A Multifaceted Approach to Optimizing Processed Tomato Production: Investigating the Combined Effects of Biostimulants and Reduced Nitrogen Fertilization
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site, Treatments and Crop Management
2.2. Measurements
2.2.1. Plant Sampling
2.2.2. Crop N Monitoring
2.2.3. Anatomical Analysis
2.2.4. Photosynthetic Pigment Analysis
2.3. Statistical Analysis
3. Results
3.1. Crop Growth, N Uptake and Yield
3.2. Crop Monitoring
3.3. Fruit Quality Traits
3.4. Photosynthetic Pigmentation
3.5. Anatomical Attributes
3.6. Stomatal Morphology
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneider, S.H.; Semenov, S.; Patwardhan, A.; Burton, I.; Magadza, C.H.D.; Oppenheimer, M.; Pittock, A.B.; Rahman, A.; Smith, J.B.; Suarez, A.; et al. Assessing key vulnerabilities and the risk from climate change. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., Linden, P.J.v.d., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 779–810. [Google Scholar]
- McCarthy, J.J.; Canziani, O.F.; Leary, N.A.; Dokken, D.J.; White, K.S. Climate Change 2001: Impacts, Adaptation and Vulnerability; University of Cambridge: Cambridge, UK, 2001. [Google Scholar]
- Albou, E.M.; Abdellaoui, M.; Abdaoui, A.; Boughrous, A.A. Agricultural practices and their impact on aquatic ecosystems–a mini-review. Ecol. Eng. Environ. Tech. 2024, 25, 321–331. [Google Scholar] [CrossRef]
- Valenzuela, H. Optimizing the nitrogen use efficiency in vegetable crops. Nitrogen 2024, 5, 106–143. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations (FAOSTAT) Statistical Database. 2022. Available online: https://www.fao.org/faostat/en/#home (accessed on 2 July 2025).
- WPTC. World Processing Tomato Council. 2024. Available online: https://www.wptc.to (accessed on 2 July 2025).
- Farneselli, M.; Benincasa, P.; Tosti, G.; Simonne, E.; Guiducci, M.; Tei, F. High fertigation frequency improves nitrogen uptake and crop performance in processing tomato grown with high nitrogen and water supply. Agric. Water Manag. 2015, 154, 52–58. [Google Scholar] [CrossRef]
- Farneselli, M.; Tosti, G.; Onofri, A.; Benincasa, P.; Guiducci, M.; Pannacci, E.; Tei, F. Effects of N sources and management strategies on crop growth, yield and potential N leaching in processing tomato. Eur. J. Agron. 2018, 98, 46–54. [Google Scholar] [CrossRef]
- Farneselli, M.; Benincasa, P.; Tosti, G.; Guiducci, M.; Tei, F. Combining green manuring and fertigation maximizes tomato crop yield and minimizes nitrogen losses. Agronomy 2020, 10, 977. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, H.; Fan, J.; Xiang, Y.; Tang, Z.; Pei, S.; Zeng, H.; Zhang, C.; Dai, Y.; Li, Z. Effects of nitrogen supply on tomato yield, water use efficiency and fruit quality: A global meta-analysis. Sci. Hortic. 2021, 290, 110553. [Google Scholar] [CrossRef]
- Simonne, A.; Fuzere, J.; Simonne, E.; Hochmuth, R.; Marshall, M. Effects of nitrogen rates on chemical composition of yellow grape tomato grown in a subtropical climate. J. Plant Nutr. 2007, 30, 927–935. [Google Scholar] [CrossRef]
- Kaniszewski, S.; Kosson, R.; Grzegorzewska, M.; Kowalski, A.; Badełek, E.; Szwejda-Grzybowska, J.; Tuccio, L.; Agati, G. Yield and quality traits of field grown tomato as affected by cultivar and nitrogen application rate. J. Agric. Sci. Tech. 2019, 21, 683–697. Available online: https://jast.modares.ac.ir/article-23-14381-en.html (accessed on 2 July 2025).
