Seaweed, Used as a Water-Retaining Agent, Improved the Water Distribution and Myofibrillar Protein Properties of Plant-Based Yak Meat Burgers Before and After Freeze–Thaw Cycles
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.1.1. Pretreatment of Seaweed
2.1.2. Collection of Yak Meat Samples
2.1.3. Preparation of Seaweed–Yak Meat Patties
2.2. Measurements of Water-Holding Capacity
2.2.1. Thawing Loss
2.2.2. Centrifugal Loss
2.2.3. Water Distribution and Migration
2.3. Determination of Physicochemical Characteristics
2.3.1. Color Measurement
2.3.2. pH Measurement
2.3.3. TPA and Shear Force Analysis
2.3.4. Evaluation of Sensory Methodologies
2.4. Scanning Electron Microscopy
2.5. The Effect of Seaweed on the Oxidation Reaction
2.5.1. Total Phenolic Content
2.5.2. TBARS
2.5.3. DPPH Radical Scavenging Activity
2.5.4. Non-Targeted Metabolomics Analysis
2.6. Changes in Protein Characteristics Before and After Freezing
2.6.1. Extraction of Myofibrillar Protein
2.6.2. Protein Particle Size and Zeta Potential
2.6.3. Surface Hydrophobicity
2.6.4. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.7. Statistical Analysis
3. Results and Discussion
3.1. The Effect on Water-Holding Capacity
3.1.1. Thawing Loss and Centrifugal Loss
3.1.2. Water Distribution
3.2. Physicochemical Properties of Reconstituted Seaweed–Yak Meat Patties
3.2.1. pH and Color Analysis
3.2.2. Texture and Shear Force Analysis
3.2.3. Sensory Evaluation
3.3. Changes in the Microstructure
3.3.1. Magnetic Resonance Imaging (MRI)
3.3.2. Scanning Electron Microscopy (SEM)
3.4. The Effect of Different Seaweed Addition Levels on the Oxidation Characteristics of Reconstituted Steak
3.4.1. MDA Content
3.4.2. Total Phenolic Content (TPC)
3.4.3. Investigation of DPPH Radical-Scavenging Activity
3.4.4. Non-Targeted Metabolomics
3.5. Correlation Analysis
3.6. Investigation of Yak Meat Protein Properties Before and After Freeze-Thaw Cycling
3.6.1. Particle Size and Zeta Potential
3.6.2. Investigation of Surface Hydrophobicity
3.6.3. SDS-PAGE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiménez-Colmenero, F. Healthier lipid formulation approaches in meat-based functional foods. Technological options for replacement of meat fats by non-meat fats. Trends Food Sci. Technol. 2007, 18, 567–578. [Google Scholar] [CrossRef]
- Cox, S.; Abu-Ghannam, N. Enhancement of the phytochemical and fibre content of beef patties with Himanthalia elongata seaweed. Int. J. Food Sci. Technol. 2013, 48, 2239–2249. [Google Scholar] [CrossRef]
- Wan, A.H.L.; Davies, S.J.; Soler-Vila, A.; Fitzgerald, R.; Johnson, M.P. Macroalgae as a sustainable aquafeed ingredient. Rev. Aquac. 2018, 11, 458–492. [Google Scholar] [CrossRef]
- Xie, Y.; Zhou, K.; Chen, B.; Al-Dalali, S.; Li, C.; Wang, Y.; Wang, Z.; Zhou, H.; Li, P.; Xu, B. Synergism effect of low voltage electrostatic field and antifreeze agents on enhancing the qualities of frozen beef steak: Perspectives on water migration and protein aggregation. Innov. Food Sci. Emerg. Technol. 2023, 84, 103263. [Google Scholar] [CrossRef]
- Li, F.; Zhong, Q.; Kong, B.; Wang, B.; Pan, N.; Xia, X. Deterioration in quality of quick-frozen pork patties induced by changes in protein structure and lipid and protein oxidation during frozen storage. Food Res. Int. 2020, 133, 109142. [Google Scholar] [CrossRef] [PubMed]
- Rioux, L.-E.; Beaulieu, L.; Turgeon, S.L. Seaweeds: A traditional ingredients for new gastronomic sensation. Food Hydrocoll. 2017, 68, 255–265. [Google Scholar] [CrossRef]
- Cofrades, S.; Benedí, J.; Garcimartin, A.; Sánchez-Muniz, F.J.; Jimenez-Colmenero, F. A comprehensive approach to formulation of seaweed-enriched meat products: From technological development to assessment of healthy properties. Food Res. Int. 2017, 99, 1084–1094. [Google Scholar] [CrossRef] [PubMed]
