Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (404)

Search Parameters:
Keywords = seaweed protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1717 KiB  
Article
A Multifaceted Approach to Optimizing Processed Tomato Production: Investigating the Combined Effects of Biostimulants and Reduced Nitrogen Fertilization
by Michela Farneselli, Lara Reale, Beatrice Falcinelli, Muhammad Zubair Akram, Stefano Cimarelli, Eleonore Cinti, Michela Paglialunga, Flavia Carbone, Euro Pannacci and Francesco Tei
Horticulturae 2025, 11(8), 931; https://doi.org/10.3390/horticulturae11080931 - 7 Aug 2025
Abstract
Excessive nitrogen (N) fertilizer usage in agriculture has prompted the exploration of sustainable strategies to enhance nitrogen use efficiency (NUE) while maintaining crop yield and quality. Processed tomatoes (Solanum lycopersicum L.) were grown for two years (2023 and 2024) following a two-way [...] Read more.
Excessive nitrogen (N) fertilizer usage in agriculture has prompted the exploration of sustainable strategies to enhance nitrogen use efficiency (NUE) while maintaining crop yield and quality. Processed tomatoes (Solanum lycopersicum L.) were grown for two years (2023 and 2024) following a two-way factorial randomized complete block (RCBD) design, considering three biostimulants and three N regimes as two factors, to assess their morphophysiological, biochemical, anatomical and yield performances. Nitrogen application significantly influenced biomass accumulation, the leaf area index (LAI), nitrogen uptake and yield with notable comparable values between reduced and optimal nitrogen dose, indicating improved nitrogen use efficiency. Biostimulants showed limited effects alone but enhanced plant performance under reduced nitrogen conditions, particularly improving chlorophyll content, crop growth, N uptake, yield and anatomical adaptations. Moreover, compared to 2024, biostimulant application enhanced tomato growth more evidently in 2023 due to environmental variations, likely due to the occurrence of stress conditions. Importantly, biostimulants, together with N regimes, i.e., optimal and reduced doses, showed improved anatomical traits, especially regarding leaf thickness and thickness between the two epidermises, indicating adaptive responses that may support sustained productivity under N-limited conditions. Among the biostimulants used, the processed tomatoes responded better to protein hydrolysate and endophytic N-fixing bacteria than to seaweed extract. These findings suggest that although biostimulants alone were not affected, integrating them with reduced N fertilization provides a viable strategy for optimizing tomato production, conserving resources and minimizing the environmental impact without compromising yield or quality. Full article
(This article belongs to the Special Issue Effects of Biostimulants on Horticultural Crop Production)
Show Figures

Graphical abstract

23 pages, 2353 KiB  
Article
Seaweeds of the Israeli Mediterranean Sea: Nutritional and Biotechnological Potential Through Seasonal and Species Variation
by Doron Yehoshua Ashkenazi, Félix L. Figueroa, Julia Vega, Shoshana Ben-Valid, Guy Paz, Eitan Salomon, Avigdor Abelson and Álvaro Israel
Mar. Drugs 2025, 23(8), 320; https://doi.org/10.3390/md23080320 - 4 Aug 2025
Viewed by 283
Abstract
Macroalgae (seaweeds) produce unique bioactive metabolites that have enabled their survival for millions of years, offering significant potential for human benefits. In the Israeli Mediterranean Sea, no comprehensive systematic surveys of seaweeds have been published since the 1990s, and their chemical composition remains [...] Read more.
Macroalgae (seaweeds) produce unique bioactive metabolites that have enabled their survival for millions of years, offering significant potential for human benefits. In the Israeli Mediterranean Sea, no comprehensive systematic surveys of seaweeds have been published since the 1990s, and their chemical composition remains largely unexplored. This study presents an extensive survey of intertidal seaweed communities along the shallow Israeli coastline, documenting their spatial, temporal, and biochemical diversity. Of the 320 specimens collected, 55 seaweed species were identified: 29 red (Rhodophyta), 14 brown (Phaeophyceae), and 12 green (Chlorophyta). A significant shift in species abundance was documented, with a single dominant annual bloom occurring during spring, unlike previously reported biannual blooms. Chemical analysis of the dominant species revealed significant seasonal variations in compound levels, with higher protein content in winter and increased antioxidant capacity during spring. Phenolic and natural sunscreen compounds (mycosporine-like amino acids, MAAs) showed no general seasonal trend. These findings highlight the optimal environmental conditions for seaweed growth and underscore their potential for aquaculture and biotechnology. We hypothesize that the ecologically unique conditions of the Israeli Mediterranean Sea may foster resilient seaweed species enriched with distinctive chemical properties, suitable for nutritional, health, pharmaceutical, and nutraceutical applications, particularly as climate-adaptive bioresources. Full article
Show Figures