- Truffault, V.; Ristorto, M.; Brajeul, E.; Vercambre, G.; Gautier, H. To stop nitrogen overdose in soilless tomato crop: A way to promote fruit quality without affecting fruit yield. Agronomy 2019, 9, 80. [Google Scholar] [CrossRef]
- Paradiso, R.; Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Pelosi, M.E.; Rippa, M.; Mormile, P.; Mori, M. Integrating smart greenhouse cover, reduced nitrogen dose and biostimulant application as a strategy for sustainable cultivation of cherry Tomato. Plants 2024, 13, 440. [Google Scholar] [CrossRef]
- Ganugi, P.; Fiorini, A.; Tabaglio, V.; Capra, F.; Zengin, G.; Bonini, P.; Caffi, T.; Puglisi, E.; Trevisan, M.; Lucini, L. The functional profile and antioxidant capacity of tomato fruits are modulated by the interaction between microbial biostimulants, soil properties, and soil nitrogen status. Antioxidants 2023, 12, 520. [Google Scholar] [CrossRef] [PubMed]
- Mauro, R.P.; Distefano, M.; Steingass, C.B.; May, B.; Giuffrida, F.; Schweiggert, R.; Leonardi, C. Boosting cherry tomato yield, quality, and mineral profile through the application of a plant-derived biostimulant. Sci. Hortic. 2024, 337, 113597. [Google Scholar] [CrossRef]
- Cozzolino, E.; Di Mola, I.; Ottaiano, L.; El-Nakhel, C.; Rouphael, Y.; Mori, M. Foliar application of plant-based biostimulants improve yield and upgrade qualitative characteristics of processing tomato. Ital. J. Agron. 2021, 16, 1825. [Google Scholar] [CrossRef]
- Matthews, S.; Siddiqui, Y.; Ali, A. Unleashing the power of bio-stimulants for enhanced crop growth, productivity, and quality: A comprehensive review. J. Plant Nutr. 2025, 48, 703–725. [Google Scholar] [CrossRef]
- Malécange, M.; Sergheraert, R.; Teulat, B.; Mounier, E.; Lothier, J.; Sakr, S. Biostimulant properties of protein hydrolysates: Recent advances and future challenges. Int. J. Mol. Sci. 2023, 24, 9714. [Google Scholar] [CrossRef]
- Mughunth, R.; Velmurugan, S.; Mohanalakshmi, M.; Vanitha, K. A review of seaweed extract’s potential as a biostimulant to enhance growth and mitigate stress in horticulture crops. Sci. Hortic. 2024, 334, 113312. [Google Scholar] [CrossRef]
- Lau, S.-E.; Lim, L.W.T.; Hamdan, M.F.; Chan, C.; Saidi, N.B.; Ong-Abdullah, J.; Tan, B.C. Enhancing Plant Resilience to Abiotic Stress: The Power of Biostimulants. Phyton-Int. J. Exp. Bot. 2025, 94, 1–31. [Google Scholar] [CrossRef]
- Asif, A.; Ali, M.; Qadir, M.; Karthikeyan, R.; Singh, Z.; Khangura, R.; Di Gioia, F.; Ahmed, Z.F. Enhancing crop resilience by harnessing the synergistic effects of biostimulants against abiotic stress. Front. Plant Sci. 2023, 14, 1276117. [Google Scholar] [CrossRef]
- Dumas, J. Procédés de l’analyse organique. Ann. Chim. Phys 1831, 47, 198–205. Available online: https://cir.nii.ac.jp/crid/1370865816771910273 (accessed on 2 July 2025).
