scholar] [CrossRef]
- Chriki, S.; Hocquette, J.F. The Myth of Cultured Meat: A Review. Front. Nutr. 2020, 7, 7. [Google Scholar] [CrossRef]
- Fraeye, I.; Kratka, M.; Vandenburgh, H.; Thorrez, L. Sensorial and Nutritional Aspects of Cultured Meat in Comparison to Traditional Meat: Much to Be Inferred. Front. Nutr. 2020, 7, 35. [Google Scholar] [CrossRef]
- Bryant, C.J. Culture, meat, and cultured meat. J. Anim. Sci. 2020, 98, skaa172. [Google Scholar] [CrossRef]
- Lee, L.Y.G.N.; Leow, S.Y.; Wen, H.; Soh, J.Y.; Chiang, W.C.; Zhong, Y.; Tham, E.H.; Loh, W.; Delsing, D.J.; Lee, B.W.; et al. An Evaluation of the Mechanisms of Galacto-Oligosaccharide (GOS)-Induced IgE Cross-Linking on Basophils in GOS Allergy. Front. Allergy 2022, 3, 840454. [Google Scholar] [CrossRef]
- Commins, S.P. Diagnosis & management of alpha-gal syndrome: Lessons from 2,500 patients. Expert. Rev. Clin. Immunol. 2020, 16, 667–677. [Google Scholar] [CrossRef]
- Restani, P.; Ballabio, C.; Tripodi, S.; Fiocchi, A. Meat allergy. Curr. Opin. Allergy Clin. Immunol. 2009, 9, 265–269. [Google Scholar] [CrossRef]
- Doumeizel, V.; Aass, K. Seaweed Revolution: A Manifesto for a Sustainable Future; Lloyd’s Register Foundation: London, UK, 2020; Available online: https://www.lrfoundation.org.uk/publications/the-seaweed-revolution-a-manifesto-for-a-sustainable-future (accessed on 22 June 2025).
- Fleurence, J.M.; Morancais, M.; Dumay, J. Seaweed proteins. In Proteins in Food Processing, 2nd ed.; Yada, R.Y., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 245–262. [Google Scholar]
- Thomas, I.; Siew, L.Q.C.; Watts, T.J.; Haque, R. Seaweed allergy. J. Allergy Clin. Immunol. Pract. 2019, 7, 714–715. [Google Scholar] [CrossRef]
- DIC. Color and Comfort. Available online: https://www.dic-global.com/en/products/health_foods/ (accessed on 22 June 2025).
- Damhert Nutrition. Available online: https://damhert.com/en/shop/r-gime-spirulina-chips (accessed on 22 June 2025).
- Phycom. Available online: https://phycom.eu/how-we-create-algae (accessed on 22 June 2025).
- Purasana Your Natural Protection. Available online: https://purasana.com/super-green/spirulina-raw-powder (accessed on 22 June 2025).
- Moura, M.A.F.E.; Martins, B.A.; Oliveira, G.P.; Takahashi, J.A. Alternative protein sources of plant, algal, fungal and insect origins for dietary diversification in search of nutrition and health. Crit. Rev. Food Sci. Nutr. 2023, 63, 10691–10708. [Google Scholar] [CrossRef]
- Banach, J.L.; Hoffmans, Y.; Faassen, E.J.; Hoek-van den Hil, E.F.; Klijnstra, M.D. Food Safety in the Seaweed Food Supply Chain: Inventory of Production, Consumption and Chemical and Physical Hazards; Wageningen Food Safety Research: Wageningen, The Netherlands, 2020; WFSR-Report; Available online: https://research.wur.nl/en/publications/food-safety-in-the-seaweed-food-supply-chain-inventory-of-product (accessed on 22 June 2025).