Graphical abstract

29 pages, 953 KiB  
Review
Comprehensive Review of Alternative Proteins in Pet Food: Research Publications, Patents, and Product Trends in Plant, Aquatic, Insect, and Cell-Based Sources
by Phatthranit Klinmalai, Pitiya Kamonpatana, Arisara Thongpech, Janenutch Sodsai, Khwanchat Promhuad, Atcharawan Srisa, Yeyen Laorenza, Attawit Kovitvadhi, Sathita Areerat, Anusorn Seubsai, Shyam S. Sablani and Nathdanai Harnkarnsujarit
Foods 2025, 14(15), 2640; https://doi.org/10.3390/foods14152640 - 28 Jul 2025
Viewed by 481
Abstract
The increasing demand for sustainable pet-food solutions has driven interest in alternative protein sources, as researchers seek to avoid allergenic foods while maintaining optimal pet nutrition. This review explores recent scientific publications, patent trends, and market trends relating to various alternative protein sources, [...] Read more.
The increasing demand for sustainable pet-food solutions has driven interest in alternative protein sources, as researchers seek to avoid allergenic foods while maintaining optimal pet nutrition. This review explores recent scientific publications, patent trends, and market trends relating to various alternative protein sources, including plant-based, aquatic, insect-derived, and cell-based sources. Their nutritional composition, functional properties, and potential benefits for pet health were assessed. Plant-based proteins, such as soy, pea, and lentils, provide essential amino acids and functional properties suitable for meat analogues. Microalgae and seaweed offer rich sources of omega-3 fatty acids, antioxidants, and bioactive compounds. Insect-based proteins such as black-soldier-fly larvae and mealworms are highly digestible and rich in essential nutrients, with additional benefits for gut health. Emerging cell-based proteins present a novel, lab-grown alternative with promising sustainability and nutritional advantages. While these protein sources offer significant benefits, challenges related to digestibility, palatability, regulatory approval, and consumer acceptance must be addressed. The emphasis of the present research is on current developments for industry uses and future potential. The analysis sheds light on the contributions of alternative protein sources to the promotion of sustainable and nutrient meals for pets. Full article
Show Figures

Figure 1

22 pages, 1054 KiB  
Review
Sustainable Nutrition and Food Allergy: A State-of-the-Art Review
by Caterina Anania, Barbara Cuomo, Enza D’Auria, Fabio Decimo, Giuliana Giannì, Giovanni Cosimo Indirli, Enrica Manca, Filippo Mondì, Erica Pendezza, Marco Ugo Andrea Sartorio and Mauro Calvani
Nutrients 2025, 17(15), 2448; https://doi.org/10.3390/nu17152448 - 27 Jul 2025
Viewed by 297
Abstract
Alternative proteins denote non-traditional, high-protein foods. These innovative sources aim to compete with conventional animal products by providing protein-rich, sustainable, nutritious, and flavorful options. Currently, five main categories of alternative proteins are being developed: plant-based proteins, cultured meat, single-cell proteins, edible insects, and [...] Read more.
Alternative proteins denote non-traditional, high-protein foods. These innovative sources aim to compete with conventional animal products by providing protein-rich, sustainable, nutritious, and flavorful options. Currently, five main categories of alternative proteins are being developed: plant-based proteins, cultured meat, single-cell proteins, edible insects, and seaweed. Nonetheless, several chemical and microbiological food safety hazards are associated with these alternatives Incorporating novel protein sources into food products may heighten the prevalence of existing food allergies. This could arise from extracting proteins from their natural matrices and utilizing them at significantly higher concentrations. Additionally, the introduction of new proteins may lead to the development of novel food allergies. Proteins that are currently seldom or never consumed may cause primary sensitisation or trigger cross-reactivity with known allergens. To date, alternative proteins have not been thoroughly studied for their allergenic potential, and there is no standardised method for assessing this risk. This review aims to explore non-traditional protein sources, discussing their nutritional and functional properties, as well as their potential allergenicity based on available research. We conducted a literature search in PubMed and Embase databases. We used specific keywords and MESH terms. A total of 157 studies were included in the review. The studies reviewed in our analysis reveal significant limitations, such as inconsistent methodologies, limited participant numbers, and a lack of long-term data, which hinder the ability to make clear conclusions regarding the safety of these new proteins for individuals with allergies. To address current challenge, future research should integrate food science, regulatory perspectives and advanced technologies. Full article
(This article belongs to the Special Issue Relationship Between Food Allergy and Human Health)
Show Figures