- Zhao, W.L.; Chen, Y.J.; Brodribb, T.J.; Cao, K.F. Weak co-ordination between vein and stomatal densities in 105 angiosperm tree species along altitudinal gradients in Southwest China. Funct. Plant Biol. 2016, 43, 1126–1133. [Google Scholar] [CrossRef]
- Cerri, M.; Reale, L.; Roscini, F.; Fornaciari da Passano, M.; Orlandi, F. Fibers development in a dioecious hemp cultivar: The role of plant sex and cultivation conditions. Plant Biosyst. 2023, 157, 140–146. [Google Scholar] [CrossRef]
- Tosens, T.; Niinemets, U.; Vislap, V.; Eichelmann, H.; Castro Diez, P. Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: How structure constrains function. Plant Cell Environ. 2012, 35, 839–856. [Google Scholar] [CrossRef] [PubMed]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Team, R.C.; R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2013. Available online: https://cir.nii.ac.jp/crid/1370298755636824325 (accessed on 2 July 2025).
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef]
- Franzoni, G.; Cocetta, G.; Prinsi, B.; Ferrante, A.; Espen, L. Biostimulants on crops: Their impact under abiotic stress conditions. Horticulturae 2022, 8, 189. [Google Scholar] [CrossRef]
- Gedeon, S.; Ioannou, A.; Balestrini, R.; Fotopoulos, V.; Antoniou, C. Application of biostimulants in tomato plants (Solanum lycopersicum) to enhance plant growth and salt stress tolerance. Plants 2022, 11, 3082. [Google Scholar] [CrossRef]
- Akram, M.Z.; Libutti, A.; Rivelli, A.R. Evaluation of vegetative development of quinoa under water stress by applying different organic amendments. Agronomy 2023, 13, 1412. [Google Scholar] [CrossRef]
- Tei, F.; Benincasa, P.; Guiducci, M. Critical nitrogen concentration in processing tomato. Eur. J. Agron. 2002, 18, 45–55. [Google Scholar] [CrossRef]
- Fadiji, A.E.; Babalola, O.O.; Santoyo, G.; Perazzolli, M. The potential role of microbial biostimulants in the amelioration of climate change-associated abiotic stresses on crops. Front. Microbiol. 2022, 12, 829099. [Google Scholar] [CrossRef]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.-L.; Li, Q.; Zeng, X.-P.; Liu, Y.; Li, Y.-R. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 2020, 53, 1–20. [Google Scholar] [CrossRef]
- Rochester, I.; Ceeney, S.; Maas, S.; Gordon, R.; Hanna, L.; Hill, J. Monitoring nitrogen use efficiency in cotton crops. Aust. Cottongrow. 2009, 30, 42–43. Available online: https://search.informit.org/doi/10.3316/informit.950796977920799 (accessed on 2 July 2025).
- Wang, X.; Jia, J.; Lu, C.; Chen, H.; Chen, X.; Peng, X.; Chi, G.; Song, Q.; Hu, Y.; Ma, J. Optimizing nitrogen for sustainable yield and efficiency: Insights from shouguang facility-grown tomatoes. Agronomy 2025, 15, 420. [Google Scholar] [CrossRef]
- Redoy, M.H.; Al Mamun, M.; Cooley, A.L.; Darby, E.; Islam, T. Enhancing nitrogen uptake efficiency and tomato plant growth in soilless substrates using fulvic acids and mycorrhizal biostimulants. Sci. Hortic. 2025, 348, 114212. [Google Scholar] [CrossRef]
- Patanè, C.; Pellegrino, A.; Saita, A.; Calcagno, S.; Cosentino, S.L.; Scandurra, A.; Cafaro, V. A study on the effect of biostimulant application on yield and quality of tomato under long-lasting water stress conditions. Heliyon 2025, 11, e41187. [Google Scholar] [CrossRef]
- Sible, C.N.; Seebauer, J.R.; Below, F.E. Plant biostimulants: A categorical review, their implications for row crop production, and relation to soil health indicators. Agronomy 2021, 11, 1297. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Bonini, P.; Colla, G. Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front. Plant Sci. 2017, 8, 131. [Google Scholar] [CrossRef]
- Della, L.M.C. Characterization of Plant Physiological and Molecular Responses to Biostimulant Applications. Ph.D. Thesis, University of Padova, Padova, Italy, 2023. Available online: https://hdl.handle.net/11577/3478583 (accessed on 2 July 2025).