- van der Fels-Klerx, H.J.; Camenzuli, L.; Belluco, S.; Meijer, N.; Ricci, A. Food safety issues related to uses of insects for feeds and foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1172–1183. [Google Scholar] [CrossRef]
- Adesogan, A.T.; Havelaar, A.H.; McKune, S.L.; Eilittä, M.; Dahl, G.E. Animal source foods: Sustainability problem or malnutrition and sustainability solution? Perspect Matters Glob. Food Secur. 2020, 25, 100325. [Google Scholar] [CrossRef]
- McElhenney, T.R.; Bold, H.C.; Brown, R.M., Jr.; McGovern, J.P. Algae: A cause of inhalant allergy in children. Ann. Allergy 1962, 20, 739–743. [Google Scholar] [CrossRef]
- Henderson, A.K.; Ranger, A.F.; Lloyd, J.; McSharry, C.; Mills, R.J.; Moran, F. Pulmonary hypersensitivity in the alginate industry. Scott. Med. J. 1984, 29, 90–95. [Google Scholar] [CrossRef]
- Gangemi, S.; Spagnolo, E.V.; Cardia, G.; Minciullo, P.L. Fatal anaphylactic shock due to a dental impression material. Int. J. Prosthodont. 2009, 22, 33–34. [Google Scholar]
- Lauerma, A.I.; Petman, L.; Mäkinen-Kiljunen, S. IgE-mediated anaphylaxis to antacid. Allergy 2001, 56, 580. [Google Scholar] [CrossRef]
- McCarthy, S.; Dvorakova, V.; O’Sullivan, P.; Bourke, J.F. Anaphylaxis caused by alginate dressing. Contact Dermat 2018, 79, 396. [Google Scholar] [CrossRef]
- Sierra, T.; Figueroa, M.M.; Chen, K.T.; Lunde, B.; Jacobs, A. Hypersensitivity to laminaria: A case report and review of literature. Contraception 2015, 91, 353–355. [Google Scholar] [CrossRef]
- Cian, R.E.; Drago, S.R.; de Medina, F.S.; Martínez-Augustin, O. Proteins and carbohydrates from red seaweeds: Evidence for beneficial effects on gut function and microbiota. Mar. Drugs 2015, 13, 5358–5383. [Google Scholar] [CrossRef]
- Gromek, W.; Kołdej, N.; Kurowski, M.; Majsiak, E. Spirulina (Arthrospira platensis): Antiallergic Agent or Hidden Allergen? A Literature Review. Foods 2024, 13, 1052. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.P.; Ahmadi, F.; Kariman, K.; Lackner, M. Recent advances and challenges in single cell protein (SCP) technologies for food and feed production. NPJ Sci. Food 2024, 8, 66. [Google Scholar] [CrossRef]
- Ribeiro, G.O.; Rodrigues, L.A.P.; Dos Santos, T.B.S.; Alves, J.P.S.; Oliveira, R.S.; Nery, T.B.R.; Barbosa, J.D.V.; Soares, M.B.P. Innovations and developments in single cell protein: Bibliometric review and patents analysis. Front. Microbiol. 2023, 13, 1093464. [Google Scholar] [CrossRef]
- Salazar-López, N.J.; Barco-Mendoza, G.A.; Zuñiga-Martínez, B.S.; Domínguez-Avila, J.A.; Robles-Sánchez, R.M.; Ochoa, M.A.V.; González-Aguilar, G.A. Single-Cell Protein Production as a Strategy to Reincorporate Food Waste and Agro By-Products Back into the Processing Chain. Bioengineering 2022, 9, 623. [Google Scholar] [CrossRef]
- Sekoai, P.T.; Roets-Dlamini, Y.; Brien, F.; Ramchuran, S.; Chunilall, V. Valorization of Food Waste into Single-Cell Protein: An Innovative Technological Strategy for Sustainable Protein Production. Microorganisms 2024, 12, 166. [Google Scholar] [CrossRef]
- Ritala, A.; Häkkinen, S.T.; Toivari, M.; Wiebe, M.G. Single Cell Protein-State-of-the-Art, Industrial Landscape and Patents 2001-2016. Front Microbiol. 2017, 8, 2009. [Google Scholar] [CrossRef]
- Ye, L.; Bogicevic, B.; Bolten, C.J.; Wittmann, C. Single-cell protein: Overcoming technological and biological challenges towards improved industrialization. Curr. Opin. Biotechnol. 2024, 88, 103171. [Google Scholar] [CrossRef]
- Nyyssölä, A.; Suhonen, A.; Ritala, A.; Oksman-Caldentey, K.M. The role of single cell protein in cellular agriculture. Curr. Opin. Biotechnol. 2022, 75, 102686. [Google Scholar] [CrossRef]
- Saeed, F.; Afzaal, M.; Khalid, A.; Shah, Y.A.; Ateeq, H.; Islam, F.; Akram, N.; Ejaz, A.; Nayik, G.A.; Shah, M.A. Role of Mycoprotein as a Non-Meat Protein in Food Security and Sustainability: A Review. Int. J. Food Prop. 2023, 26, 683–695. [Google Scholar] [CrossRef]