Figure 1

12 pages, 2171 KiB  
Article
Use of Foliar Biostimulants in Durum Wheat: Understanding Its Potential in Improving Agronomic and Quality Responses Under Mediterranean Field Conditions
by Angelo Rossini, Roberto Ruggeri and Francesco Rossini
Plants 2025, 14(15), 2276; https://doi.org/10.3390/plants14152276 - 24 Jul 2025
Viewed by 298
Abstract
Foliar application of biostimulants can be a valid option to reach the goal of sustainable intensification in agriculture, especially in extensive crops such as durum wheat. However, due to the wide range of active ingredients and their mixtures available in the market, the [...] Read more.
Foliar application of biostimulants can be a valid option to reach the goal of sustainable intensification in agriculture, especially in extensive crops such as durum wheat. However, due to the wide range of active ingredients and their mixtures available in the market, the need to select the most efficient product in a specific growing environment is of dramatic importance to achieve remarkable results in yield and grain quality. To analyze the potential of different active ingredients, a field trial was performed in two consecutive growing seasons (2023 and 2024) under Mediterranean climatic conditions. A randomized block design with three replicates was used. Durum wheat cultivar “Iride” was treated with the following five foliar biostimulants in comparison with the untreated control (T0): seaweed and plant extracts (T1); micronized vaterite (T2); culture broth of Pseudomonas protegens (T3); humic and fulvic acids (T4); organic nitrogen fertilizer (N 5%) containing glycine betaine (T5). Biostimulant treatment was applied at the end of tillering and at heading. Root length, chlorophyll content, grain yield, yield components and grain quality were measured and subjected to a one-way analysis of variance. As compared to the control, seaweed and plant extracts as well as micronized vaterite showed the best results in terms of grain yield (29% and 24% increase, respectively), root length (120% and 77% increase, respectively) and grain protein content (one percentage point increase, from approx. 12% to 13%). The results from this study can help Mediterranean farmers and researchers to develop new fertilization protocols to reach the goals of the “Farm to Fork” European strategy. Full article
Show Figures

Figure 1

30 pages, 1834 KiB  
Article
Development of Innovative Mediterranean-Style Semi-Hard Goat’s Cheese Supplemented with Seaweeds (Palmaria palmata and Ulva sp.) and Its Characterization
by Bruno M. Campos, Bruno S. Moreira-Leite, Abigail Salgado, Edgar Ramalho, Isa Marmelo, Manuel Malfeito-Ferreira, Paulo H. M. de Sousa, Adolfo Henriques, João P. Noronha, Mário S. Diniz and Paulina Mata
Appl. Sci. 2025, 15(15), 8232; https://doi.org/10.3390/app15158232 - 24 Jul 2025
Viewed by 215
Abstract
The main objective of this study was the development of two semi-hard goat cheeses supplemented with Palmaria palmata and Ulva sp. with the aim of developing innovative food products, increasing the concentration of nutrients in these cheeses and familiarizing consumers with seaweed-containing foods. [...] Read more.
The main objective of this study was the development of two semi-hard goat cheeses supplemented with Palmaria palmata and Ulva sp. with the aim of developing innovative food products, increasing the concentration of nutrients in these cheeses and familiarizing consumers with seaweed-containing foods. The impact of seaweed addition was evaluated through physicochemical, microbiological, and organoleptic properties of the semi-hard goat cheeses. Carbohydrate content was relatively low, whereas the total lipid content was relatively high (particularly in semi-hard goat cheese supplemented with seaweeds). Crude protein content presented higher values in semi-hard goat cheese supplemented with Ulva sp. The semi-hard goat cheese supplemented with Ulva sp. shows increased levels of Ca, Fe, Mn, and Zn. Instrumental color and the textural parameters of semi-hard goat’s cheese varied significantly with seaweed addition. Most of the microbiological load complies with the Portuguese (INSA) and the United Kingdom’s (HPA) guidelines for assessing the microbiological safety of ready-to-eat foods placed on the market. Additionally, the Flash Profile scores of semi-hard goat cheeses supplemented with seaweeds highlighted aroma and flavor complexity. Overall, this study confirms the potential of using seaweeds as a viable alternative to produce semi-hard goat cheeses with less pungency or goat milk flavor, making this product more pleasant and appealing to consumers sensitive to these sensory characteristics. Full article
Show Figures