- Della, L.M.C.; Baghdadi, A.; Mangione, F.; Borella, M.; Zegada-Lizarazu, W.; Ravi, S.; Deb, S.; Broccanello, C.; Concheri, G.; Monti, A. Transcriptional and physiological analyses to assess the effects of a novel biostimulant in tomato. Front. Plant Sci. 2022, 12, 781993. [Google Scholar] [CrossRef]
- Monterisi, S.; Garcia-Perez, P.; Buffagni, V.; Zuluaga, M.Y.A.; Ciriello, M.; Formisano, L.; El-Nakhel, C.; Cardarelli, M.; Colla, G.; Rouphael, Y. Unravelling the biostimulant activity of a protein hydrolysate in lettuce plants under optimal and low N availability: A multi-omics approach. Physiol. Plant. 2024, 176, e14357. [Google Scholar] [CrossRef]
- Igiehon, N.O.; Babalola, O.O. Rhizosphere microbiome modulators: Contributions of nitrogen fixing bacteria towards sustainable agriculture. Int. J. Environ. Res. Public Health 2018, 15, 574. [Google Scholar] [CrossRef]
- Zhang, X.; Tong, J.; Dong, M.; Akhtar, K.; He, B. Isolation, identification and characterization of nitrogen fixing endophytic bacteria and their effects on cassava production. PeerJ 2022, 10, e12677. [Google Scholar] [CrossRef]
- Sestili, F.; Rouphael, Y.; Cardarelli, M.; Pucci, A.; Bonini, P.; Canaguier, R.; Colla, G. Protein hydrolysate stimulates growth in tomato coupled with N-dependent gene expression involved in N assimilation. Front. Plant Sci. 2018, 9, 1233. [Google Scholar] [CrossRef]
- Colla, G.; Cardarelli, M.; Bonini, P.; Rouphael, Y. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience 2017, 52, 1214–1220. [Google Scholar] [CrossRef]
- Fan, M.; Qin, Y.; Jiang, X.; Cui, N.; Wang, Y.; Zhang, Y.; Zhao, L.; Jiang, S. Proper deficit nitrogen application and irrigation of tomato can obtain a higher fruit quality and improve cultivation profit. Agronomy 2022, 12, 2578. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Peralta-Sánchez, M.G.; Gómez-Merino, F.C.; Tejeda-Sartorius, O.; Trejo-Téllez, L.I. Nitrogen nutrition differentially affects concentrations of photosynthetic pigments and antioxidant compounds in Mexican Marigold (Tagetes erecta L.). Agriculture 2023, 13, 517. [Google Scholar] [CrossRef]
- Farneselli, M.; Benincasa, P.; Tei, F. Validation of N nutritional status tools for processing tomato. In Proceedings of the IV International Symposium on Ecologically Sound Fertilization Strategies for Field Vegetable Production 852, Alnarp, Sweden, 22–29 September 2008; pp. 227–232. [Google Scholar] [CrossRef]