- Xing, H.; Wang, J.; Sun, Y.; Wang, H. Recent Advances in the Allergic Cross-Reactivity between Fungi and Foods. J. Immunol. Res. 2022, 2022, 7583400. [Google Scholar] [CrossRef]
- Fasihi, M.; Jouzi, F.; Tervasmäki, P.; Vainikka, P.; Breyer, C. Global potential of sustainable single-cell protein based on variable renewable electricity. Nat. Commun. 2025, 16, 1496. [Google Scholar] [CrossRef]
- McClements, D.J.; Grossmann, L. The science of plant-based foods: Constructing next-generation meat, fish, milk, and egg analogs. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4049–4100. [Google Scholar] [CrossRef]
- He, J.; Evans, N.M.; Liu, H.; Shao, S. A review of research on plant-based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2639–2656. [Google Scholar] [CrossRef]
- Sha, L.; Xiong, Y. Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends Food Sci. Technol. 2020, 102, 51–61. [Google Scholar] [CrossRef]
- Webb, D.; Plattner, B.J.; Donald, E.; Funk, D.; Plattner, B.S.; Alavi, S. Role of chickpea flour in texturization of extruded pea protein. J. Food Sci. 2020, 85, 4180–4187. [Google Scholar] [CrossRef]
- Hussain, M.; Qayum, A.; Zhang, X.; Liu, L.; Hussain, K.; Pan, Y.; Sun, Y.; Koko, M.Y.F.; Hussain, A.; Li, X. Potato protein: An emerging source of high quality and allergy free protein, and its possible future based products. Food Res. Int. 2021, 148, 110583. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Barreira, J.C.M.; Oliveira, M.B.P.P. Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. TrendsIn Food Sci. Technol. 2019, 93, 53–68. [Google Scholar] [CrossRef]
- Kakleas, K.; Luyt, D.; Foley, G.; Noimark, L. Is it necessary to avoid all legumes in legume allergy? Pediatr. Allergy Immunol. 2020, 31, 848–851. [Google Scholar] [CrossRef]
- Masilamani, M.; Commins, S.; Shreffler, W. Determinants of food allergy. Immunol. Allergy Clin. N. Am. 2012, 32, 11–33. [Google Scholar] [CrossRef]
- Shahali, Y.; Dadar, M. Plant food allergy: Influence of chemicals on plant allergens. Food Chem. Toxicol. 2018, 115, 365–374. [Google Scholar] [CrossRef]
- Soller, L.; Vieille, S.L.; Cameron, S.B.; Mak, R.; Cook, V.E.; Gerdts, J.; Chan, E.S. Allergic reactions to emerging food allergens in Canadian children. Allergy Asthma Clin. Immunol. 2021, 17, 71. [Google Scholar] [CrossRef]
- Lavine, E.; Ben-Shoshan, M. Anaphylaxis to hidden pea protein: A Canadian pediatric case series. J. Allergy Clin. Immunol. Pract. 2019, 7, 2070–2071. [Google Scholar] [CrossRef]
- Martin-Munoz, M.F.; Diaz-Perales, A.; Cannabal, J.; Quirce, S. Anaphylaxis to hidden potato allergens in a peach and egg allergic boy. Eur. Ann. Allergy Clin. Immunol. 2017, 49, 45–48. [Google Scholar]
- Skypala, I.J. Food-Induced anaphylaxis: Role of hidden allergens and cofactors. Front. Immunol. 2019, 10, 673. [Google Scholar] [CrossRef]
- Carrera, M.; Canas, B.; Gallardo, J.M. Advanced proteomics and systems biology applied to study food allergy. Curr. Opin. Food Sci. 2018, 22, 9–16. [Google Scholar] [CrossRef]
- Khan, M.U.; Lin, H.; Ahmed, I.; Chen, Y.; Zhao, J.; Hang, T.; Dasanayaka, B.P.; Li, Z. Whey allergens: Influence of nonthermal processing treatments and their detection methods. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4480–4510. [Google Scholar] [CrossRef]
- Popescu, F.D. Cross-reactivity between aeroallergens and food allergens. World J. Methodol. 2015, 5, 31–50. [Google Scholar] [CrossRef]
- Verhoeckx, K.; Bøgh, K.L.; Constable, A.; Epstein, M.; Sommergruber, K.H.; Holzhauser, T.; Houben, G.; Kuehn, A.; Roggen, E.; O’Mahony, L.; et al. COST action ‘ImpARAS’: What have we learnt to improve food allergy risk assessment. A summary of a 4-year networking consortium. Clin. Transl. Allergy 2020, 10, 13. [Google Scholar] [CrossRef]