Figure 1

22 pages, 5356 KiB  
Article
Seaweed, Used as a Water-Retaining Agent, Improved the Water Distribution and Myofibrillar Protein Properties of Plant-Based Yak Meat Burgers Before and After Freeze–Thaw Cycles
by Yujiao Wang, Xinyi Chang, Yingzhen Wang, Jiahao Xie, Ge Han and Hang Qi
Foods 2025, 14(14), 2541; https://doi.org/10.3390/foods14142541 - 21 Jul 2025
Viewed by 415
Abstract
This study investigated quality changes in seaweed–yak patties before and after freeze–thaw by varying seaweed addition levels (10–70%). Macroscopically, the effects on water-holding capacity, textural properties, and oxidative indices of restructured yak patties were evaluated. Microscopically, the impact of seaweed-derived bioactive ingredients on [...] Read more.
This study investigated quality changes in seaweed–yak patties before and after freeze–thaw by varying seaweed addition levels (10–70%). Macroscopically, the effects on water-holding capacity, textural properties, and oxidative indices of restructured yak patties were evaluated. Microscopically, the impact of seaweed-derived bioactive ingredients on patty microstructure and myofibrillar protein characteristics was examined. LF-NMR and MRI showed that 40% seaweed addition most effectively restricted water migration, reduced thawing loss, and preserved immobilized water content. Texture profile analysis (TPA) revealed that moderate seaweed levels (30–40%) enhanced springiness and minimized post-thaw hardness increases. SEM confirmed that algal polysaccharides formed a denser protective network around the muscle fibers. Lipid oxidation (MDA), free-radical measurements, and non-targeted metabolomics revealed a significant reduction in oxidative damage at 40% seaweed addition, correlating with increased total phenolic content. Protein analyses (particle size, zeta potential, hydrophobicity, and SDS-PAGE) demonstrated a cryoprotective effect of seaweed on myofibrillar proteins, reducing aggregation and denaturation. These findings suggest that approximately 40% seaweed addition can improve the physicochemical stability and antioxidant capacity of frozen seaweed–yak meat products. This work thus identifies the optimal seaweed addition level for enhancing freeze–thaw stability and functional quality, offering practical guidance for the development of healthier, high-value restructured meat products. Full article
Show Figures

Figure 1

15 pages, 683 KiB  
Article
Differential Effects of Non-Microbial Biostimulants on Secondary Metabolites and Nitrate Content in Organic Arugula Leaves
by Michele Ciriello, Luana Izzo, Abel Navarré Dopazo, Emanuela Campana, Giuseppe Colla, Giandomenico Corrado, Stefania De Pascale, Youssef Rouphael and Christophe El-Nakhel
Foods 2025, 14(14), 2489; https://doi.org/10.3390/foods14142489 - 16 Jul 2025
Viewed by 295
Abstract
Arugula leaves (Diplotaxis tenuifolia L. and Eruca sativa L.) are a must-have ingredient in ready-to-eat salads, as they are prized for their appearance, taste, and flavor. The nutraceutical properties of this leafy vegetable are attributed to the presence of valuable secondary metabolites, [...] Read more.
Arugula leaves (Diplotaxis tenuifolia L. and Eruca sativa L.) are a must-have ingredient in ready-to-eat salads, as they are prized for their appearance, taste, and flavor. The nutraceutical properties of this leafy vegetable are attributed to the presence of valuable secondary metabolites, such as phenolic acids and glucosinolates. Using UHPLC-Q-Orbitrap HRMS analysis and ion chromatography, we characterized the content of phenolic acids, glucosinolates, nitrates, and organic acids in organic arugula [Diplotaxis tenuifolia (L.) DC] and evaluated how the foliar application of three different non-microbial biostimulants (a seaweed extract, a vegetable protein hydrolysate, and a tropical plant extract) modulated the expression of these. Although the application of vegetable protein hydrolysate increased, compared to control plants, the nitrate content, the application of the same biostimulant increased the total content of glucosinolates and phenolic acid derivatives by 5.2 and 17.2%. Specifically, the foliar application of the plant-based biostimulant hydrolyzed protein significantly increased the content of glucoerucin (+22.9%), glucocheirolin (+76.8%), and ferulic acid (+94.1%). The highest values of flavonoid derivatives (173.03 μg g−1 dw) were recorded from plants subjected to the exogenous application of seaweed extract. The results obtained underscore how biostimulants, depending on their origin and composition, can be exploited not only to improve agronomic performance but also to enhance the nutraceutical content of vegetables, guaranteeing end consumers a product with premium quality characteristics. Full article
(This article belongs to the Special Issue Health Benefits of Bioactive Compounds from Vegetable Sources)
Show Figures