- Padilla, F.M.; Farneselli, M.; Gianquinto, G.; Tei, F.; Thompson, R.B. Monitoring nitrogen status of vegetable crops and soils for optimal nitrogen management. Agric. Water Manag. 2020, 241, 106356. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Díaz-Espejo, A.; Flexas, J.; Galmes, J.; Warren, C.R. Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J. Exp. Bot. 2009, 60, 2249–2270. [Google Scholar] [CrossRef] [PubMed]
- Baltazar, M.; Correia, S.; Guinan, K.J.; Sujeeth, N.; Bragança, R.; Gonçalves, B. Recent advances in the molecular effects of biostimulants in plants: An overview. Biomolecules 2021, 11, 1096. [Google Scholar] [CrossRef] [PubMed]
- Zayed, O.; Hewedy, O.A.; Abdelmoteleb, A.; Ali, M.; Youssef, M.S.; Roumia, A.F.; Seymour, D.; Yuan, Z.-C. Nitrogen journey in plants: From uptake to metabolism, stress response, and microbe interaction. Biomolecules 2023, 13, 1443. [Google Scholar] [CrossRef]
- Nieves-Silva, E.; Sandoval-Castro, E.; Delgado-Alvarado, A.; Castañeda-Antonio, M.D.; Huerta-De la Peña, A. Nitrate reductase and Glutamine synthetase enzyme activities and chlorophyll in sorghum leaves (Sorghum bicolor) in response to organic fertilization. Int. J. Plant Biol. 2024, 15, 827–836. [Google Scholar] [CrossRef]
Properties | Soil |
---|---|
Sand | 24% |
Silt | 44% |
Clay | 32% |
pH | 8.0 |
Calcium Carbonate (CaCO3) | 1.40% |
Soil Organic Matter (SOM) | 1.61% |
Total Nitrogen (Ntot) | 1.1% |
Cation Exchange Capacity (CEC) | 35 meq/100 g |
Total Phosphorous (P) | 21.2 ppm |
Phosphorus Pentoxide (P2O5) | 48.5 ppm |
Total Potassium (K) | 232 ppm |
Potassium Oxide (K2O) | 278 ppm |
Coding | Biostimulants | Characteristics |
---|---|---|
BIOS1 | Seaweed extract | Organic Nitrogen (Norg) 0.2% |
Organic Carbon (Corg) of Biological Origin 0.7% | ||
pH 4.5 (10% w/v in water) | ||
BIOS2 | Protein hydrolysates | Total Nitrogen (Ntot) 2.3% |
Organic Nitrogen (Norg) 2.3% | ||
Organic Carbon (Corg) 18.2% | ||
pH 6.4 | ||
Electrical Conductivity 1.6 dS/m | ||
Ash 9.25% | ||
BIOS3 | Utrisha™ N | Endophytic N-Fixing Bacteria |
Treatments | DM (Mg ha−1) | LAImax (-) | N Uptake (kg N ha−1) | Total Yield (Mg ha−1) | Marketable Yield (Mg ha−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2023 | 2024 | 2023 | 2024 | 2023 | 2024 | 2023 | 2024 | 2023 | 2024 | |
BIOS0_N0 | 3.3 | 7.7 | 0.66 | 1.60 | 82 | 138 | 29.5 | 68.1 | 20.3 | 49.0 |
BIOS1_N0 | 3.6 | 7.5 | 0.80 | 1.86 | 75 | 130 | 28.1 | 70.0 | 16.2 | 53.7 |
BIOS2_N0 | 4.6 | 8.5 | 1.06 | 2.11 | 100 | 143 | 38.8 | 75.1 | 22.2 | 60.9 |
BIOS3_N0 | 4.3 | 7.5 | 0.97 | 1.62 | 91 | 132 | 36.1 | 70.5 | 22.3 | 58.7 |