- Toda, M.; Hellwig, M.; Henle, T.; Vieths, S. Influence of the Maillard Reaction on the Allergenicity of Food Proteins and the Development of Allergic Inflammation. Curr. Allergy Asthma Rep. 2019, 19, 4. [Google Scholar] [CrossRef]
- Nakamura, A.; Watanabe, K.; Ojima, T.; Ahn, D.H.; Saeki, H. Effect of maillard reaction on allergenicity of scallop tropomyosin. J. Agric. Food Chem. 2005, 53, 7559–7564. [Google Scholar] [CrossRef]
- Teodorowicz, M.; van Neerven, J.; Savelkoul, H. Food Processing: The Influence of the Maillard Reaction on Immunogenicity and Allergenicity of Food Proteins. Nutrients 2017, 9, 835. [Google Scholar] [CrossRef]
- EFSA. Panel on Dietetic Products, Nutrition and Allergies. Scientific Opinion on the evaluation of allergenic foods and food ingredients for labelling purposes. EFSA J. 2014, 12, 3894. [Google Scholar] [CrossRef]
- Verhoeckx, K.C.M.; Vissers, Y.M.; Baumert, J.L.; Faludi, R.; Feys, M.; Flanagan, S.; Herouet-Guicheney, C.; Holzhauser, T.; Shimojo, R.; van der Bolt, N.; et al. Food processing and allergenicity. Food Chem. Toxicol. 2015, 80, 223–240. [Google Scholar] [CrossRef]
- Liew, W.K.; Chiang, W.C.; Goh, A.E.; Lim, H.H.; Chay, O.M.; Chang, S.; Tan, J.H.; Shih, E.C.; Kidon, M. Paediatric anaphylaxis in a Singaporean children cohort: Changing food allergy triggers over time. Asia Pac. Allergy 2013, 3, 29–34. [Google Scholar] [CrossRef]
- Radauer, C.; Breiteneder, H. Evolutionary biology of plant food allergens. J. Allergy Clin. Immunol. 2007, 120, 518–525. [Google Scholar] [CrossRef]
- Schwager, C.; Kull, S.; Behrends, J.; Rockendorf, N.; Schocker, F.; Frey, A.; Homann, A.; Becker, W.M.; Jappe, U. Peanut oleosins associated with severe peanut allergy-importance of lipophilic allergens for comprehensive allergy diagnostics. J. Allergy Clin. Immunol. 2017, 140, 1331–1338.e8. [Google Scholar] [CrossRef]
- Bublin, M.; Breiteneder, H. Cross-reactivity of peanut allergens. Curr. Allergy Asthma Rep. 2014, 14, 426. [Google Scholar] [CrossRef]
- Inomata, N. Gibberellin-regulated protein allergy: Clinical features and cross-reactivity. Allergol. Int. 2020, 69, 11–18. [Google Scholar] [CrossRef]
- Moreno, F.J.; Clemente, A. 2S albumin storage proteins: What makes them food allergens? Open Biochem. J. 2008, 2, 16–28. [Google Scholar] [CrossRef]
- Smeekens, J.M.; Bagley, K.; Kulis, M. Tree nut allergies: Allergen homology, cross- reactivity, and implications for therapy. Clin. Exp. Allergy 2018, 48, 762–772. [Google Scholar] [CrossRef]
- Rasheed, F.; Markgren, J.; Hedenqvist, M.; Johansson, E. Modeling tounderstand plant protein structure-function relationships-implications for seed storage proteins. Molecules 2020, 25, 873. [Google Scholar] [CrossRef]
- Huang, A.H.C. Plant lipid droplets and their associated proteins: Potential for rapid advances. Plant Physiol. 2018, 176, 1894–1918. [Google Scholar] [CrossRef]
- Tatham, A.S.; Shewry, P.R. Allergens to wheat and related cereals. Clin. Exp. Allergy. 2008, 38, 1712–1726. [Google Scholar] [CrossRef]
- Matsuo, H.; Yokooji, T.; Taogoshi, T. Common food allergens and their IgE-binding epitopes. Allergol. Int. 2015, 64, 332–343. [Google Scholar] [CrossRef]
- Sander, I.; Rihs, H.P.; Brüning, T.; Raulf, M. A further wheat allergen for baker;s asthma: Tri a 40. J. Allergy Clin. Immunol. 2016, 137, 1286. [Google Scholar] [CrossRef]
- Carlson, G.; Coop, C. Pollen food allergy syndrome (PFAS): A review of current available literature. Ann. Allergy Asthma Immunol. 2019, 123, 359–365. [Google Scholar] [CrossRef]
- Fukutomi, Y.; Sjolander, S.; Nakazawa, T.; Borres, M.P.; Ishii, T.; Nakayama, S.; Tanaka, A.; Taniguchi, M.; Saito, A.; Yasueda, H.; et al. Clinical relevance of IgE to recombinant Gly m 4 in the diagnosis of adult soybean allergy. J. Allergy Clin. Immunol. 2012, 129, 860–863.e3. [Google Scholar] [CrossRef]