Figure 1

20 pages, 1579 KiB  
Article
Functional Evaluation of Fucus vesiculosus Extract: Bioactivity Retention After In Vitro Digestion and Anti-Inflammatory Effects on Murine Peritoneal Macrophages
by Sara Frazzini, Nicoletta Rizzi, Anna Paola Fifi, Eleonora Fusi, Salvatore Roberto Pilu and Luciana Rossi
Appl. Sci. 2025, 15(14), 7911; https://doi.org/10.3390/app15147911 - 16 Jul 2025
Viewed by 389
Abstract
Background: Nowadays, to improve animal production sustainably, the zootechnical sector is exploring novel, functional ingredients, such as seaweed. This study investigated the functional properties of Fucus vesiculosus and their persistence after simulated digestion. Methods: F. vesiculosus was nutritionally characterized (AOAC methods) and digested [...] Read more.
Background: Nowadays, to improve animal production sustainably, the zootechnical sector is exploring novel, functional ingredients, such as seaweed. This study investigated the functional properties of Fucus vesiculosus and their persistence after simulated digestion. Methods: F. vesiculosus was nutritionally characterized (AOAC methods) and digested in vitro through the INFOGEST protocol. The polyphenol, flavonoid, and phlorotannin contents of the samples were analyzed through colorimetric assays. The antioxidant properties were evaluated using ABTS assay and the growth inhibition capacity against Escherichia coli using the microdilution method. The cytotoxic activity and anti-inflammatory properties were evaluated on mouse peritoneal macrophages using crystal violet assay and the gene expression of IL-1β, IL-6, TNF-α, and iNOS. Results: F. vesiculosus demonstrated high levels of dietary fiber (47.36%) and protein (13.99%). Significant levels of polyphenols (6428.98 µg TAE/g), flavonoids (5171.31 µg CE/g), and phlorotannins (2.10 mg PGE/g) were detected. These bioactive compounds allowed for strong antioxidant activity (85.96% ABTS+ scavenging) and E. coli growth inhibition (17%). Simulated digestion minimally impacted the content of bioactive compounds and their associated functional properties. F. vesiculosus exhibited a protective effect against oxidative stress in macrophages, downregulating pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α). Conclusions: These findings support the potential of F. vesiculosus as a functional feed ingredient for livestock, maintaining its beneficial properties even after digestion. Full article
Show Figures