BIOS0_RED | 6.8 | 11.9 | 2.21 | 2.91 | 169 | 284 | 66.1 | 119.3 | 44.1 | 100.6 |
BIOS1_RED | 7.4 | 10.8 | 1.83 | 2.51 | 179 | 254 | 62.0 | 104.1 | 42.6 | 83.4 |
BIOS2_RED | 8.0 | 10.9 | 2.51 | 2.91 | 186 | 251 | 61.9 | 108.6 | 40.8 | 95.3 |
BIOS3_RED | 7.8 | 10.3 | 2.53 | 2.84 | 197 | 237 | 73.4 | 104.0 | 46.6 | 85.2 |
BIOS0_STD | 8.2 | 11.6 | 2.03 | 2.74 | 175 | 289 | 65.3 | 117.3 | 45.2 | 99.2 |
BIOS1_STD | 7.7 | 10.1 | 2.11 | 2.97 | 204 | 254 | 69.1 | 103.1 | 49.4 | 87.5 |
BIOS2_STD | 7.9 | 10.7 | 2.48 | 2.49 | 194 | 273 | 62.8 | 107.4 | 42.1 | 92.8 |
BIOS3_STD | 7.1 | 10.5 | 2.33 | 3.23 | 189 | 274 | 69.7 | 109.3 | 43.5 | 91.5 |
Level of significance | ||||||||||
Nitrogen (N) | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Biostimulant (B) | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
N × B | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Treatments | N-NO3 SAP (mg L−1) | SPAD (-) | NDVI (-) | |||
---|---|---|---|---|---|---|
2023 | 2024 | 2023 | 2024 | 2023 | 2024 | |
BIOS0_N0 | 197 | 243 | 55.0 | 51.4 | 0.4238 | 0.5801 |
BIOS1_N0 | 160 | 247 | 56.1 | 52.2 | 0.4441 | 0.5661 |
BIOS2_N0 | 157 | 210 | 54.3 | 51.8 | 0.5207 | 0.5840 |
BIOS3_N0 | 230 | 260 | 54.4 | 52.2 | 0.4849 | 0.5980 |
BIOS0_RED | 336 | 280 | 57.7 | 59.2 | 0.6751 | 0.6621 |
BIOS1_RED | 317 | 293 | 57.3 | 62.0 | 0.6853 | 0.6443 |
BIOS2_RED | 303 | 287 | 57.9 | 59.7 | 0.6866 | 0.6401 |
BIOS3_RED | 323 | 253 | 58.5 | 61.7 | 0.6880 | 0.6712 |
BIOS0_STD | 400 | 280 | 58.6 | 61.2 | 0.6386 | 0.6406 |
BIOS1_STD | 407 | 510 | 56.7 | 60.5 | 0.6361 | 0.6515 |
BIOS2_STD | 387 | 373 | 57.3 | 64.1 | 0.6142 | 0.6462 |
BIOS3_STD | 433 | 450 | 61.7 | 61.2 | 0.6949 | 0.6619 |
Level of significance | ||||||
Nitrogen (N) | * | ** | *** | *** | *** | *** |
Biostimulant (B) | ns | ns | ns | ns | ns | ns |
B × N | ns | ns | ns | ns | ns | ns |
Treatments | TSS °Brix | pH (-) | Color (-) | |||
---|---|---|---|---|---|---|
2023 | 2024 | 2023 | 2024 | 2023 | 2024 | |
BIOS0_N0 | 4.20 | 4.27 | 4.63 | 4.31 | 3.00 | 4.17 |
BIOS1_N0 | 4.07 | 4.27 | 4.65 | 4.33 | 2.33 | 4.50 |
BIOS2_N0 | 3.93 | 4.27 | 4.63 | 4.33 | 2.67 | 4.50 |
BIOS3_N0 | 4.10 | 4.30 | 4.63 | 4.33 | 3.00 | 4.17 |
BIOS0_RED | 4.23 | 4.17 | 4.69 | 4.33 | 3.33 | 4.50 |
BIOS1_RED | 4.73 | 4.03 | 4.57 | 4.35 | 3.67 | 4.67 |
BIOS2_RED | 4.00 | 4.50 | 4.65 | 4.30 | 3.33 | 4.67 |
BIOS3_RED | 4.47 | 4.20 | 4.56 | 4.33 | 4.00 | 4.67 |
BIOS0_STD | 4.67 | 4.23 | 4.63 | 4.35 | 3.67 | 4.67 |
BIOS1_STD | 4.80 | 4.23 | 4.60 | 4.32 | 3.67 | 4.50 |