- Kapingidza, A.B.; Pye, S.E.; Hyduke, N.; Dolamore, C.; Pote, S.; Schlachter, C.R.; Commins, S.P.; Kowal, K.; Chruszcz, M. Comparative structural and thermal stability studies of Cuc m 2.0101, Art v 4.0101 and other allergenic pro lins. Mol. Immunol. 2019, 114, 19–29. [Google Scholar] [CrossRef]
- Asero, R.; Piantanida, M.; Pinter, E.; Pravettoni, V. The clinical relevance of lipid transfer protein. Clin. Exp. Allergy 2018, 48, 6–12. [Google Scholar] [CrossRef]
- Oliveira-Lima, M.; Benko-Iseppon, A.M.; Ribamar Costa Ferreira Neto, J.; Rodriguez-Decuadro, S.; Kido, E.A.; Crovella, S.; Pandolfi, V. Snakin: Structure, roles and applications of a plant antimicrobial peptide. Curr. Protein Pept. Sci. 2017, 18, 368–374. [Google Scholar] [CrossRef]
- Barni, S.; Caimmi, D.; Chiera, F.; Comberiati, P.; Mastrorilli, C.; Pelosi, U.; Paravati, F.; Marseglia, G.L.; Arasi, S. Phenotypes and Endotypes of Peach Allergy: What Is New? Nutrients 2022, 14, 998. [Google Scholar] [CrossRef]
- Tuppo, L.; Alessandri, C.; Pomponi, D.; Picone, D.; Tamburrini, M.; Ferrara, R.; Petriccione, M.; Mangone, I.; Palazzo, P.; Liso, M.; et al. Peamaclein-a new peach allergenic protein: Similarities, differences and misleading features compared to Pru p 3. Clin. Exp. Allergy 2013, 43, 128–140. [Google Scholar] [CrossRef]
- Senechal, H.; Keykhosravi, S.; Couderc, R.; Selva, M.A.; Shahali, Y.; Aizawa, T.; Busnel, J.M.; Arif, R.; Mercier, I.; Pham-Thi, N.; et al. Pollen/Fruit syndrome: Clinical relevance of the cypress pollen allergenic gibberellin-regulated. Allergy Asthma Immunol. Res. 2019, 11, 143–151. [Google Scholar] [CrossRef]
- Iizuka, T.; Takei, M.; Saito, Y.; Rumi, F.; Zheng, J.; Lu, X.; Chafey, P.; Broussard, C.; Guilloux-Assalet, L.; Charpin, D.; et al. Gibberellin-regulated protein sensitization in Japanese cedar (Cryptomeria japonica) pollen allergic Japanese cohorts. Allergy 2021, 76, 2297–2302. [Google Scholar] [CrossRef]
- Quintieri, L.; Nitride, C.; De Angelis, E.; Lamonaca, A.; Pilolli, R.; Russo, F.; Monaci, L. Alternative Protein Sources and Novel Foods: Benefits, Food Applications and Safety Issues. Nutrients 2023, 15, 1509. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- Elhassan, M.; Wendin, K.; Olsson, V.; Langton, M. Quality Aspects of Insects as Food—Nutritional, Sensory, and Related Concepts. Foods 2019, 8, 95. [Google Scholar] [CrossRef]
- Grossmann, L.; Hinrichs, J.; Weiss, J. Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Crit. Rev. Food Sci. Nutr. 2020, 60, 2961–2989. [Google Scholar] [CrossRef]
- Kim, T.; Lee, M.H.; Yu, M.H. Thermal stability and rheological properties of heat-induced gels prepared using edible insect proteins in a model system. LWT 2020, 134, 110270. [Google Scholar] [CrossRef]
- Wang, J.; Jousse, M.; Jayakumar, J. Black Soldier Fly (Hermetia illucens) Protein Concentrates as a Sustainable Source to Stabilize O/W Emulsions Produced by a Low-Energy High-Throughput Emulsification Technology. Foods 2021, 10, 1048. [Google Scholar] [CrossRef]
- Kouřimská, L.; Adámková, A. Nutritional and sensory quality of edible insects. NFS J. 2016, 4, 22–26. [Google Scholar] [CrossRef]
- Kowalski, S.; Mikulec, A.; Mickowska, B.; Skotnicka, M.; Mazurek, A. Wheat bread supplementation with various edible insect flours. Influence of chemical composition on nutritional and technological aspects. LWT 2022, 159, 113220. [Google Scholar] [CrossRef]
- Mason, J.B.; Black, R.; Booth, S.L. Fostering Strategies to Expand the Consumption of Edible Insects: The Value of a Tripartite Coalition between Academia, Industry, and Government. Curr. Dev. Nutr. 2018, 2, nzy056. [Google Scholar] [CrossRef]