Figure 1

33 pages, 392 KiB  
Review
Sustainable Foliar Applications to Improve Grapevine Responses to Drought, High Temperatures, and Salinity: Impacts on Physiology, Yields, and Berry Quality
by Despoina G. Petoumenou and Vasiliki Liava
Plants 2025, 14(14), 2157; https://doi.org/10.3390/plants14142157 - 13 Jul 2025
Cited by 1 | Viewed by 585
Abstract
Environmental challenges such as drought, high temperatures, and salinity compromise grapevine physiology, reduce productivity, and negatively affect grape and wine quality. In recent years, foliar applications of biostimulants, antitranspirants, and phytohormones have emerged as promising strategies to enhance stress tolerance in grapevines. This [...] Read more.
Environmental challenges such as drought, high temperatures, and salinity compromise grapevine physiology, reduce productivity, and negatively affect grape and wine quality. In recent years, foliar applications of biostimulants, antitranspirants, and phytohormones have emerged as promising strategies to enhance stress tolerance in grapevines. This review focuses on the main effects of salinity, drought, and high temperatures and the combined impact of drought and high temperatures on grapevines and examines how foliar applications influence grapevine responses under these specific stress conditions. Synthesizing the recent findings from the last ten years (160 articles), it provides direct insights into the potential of these compounds to alleviate each type of stress, highlighting their effects on grapevine physiology, yield components, and secondary metabolites in berries. While their mechanism of action is not entirely clear and their efficacy can vary depending on the type of compound used and the grapevine variety, most studies report a beneficial effect or no effect on grapevines under abiotic stresses (either single or combined). Future research is necessary to optimize the concentrations of these compounds and determine the appropriate number and timing of applications, particularly under open-field experiments. Additionally, studies should assess the effect of foliar applications under multiple abiotic stress conditions. In conclusion, integrating foliar applications into vineyard management represents a sustainable technique to mitigate abiotic stresses associated with climate change, such as salinity, water deficit, and heat stress, while preserving or enhancing the quality of grapes and wines. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
19 pages, 840 KiB  
Article
Modulation of Gut Microbiota by Whole Encapsulated Brown Seaweed (Himanthalia elongata) in Overweight Subjects: A Randomized Double-Blind Placebo-Controlled Trial
by Aroa Lopez-Santamarina, Alejandra Cardelle-Cobas, Alicia del Carmen Mondragon, Alberto Cepeda, Jose A. Rodriguez and Jose Manuel Miranda
Nutrients 2025, 17(12), 2047; https://doi.org/10.3390/nu17122047 - 19 Jun 2025
Cited by 1 | Viewed by 611
Abstract
Background/Objectives: Brown seaweeds, such as Himanthalia elongata, are a promising source of dietary fiber. However, in vivo evidence regarding the effects of H. elongata intake on the human gut microbiota remains limited. This study aimed to evaluate the impact of daily [...] Read more.
Background/Objectives: Brown seaweeds, such as Himanthalia elongata, are a promising source of dietary fiber. However, in vivo evidence regarding the effects of H. elongata intake on the human gut microbiota remains limited. This study aimed to evaluate the impact of daily H. elongata consumption on the gut microbiota composition and short-chain fatty acid production in overweight adults. Methods: A randomized, double-blind, placebo-controlled trial was conducted in which 10 overweight adult participants consumed 2 g/day of whole H. elongata for 30 days. Fecal samples were collected before and after the intervention for 16S rRNA sequencing and short-chain fatty acid analysis. Dietary intake was evaluated using a 24 h recall and a 3-day dietary record. Nutritional assessment was performed to determine habitual macronutrient consumption. Results: Baseline dietary analysis revealed an imbalanced macronutrient profile characterized by high intakes of total and saturated fats and protein, along with low carbohydrate and fiber consumption. In addition, 50% of the participants were obese, and 50% were overweight based on the BMI. Notable changes in the gut microbiota composition were observed after the intervention, including increases in short-chain fatty acid-producing species, such as Parabacteroides distasonis, Bacteroides eggerthii, Bacteroides uniformis, and Bacteroides obeum. Conclusions: This study provides the first clinical evidence in humans that whole H. elongata can beneficially modulate the gut microbiota composition. These results support the potential use of this seaweed as a functional prebiotic ingredient in dietary strategies aimed at enhancing gut health. Full article
(This article belongs to the Special Issue Interaction Between Gut Microbiota and Obesity)
Show Figures

Graphical abstract

12 pages, 1581 KiB  
Article
Anti-Inflammatory Effects of Caulerpa okamurae Extracts on Porphyromonas gingivalis-Stimulated RAW 264.7 Macrophages
by Chae-yun Lee, Min-jeong Kim and Hyun-jin Kim
Curr. Issues Mol. Biol. 2025, 47(6), 388; https://doi.org/10.3390/cimb47060388 - 23 May 2025
Viewed by 502
Abstract
Caulebra okamurae (C. okamurae), a green seaweed, has been reported to exhibit pharmacological properties, including anti-obesity and anti-diabetic effects. This study investigated the anti-inflammatory effects of C. okamurae extracts on periodontal health. The cell viability of RAW 264.7 macrophages was dose-dependently [...] Read more.
Caulebra okamurae (C. okamurae), a green seaweed, has been reported to exhibit pharmacological properties, including anti-obesity and anti-diabetic effects. This study investigated the anti-inflammatory effects of C. okamurae extracts on periodontal health. The cell viability of RAW 264.7 macrophages was dose-dependently assessed using an MTS assay. The anti-inflammatory activity of C. okamurae on Porphyromonas gingivalis (P. gingivalis)-stimulated RAW 264.7 macrophages was evaluated by measuring nitric oxide (NO) production. mRNA expression levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β were quantified via quantitative real-time PCR (qRT-PCR). The protein expression of iNOS, p-IKKα/β, p-IκBα, and NF-κB p65 was examined using Western blot and immunofluorescence. The results demonstrated that C. okamurae extracts exhibited no cytotoxicity in RAW 264.7 macrophages at concentrations of 0.2, 2, 20, and 200 μg/mL. The extracts dose-dependently reduced NO production, downregulated mRNA levels of proinflammatory cytokines, and inhibited iNOS expression in P. gingivalis-stimulated RAW 264.7 macrophages, a model commonly used to study periodontal inflammation. Furthermore, the extracts suppressed the phosphorylation of IKKα/β and IκBα and prevented the NF-κB p65 nuclear translocation. These findings suggest that C. okamurae extracts inhibit NF-κB signaling activation triggered by the periodontal pathogen, highlighting their potential anti-inflammatory effects, relevant to periodontal disease. Full article
Show Figures