BIOS2_STD | 4.63 | 4.37 | 4.56 | 4.30 | 3.00 | 4.83 |
BIOS3_STD | 4.80 | 4.10 | 4.65 | 4.35 | 3.67 | 4.50 |
Level of significance | ||||||
Nitrogen (N) | *** | ns | ns | ns | * | * |
Biostimulant (B) | ns | ns | ns | ns | ns | ns |
N × B | ns | ns | ns | ns | ns | ns |
Treatments | Chl a (mg g−1 FW) | Chl b (mg g−1 FW) | Chl tot (mg g−1 FW) | Carotenoids (mg g−1 FW) | ||||
---|---|---|---|---|---|---|---|---|
2023 | 2024 | 2023 | 2024 | 2023 | 2024 | 2023 | 2024 | |
BIOS0_N0 | 0.700 | 1.038 | 0.180 | 0.284 | 0.880 | 1.322 | 0.570 | 0.822 |
BIOS1_N0 | 0.800 | 1.102 | 0.210 | 0.312 | 1.000 | 1.413 | 0.600 | 0.969 |
BIOS2_N0 | 0.740 | 0.993 | 0.190 | 0.314 | 0.920 | 1.307 | 0.590 | 0.950 |
BIOS3_N0 | 0.540 | 0.970 | 0.130 | 0.287 | 0.680 | 1.258 | 0.440 | 0.888 |
BIOS0_RED | 0.900 | 1.284 | 0.230 | 0.374 | 1.130 | 1.658 | 0.740 | 1.059 |
BIOS1_RED | 0.860 | 1.173 | 0.220 | 0.344 | 1.080 | 1.517 | 0.710 | 1.059 |
BIOS2_RED | 1.000 | 1.231 | 0.260 | 0.354 | 1.260 | 1.585 | 0.810 | 1.095 |
BIOS3_RED | 1.030 | 1.281 | 0.260 | 0.359 | 1.290 | 1.640 | 0.830 | 1.048 |
BIOS0_STD | 0.960 | 1.336 | 0.250 | 0.369 | 1.210 | 1.706 | 0.790 | 1.158 |
BIOS1_STD | 0.990 | 1.198 | 0.260 | 0.334 | 1.250 | 1.532 | 0.820 | 0.969 |
BIOS2_STD | 0.900 | 1.409 | 0.250 | 0.418 | 1.150 | 1.827 | 0.790 | 1.292 |
BIOS3_STD | 1.010 | 1.314 | 0.260 | 0.371 | 1.280 | 1.686 | 0.830 | 1.055 |
Level of significance | ||||||||
Nitrogen (N) | *** | *** | *** | *** | *** | ** | *** | ** |
Biostimulant (B) | ns | ns | ns | ns | ns | ns | ns | ns |
N × B | ns | ns | ns | ns | ns | ns | ns | ns |
Treatments | L | tmes | fias | p-ratio | s-ratio | L-tmes | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
36 DAT | 64 DAT | 36 DAT | 64 DAT | 36 DAT | 64 DAT | 36 DAT | 64 DAT | 36 DAT | 64 DAT | 36 DAT | 64 DAT | |
BIOS0_N0 | 253.8 a | 295.5 ab | 214.3 a | 258.2 ab | 0.476 | 0.483 | 0.289 | 0.262 | 0.235 | 0.254 | 39.5 a | 37.3 |
BIOS1_N0 | 266.8 ac | 324.5 ab | 233.8 ac | 283.3 ab | 0.526 | 0.489 | 0.267 | 0.244 | 0.207 | 0.268 | 33.1 a | 41.3 |
BIOS2_N0 | 299.5 be | 361.9 b | 258.9 be | 317.7 b | 0.526 | 0.532 | 0.299 | 0.238 | 0.175 | 0.230 | 40.7 ab | 44.2 |
BIOS3_N0 | 310.9 ce | 320.3 ab | 276.0 de | 283.7 ab | 0.506 | 0.542 | 0.269 | 0.265 | 0.224 | 0.193 | 34.9 a | 36.7 |
BIOS0_RED | 303.3 be | 340.3 ab | 264.3 be | 304.4 b | 0.523 | 0.541 | 0.269 | 0.242 | 0.208 | 0.217 | 39.0 a | 35.9 |
BIOS1_RED | 286.7 ae | 328.1 ab | 254.8 ae | 290.7 ab | 0.517 | 0.541 | 0.282 | 0.261 | 0.200 | 0.198 | 31.8 a | 37.5 |