- de Gier, S.; Verhoeckx, K. Insect (food) allergy and allergens. Mol. Immunol. 2018, 100, 82–106. [Google Scholar] [CrossRef]
- Amadi, E.; Kiin-Kabari, D. Nutritional composition and microbiology of some edible insects commonly eaten in Africa, hurdles and future prospects: A critical review. J. Food Micr Saf. Hyg. 2016, 1, 107. [Google Scholar] [CrossRef]
- Barre, A.; Simplicien, M.; Cassan, G.; Benoist, H.; Rougé, P. Food allergen families common to different arthropods (mites, insects, crustaceans), mollusks and nematods: Cross-reactivity and potential cross-allergenicity. Rev. Fr. Allergol. 2018, 58, 581–593. [Google Scholar] [CrossRef]
- Ji, K.; Chen, J.; Li, M. Anaphylactic shock and lethal anaphylaxis caused by food consumption in China. Trends Food Sci. Technol. 2009, 20, 227–231. [Google Scholar] [CrossRef]
- Ji, K.M.; Zhan, Z.K.; Chen, J.J.; Liu, Z.G. Anaphylactic shock caused by silkworm pupa consumption in China. Allergy 2008, 63, 1407–1408. [Google Scholar] [CrossRef]
- Barennes, H. Insect Consumption to Address Undernutrition, A National Survey on The Prevalence of İnsect Consumption Among Adults and Vendors in Laos. PLoS ONE 2015, 10, e0136458. [Google Scholar] [CrossRef]
- Verhoeckx, K.C.M.; van Broekhoven, S.; den Hartog-Jager, C.F. House dust mite (Der p 10) and crustacean allergic patients may react to food containing Yellow mealworm proteins. Food Chem. Toxicol. 2014, 65, 364–373. [Google Scholar] [CrossRef]
- Kamemura, N.; Sugimoto, M.; Tamehiro, N. Cross-allergenicity of crustacean and the edible insect Gryllus bimaculatus in patients with shrimp allergy. Mol. Immunol. 2019, 106, 127–134. [Google Scholar] [CrossRef]
- Radauer, C.; Bublin, M.; Wagner, S.; Mari, A.; Breiteneder, H. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J. Allergy Clin. Immunol. 2008, 121, 847–852.e7. [Google Scholar] [CrossRef]
- Pedrosa, M.; Boyano-Martínez, T.; García-Ara, C.; Quirce, S. Shellfish Allergy: A Comprehensive Review. Clin. Rev. All. Immunol. 2015, 49, 203–216. [Google Scholar] [CrossRef]
- Jeong, K.Y.; Han, I.S.; Lee, J.Y.; Park, K.H.; Lee, J.H.; Park, J.W. Role of tropomyosin in silkworm allergy. Mol. Med. Rep. 2017, 15, 3264–3270. [Google Scholar] [CrossRef]
- Pali-Schöll, I.; Verhoeckx, K.; Mafra, I.; Bavaro, S.L.; Clare Mills, E.N.; Monaci, L. Allergenic and novel food proteins: State of the art and challenges in the allergenicity assessment. Trends Food Sci. Technol. 2019, 84, 45–48. [Google Scholar] [CrossRef]
- Broekman, H.; Verhoeckx, K.C.; den Hartog Jager, C.F. Majority of shrimp-allergic patients are allergic to mealworm. J. Allergy Clin. Immunol. 2016, 137, 1261–1263. [Google Scholar] [CrossRef]
- Barre, A.; Pichereaux, C.; Velazquez, E. Insights into the Allergenic Potential of the Edible Yellow Mealworm (Tenebrio molitor). Foods 2019, 8, 515. [Google Scholar] [CrossRef]
- Van Broekhoven, S.; Bastiaan-Net, S.; de Jong, N.W.; Wichers, H.J. Influence of processing and in vitro digestion on the allergic cross-reactivity of three mealworm species. Food Chem. 2016, 196, 1075–1083. [Google Scholar] [CrossRef]
- Liu, Z.; Xia, L.; Wu, Y.; Xia, Q.; Chen, J.; Roux, K.H. Identification and Characterization of an Arginine Kinase as a Major Allergen from Silkworm (Bombyx mori) Larvae. Int. Arch. Allergy Immunol. 2009, 150, 8–14. [Google Scholar] [CrossRef]
- Srinroch, C.; Srisomsap, C.; Chokchaichamnankit, D.; Punyarit, P.; Phiriyangkul, P. Identification of novel allergen in edible insect, Gryllus bimaculatus and its cross-reactivity with Macrobrachium spp. allergens. Food Chem. 2015, 184, 160–166. [Google Scholar] [CrossRef]
- Jeong, K.Y.; Son, M.; Lee, J.Y.; Park, K.H.; Lee, J.H.; Park, J.W. Allergenic Characterization of 27-kDa Glycoprotein, a Novel Heat Stable Allergen, from the Pupa of Silkworm, Bombyx mori. J. Korean Med. Sci. 2016, 31, 18. [Google Scholar] [CrossRef]