Figure 1

27 pages, 1369 KiB  
Article
Insights into the Red Seaweed Asparagopsis taxiformis Using an Integrative Multi-Omics Analysis
by Min Zhao, Tomas Lang, Zubaida Patwary, Andrew L. Eamens, Tianfang Wang, Jessica Webb, Giuseppe C. Zuccarello, Ana Wegner-Thépot, Charlotte O’Grady, David Heyne, Lachlan McKinnie, Cecilia Pascelli, Nori Satoh, Eiichi Shoguchi, Alexandra H. Campbell, Nicholas A. Paul and Scott F. Cummins
Plants 2025, 14(10), 1523; https://doi.org/10.3390/plants14101523 - 19 May 2025
Viewed by 863
Abstract
The red seaweed Asparagopsis taxiformis (Bonnemaisoniaceae, Rhodophyta) produces a bioactive natural product, bromoform, which, when fed to ruminant livestock, can eradicate methane emissions. However, to cultivate enough A. taxiformis to produce a yield that would have a meaningful impact on global greenhouse gas [...] Read more.
The red seaweed Asparagopsis taxiformis (Bonnemaisoniaceae, Rhodophyta) produces a bioactive natural product, bromoform, which, when fed to ruminant livestock, can eradicate methane emissions. However, to cultivate enough A. taxiformis to produce a yield that would have a meaningful impact on global greenhouse gas emissions, we need to advance our current understanding of the biology of this seaweed species. Here, we used both a domesticated diploid tetrasporophyte (>1.5 years in culture) and wild samples to establish a high-quality draft nuclear genome for A. taxiformis (lineage 6 based upon phylogenetic analyses using the cox2-3 spacer). The constructed nuclear genome is 142 Mb in size (including 70.67% repeat regions) and was determined to encode for approximately 10,474 protein-coding genes, including those associated with secondary metabolism, photosynthesis, and defence. To obtain information regarding molecular differences between cultured and wild tetrasporophytes, we further explored differential gene expression relating to their different growth environments. Cultured tetrasporophytes, which contained a relatively higher level of bromoform compared to wild tetrasporophytes, demonstrated an enrichment of regulatory factors, such as protein kinases and transcription factors, whereas wild tetrasporophytes were enriched for the expression of defence and stress-related genes. Wild tetrasporophytes also expressed a relatively high level of novel secretory genes encoding proteins with von Willebrand factor A protein domains (named rhodophyte VWAs). Gene expression was further confirmed by proteomic investigation of cultured tetrasporophytes, resulting in the identification of over 400 proteins, including rhodophyte VWAs, and numerous enzymes and phycobiliproteins, which will facilitate future functional characterisation of this species. In summary, as the most comprehensive genomic resource for any Asparagopsis species, this resource for lineage 6 provides a novel avenue for seaweed researchers to interrogate genomic information, which will greatly assist in expediating production of Asparagopsis to meet demand by both aquaculture and agriculture, and to do so with economic and environmental sustainability. Full article
(This article belongs to the Special Issue Molecular Research of the Seaweeds)
Show Figures