BIOS2_RED | 264.6 ab | 340.5 ab | 230.3 ab | 303.2 b | 0.514 | 0.514 | 0.296 | 0.265 | 0.190 | 0.221 | 34.4 a | 37.3 |
BIOS3_RED | 328.1 e | 264.4 a | 273.1 ce | 232.0 a | 0.511 | 0.531 | 0.286 | 0.277 | 0.203 | 0.192 | 55.0 a | 32.4 |
BIOS0_STD | 318.9 de | 335.0 ab | 286.8 e | 292.8 ab | 0.538 | 0.551 | 0.272 | 0.232 | 0.190 | 0.217 | 32.0 a | 42.2 |
BIOS1_STD | 274.8 ad | 368.9 b | 241.8 ad | 327.7 b | 0.506 | 0.546 | 0.325 | 0.252 | 0.169 | 0.203 | 33.0 a | 41.3 |
BIOS2_STD | 262.8 ab | 340.4 ab | 225.9 ab | 303.1 b | 0.505 | 0.509 | 0.293 | 0.267 | 0.202 | 0.224 | 36.9 a | 37.3 |
BIOS3_STD | 267.5 ac | 308.9 ab | 234.8 ac | 275.0 ab | 0.526 | 0.499 | 0.283 | 0.295 | 0.191 | 0.206 | 32.7 a | 33.9 |
Level of significance | ||||||||||||
Nitrogen (N) | ns | ns | ns | ns | ns | ns | ns | ns | * | * | * | ns |
Biostimulant (B) | ** | ** | ** | ** | ns | ns | ns | ns | ns | ns | * | ns |
N × B | ** | * | ** | * | ns | ns | ns | ns | ns | ns | ** | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farneselli, M.; Reale, L.; Falcinelli, B.; Akram, M.Z.; Cimarelli, S.; Cinti, E.; Paglialunga, M.; Carbone, F.; Pannacci, E.; Tei, F. A Multifaceted Approach to Optimizing Processed Tomato Production: Investigating the Combined Effects of Biostimulants and Reduced Nitrogen Fertilization. Horticulturae 2025, 11, 931. https://doi.org/10.3390/horticulturae11080931
Farneselli M, Reale L, Falcinelli B, Akram MZ, Cimarelli S, Cinti E, Paglialunga M, Carbone F, Pannacci E, Tei F. A Multifaceted Approach to Optimizing Processed Tomato Production: Investigating the Combined Effects of Biostimulants and Reduced Nitrogen Fertilization. Horticulturae. 2025; 11(8):931. https://doi.org/10.3390/horticulturae11080931
Chicago/Turabian StyleFarneselli, Michela, Lara Reale, Beatrice Falcinelli, Muhammad Zubair Akram, Stefano Cimarelli, Eleonore Cinti, Michela Paglialunga, Flavia Carbone, Euro Pannacci, and Francesco Tei. 2025. "A Multifaceted Approach to Optimizing Processed Tomato Production: Investigating the Combined Effects of Biostimulants and Reduced Nitrogen Fertilization" Horticulturae 11, no. 8: 931. https://doi.org/10.3390/horticulturae11080931
APA StyleFarneselli, M., Reale, L., Falcinelli, B., Akram, M. Z., Cimarelli, S., Cinti, E., Paglialunga, M., Carbone, F., Pannacci, E., & Tei, F. (2025). A Multifaceted Approach to Optimizing Processed Tomato Production: Investigating the Combined Effects of Biostimulants and Reduced Nitrogen Fertilization. Horticulturae, 11(8), 931. https://doi.org/10.3390/horticulturae11080931