- Zhao, X.; Li, L.; Kuang, Z.; Luo, G.; Li, B. Experimental immunology Proteomic and immunological identification of two new allergens from silkworm (Bombyx mori L.) pupae. Cent. Eur. J. Immunol. 2015, 1, 30–34. [Google Scholar] [CrossRef]
- Karnaneedi, S.; Johnston, E.B.; Bose, U. The Allergen Profile of Two Edible Insect Species—Acheta domesticus and Hermetia illucens. Mol. Nutr. Food Res. 2024, 68, e2300811. [Google Scholar] [CrossRef]
- Nishimune, T.; Watanabe, Y.; Okazaki, H.; Akai, H. Thia min Is Decomposed Due to Anaphe spp. Entomophagy in Seasonal Ataxia Patients in Nigeria. J. Nutr. 2000, 130, 1625–1628. [Google Scholar] [CrossRef]
- Pali-Schöll, I.; Meinlschmidt, P.; Larenas-Linnemann, D. Edible insects: Cross-recognition of IgE from crustacean- and house dust mite allergic patients, and reduction of allergenicity by food processing. World Allergy Organ. J. 2019, 12, 100006. [Google Scholar] [CrossRef]
- Sathe, S.K.; Sharma, G.M. Effects of food processing on food allergens. Mol. Nutr. Food Res. 2009, 53, 970–978. [Google Scholar] [CrossRef]
- He, W.; He, K.; Sun, F. Effect of heat, enzymatic hydrolysis and acid-alkali treatment on the allergenicity of silkworm pupa protein extract. Food Chem. 2021, 343, 128461. [Google Scholar] [CrossRef]
- De Marchi, L.; Wangorsch, A.; Zoccatelli, G. Allergens from Edible Insects: Cross-reactivity and Effects of Processing. Curr. Allergy Asthma Rep. 2021, 21, 35. [Google Scholar] [CrossRef]
- Regulation (EC) No 258/97 of the European Parliament and of the Council of 27 January 1997 Concerning Novel Foods and Novel Food Ingredients; Official Journal L 043,14/02/1997 P. 0001–0006. Available online: http://data.europa.eu/eli/reg/1997/258/oj (accessed on 22 June 2025).
- Regulation (EC) No 1829/2003 of the European Parliament and of the Council of 22 September 2003 on Genetically Modified Food and Feed (Text with EEA Relevance). Official Journal L 268, 18.10.2003; pp. 1–23. Available online: http://data.europa.eu/eli/reg/2003/1829/oj (accessed on 22 June 2025).
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. Available online: http://data.europa.eu/eli/reg/2011/1169/oj (accessed on 22 June 2025).
- Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on Novel Foods, Amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and Repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001 (Text with EEA relevance) OJ L 327, 11.12.2015; pp. 1–22. Available online: http://data.europa.eu/eli/reg/2015/2283/oj (accessed on 22 June 2025).
- Commission Implementing Regulation (EU) 2021/1975 of 12 November 2021 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Locusta migratoria as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Counc. Available online: http://data.europa.eu/eli/reg_impl/2021/1975/oj (accessed on 22 June 2025).
- Commission Implementing Regulation (EU) 2021/882 of 1 June 2021 Authorising the Placing on the Market of Dried Tenebrio molitor larva as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and Amending Commission Im. Available online: http://data.europa.eu/eli/reg_impl/2021/882/oj (accessed on 22 June 2025).
- Commission Implementing Regulation (EU) 2022/188 of 10 February 2022 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Acheta domesticus as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council. Available online: http://data.europa.eu/eli/reg_impl/2022/188/oj (accessed on 22 June 2025).
- Commission Implementing Regulation (EU) 2023/58 of 5 January 2023 Authorising the Placing on the Market of the Frozen, Paste, Dried and Powder Forms of Alphitobius diaperinus Larvae (Lesser Mealworm) as a Novel Food and Amending Implementing Regulation. Available online: http://data.europa.eu/eli/reg_impl/2023/58/oj (accessed on 22 June 2025).