Figure 1

15 pages, 1375 KiB  
Article
Comparative Transcriptome Analysis Elucidates the Desiccation Stress Adaptation in Sargassum muticum
by Wei Cao, Mingyi Zhang, Nan Wu, Yanxin Zheng, Xiaodong Li, Haiying Han, Tao Yu, Zhongxun Wu, Pei Qu and Bo Li
Genes 2025, 16(5), 587; https://doi.org/10.3390/genes16050587 - 16 May 2025
Viewed by 592
Abstract
Background/Objectives: Desiccation profoundly influences the distribution and abundance of intertidal seaweeds, necessitating robust molecular adaptations. Sargassum muticum is a brown seaweed inhabiting intertidal rocky substrates. During low tides, this species undergoes periodic aerial exposure. Such environmental conditions necessitate robust physiological mechanisms to mitigate [...] Read more.
Background/Objectives: Desiccation profoundly influences the distribution and abundance of intertidal seaweeds, necessitating robust molecular adaptations. Sargassum muticum is a brown seaweed inhabiting intertidal rocky substrates. During low tides, this species undergoes periodic aerial exposure. Such environmental conditions necessitate robust physiological mechanisms to mitigate desiccation stress. Yet, the molecular basis of this adaptation remains poorly understood. Methods: To investigate desiccation-responsive genes and elucidate the underlying mechanisms of adaptation, we exposed S. muticum to 6 h of controlled desiccation stress in sterilized ceramic trays, simulating natural tidal conditions, and performed comparative transcriptome analysis using RNA-seq on the Illumina NovaSeq 6000 platform. Results: High-quality sequencing identified 66,192 unigenes, with 1990 differentially expressed genes (1399 upregulated and 591 downregulated). These differentially expressed genes (DEGs) were categorized into regulatory genes—including mitogen-activated protein kinase (MAPK), calmodulin, elongation factor, and serine/threonine-protein kinase—and functional genes, such as heat shock protein family members (HSP20, HSP40, and HSP70), tubulin (TUBA and TUBB), and endoplasmic reticulum homeostasis-related genes (protein disulfide-isomerase A6, calreticulin, and calnexin). Gene Ontology (GO) enrichment highlighted upregulated DEGs in metabolic processes like glutathione metabolism, critical for oxidative stress mitigation, while downregulated genes were linked to transport functions, such as ammonium transport, suggesting reduced nutrient uptake during dehydration. KEGG pathway analysis revealed significant enrichment in “protein processing in endoplasmic reticulum” and “MAPK signaling pathway-plant”, implicating endoplasmic reticulum stress response and conserved signaling cascades in desiccation adaptation. Validation via qRT-PCR confirmed consistent expression trends for key genes, reinforcing the reliability of transcriptomic data. Conclusions: These findings suggest that S. muticum undergoes extensive biological adjustments to mitigate desiccation stress, highlighting candidate pathways for future investigations into recovery and tolerance mechanisms. Full article
Show Figures

Figure 1

17 pages, 1271 KiB  
Review
Deep Eutectic Systems: A Game Changer for Marine Bioactives Recovery
by Sandro Amador, Alice Martins, Margarida Matias, Rui Pedrosa and Susete Pinteus
Mar. Drugs 2025, 23(5), 211; https://doi.org/10.3390/md23050211 - 16 May 2025
Cited by 2 | Viewed by 1039
Abstract
The extraction of bioactive compounds from marine natural products has gained increasing attention due to their diverse applications, such as in pharmaceuticals, nutraceuticals, and cosmetics. Yet, low extraction yields and toxicity associated with common solvents are a major bottleneck. Deep eutectic solvents (DESs) [...] Read more.
The extraction of bioactive compounds from marine natural products has gained increasing attention due to their diverse applications, such as in pharmaceuticals, nutraceuticals, and cosmetics. Yet, low extraction yields and toxicity associated with common solvents are a major bottleneck. Deep eutectic solvents (DESs) and natural deep eutectic solvents (NADESs) have emerged as promising green alternatives to conventional organic solvents, offering advantages such as biodegradability, greater environmental and economic sustainability, low toxicity, and enhanced extraction selectivity. This review provides a comprehensive analysis of the principles, physicochemical properties, and applications of DESs/NADESs to obtain bioactive compounds from marine organisms. Among the most recent works, it is possible to verify the success of NADESs to extract carrageenan from the seaweed Kappaphycus alvarezii; pigments from Palmaria palmata; and polyphenols and proteins from different brown seaweeds. NADESs have also shown high potential to extract other valuable compounds from marine by-products, such as chitin from crabs and shrimp shells, and also lipids and proteins from different fish species and protein rich extracts from tilapia viscera. The challenges for DESs/NADESs use at industrial scale are also discussed, and success cases are revealed, highlighting their potential as game changers for extracting bioactive compounds from marine organisms and driving the development of innovative biotechnological products. Full article
Show Figures

Figure 1

Back to TopTop