- Alimenti e Preparati, Destinati al Consumo Cmano, Ottenuti Mediante L’utilizzzo Della Polvere Parzialmente Sgrassata di Acheta Domesticus Ovvero di Acheta Domesticus Congelato, Essiccato e in Polvere. (23A07040) (GU Serie Generale n.302 del 29-12-2023). Available online: https://www.gazzettaufficiale.it/eli/id/2023/12/29/23A07040/SG (accessed on 22 June 2025).
- López-Pedrouso, M.; Lorenzo, J.M.; Alché, J.D.; Moreira, R.; Franco, D. Advanced Proteomic and Bioinformatic Tools for Predictive Analysis of Allergens in Novel Foods. Biology 2023, 12, 714. [Google Scholar] [CrossRef]
- European Parliament. Alternative Protein Sources for Food and Feed; Scientific Foresight Unit (STOA): Brussels, Belgium, 2024; Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2024/757806/EPRS_STU(2024)757806_EN.pdf (accessed on 22 June 2025).
Plant-Derived Foods | Tofu (Main Ingredient: Fermented Soy Milk) |
Soybeans, Tempeh (main ingredient: fermented soybeans), Edamame (immature soybeans) | |
Peanuts | |
Lentils | |
Chickpeas | |
Beans | |
Peas | |
Quinoa | |
Mycoprotein | |
Broccoli | |
Tree nuts (especially almonds) | |
Spirulina | |
Plant-derived food allergen components | Prolamin superfamily, including 2S albumin, non-specific lipid transfer protein (ns-LTP), cereal prolamin, and a-amylase/trypsin inhibitors |
Cupin, including vicilin (7S globulin) and legumin (11S globulin) | |
Bet v 1/pathogenesis related protein 10 (PR-10) | |
Profilin | |
Oleosins |
Protein Source | De Novo Allergenicity | Cross-Reactivity Risk | Estimated Allergenicity Level | Notes |
---|---|---|---|---|
Insects | Moderate–High (e.g., mealworms, crickets) | High (shellfish, dust mites—tropomyosin, arginine kinase) | High | Strong IgE cross-reactivity with crustaceans; de novo sensitization possible with regular exposure |
Single-Cell Proteins | Low–Moderate (yeast, bacteria, fungi) | Moderate (fungal/mold protein sensitization) | Moderate | True allergies are rare, but may trigger responses in mold/fungal-sensitive individuals |
Seaweed | Very low (macroalgae) | Very low (microalgae: possible fungal/microbial cross-reactivity) | Low | Reactions often due to iodine or additives (e.g., carrageenan); not true IgE allergies |
Cultured Meat | Low (if species-specific sensitization exists) | Variable (depends on source species: bovine, porcine, avian) | Low–Moderate | Similar allergenic profile to conventional meat if derived from same species |
Plant-Based Proteins | High (especially soy, wheat, pea, lupin) | High (legume cross-reactivity, e.g., soy–pea–peanut–lupin) | High | Common allergens; frequent in children and adults; cross-reactivity within legumes is well known |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anania, C.; Cuomo, B.; D’Auria, E.; Decimo, F.; Giannì, G.; Indirli, G.C.; Manca, E.; Mondì, F.; Pendezza, E.; Sartorio, M.U.A.; et al. Sustainable Nutrition and Food Allergy: A State-of-the-Art Review. Nutrients 2025, 17, 2448. https://doi.org/10.3390/nu17152448
Anania C, Cuomo B, D’Auria E, Decimo F, Giannì G, Indirli GC, Manca E, Mondì F, Pendezza E, Sartorio MUA, et al. Sustainable Nutrition and Food Allergy: A State-of-the-Art Review. Nutrients. 2025; 17(15):2448. https://doi.org/10.3390/nu17152448
Chicago/Turabian StyleAnania, Caterina, Barbara Cuomo, Enza D’Auria, Fabio Decimo, Giuliana Giannì, Giovanni Cosimo Indirli, Enrica Manca, Filippo Mondì, Erica Pendezza, Marco Ugo Andrea Sartorio, and et al. 2025. "Sustainable Nutrition and Food Allergy: A State-of-the-Art Review" Nutrients 17, no. 15: 2448. https://doi.org/10.3390/nu17152448
APA StyleAnania, C., Cuomo, B., D’Auria, E., Decimo, F., Giannì, G., Indirli, G. C., Manca, E., Mondì, F., Pendezza, E., Sartorio, M. U. A., & Calvani, M. (2025). Sustainable Nutrition and Food Allergy: A State-of-the-Art Review. Nutrients, 17(15), 2448. https://doi.org/10.3390/nu17152448