- Gullón, P.; Astray, G.; Gullón, B.; Franco, D.; Campagnol, P.C.B.; Lorenzo, J.M. Inclusion of seaweeds as healthy approach to formulate new low-salt meat products. Curr. Opin. Food Sci. 2020, 40, 20–25. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Kum, J.-S.; Jeon, K.-H.; Park, J.-D.; Choi, H.-W.; Hwang, K.-E.; Jeong, T.-J.; Kim, Y.-B.; Kim, C.-J. Effects of Edible Seaweed on Physicochemical and Sensory Characteristics of Reduced-salt Frankfurters. Korean J. Food Sci. Anim. Resour. 2016, 35, 748. [Google Scholar] [CrossRef] [PubMed]
- Leygonie, C.; Britz, T.J.; Hoffman, L.C. Impact of freezing and thawing on the quality of meat: Review. Meat Sci. 2012, 91, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhou, K.; Chen, B.; Wang, Y.; Nie, W.; Wu, S.; Wang, W.; Li, P.; Xu, B. Applying low voltage electrostatic field in the freezing process of beef steak reduced the loss of juiciness and textural properties. Innov. Food Sci. Emerg. Technol. 2021, 68, 102600. [Google Scholar] [CrossRef]
- Otero, L.; Rodríguez, A.C.; Sanz, P.D. Effect of the Frequency of Weak Oscillating Magnetic Fields on Supercooling and Freezing Kinetics of Pure Water and 0.9% Nacl Solutions. J. Food Eng. 2020, 273, 109822. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, J.-l.; Chen, S.-j.; Zhang, X.-l.; Wei, W.-y. Influence of trehalose and alginate oligosaccharides on ice crystal growth and recrystallization in whiteleg shrimp (Litopenaeus vannamei) during frozen storage with temperature fluctuations. Int. J. Refrig. 2019, 99, 176–185. [Google Scholar] [CrossRef]
- Wang, B.; Li, F.; Pan, N.; Kong, B.; Xia, X. Effect of ice structuring protein on the quality of quick-frozen patties subjected to multiple freeze-thaw cycles. Meat Sci. 2021, 172, 108335. [Google Scholar] [CrossRef] [PubMed]
- Damerau, A.; Kakko, T.; Tian, Y.; Tuomasjukka, S.; Sandell, M.; Hopia, A.; Yang, B. Effect of supercritical CO2 plant extract and berry press cakes on stability and consumer acceptance of frozen Baltic herring (Clupea harengus membras) mince. Food Chem. 2020, 332, 127385. [Google Scholar] [CrossRef] [PubMed]
- U, P.; George, S. Influence of cryoprotectant levels on storage stability of surimi from Nemipterus japonicus and quality of surimi-based products. J. Food Sci. Technol. 2011, 51, 982–987. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wu, H.-x.; Yang, H.-c.; Xiang, X.-w.; Li, H.-b.; Deng, S.-g. Cryoprotective roles of trehalose and alginate oligosaccharides during frozen storage of peeled shrimp (Litopenaeus vannamei). Food Chem. 2017, 228, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Jannat-Alipour, H.; Rezaei, M.; Shabanpour, B.; Tabarsa, M.; Rafipour, F. Addition of seaweed powder and sulphated polysaccharide on shelf_life extension of functional fish surimi restructured product. J. Food Sci. Technol. 2019, 56, 3777–3789. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, Z.; Yuan, F.; Lin, H.; Pavase, T.R. Effects of brown seaweed polyphenols,α-tocopherol, and ascorbic acid on protein oxidation and textural properties of fish mince (Pagrosomus major) during frozen storage. J. Sci. Food Agric. 2016, 97, 1102–1107. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Yang, C.; Song, Y.; Qiang, Y.; Han, D.; Zhang, C. Changes provoked by altitudes and cooking methods in physicochemical properties, volatile profile, and sensory characteristics of yak meat. Food Chem. X 2023, 20, 101019. [Google Scholar] [CrossRef] [PubMed]
- GB/T 19477-2018; Operating Procedure of Livestock and Poultry Slaughtering—Cattle. Standards Press of China: Beijing, China, 2018.
- Wang, W.; Lin, H.; Guan, W.; Song, Y.; He, X.; Zhang, D. Effect of static magnetic field-assisted thawing on the quality, water status, and myofibrillar protein characteristics of frozen beef steaks. Food Chem. 2023, 436, 137709. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Sun, Y.; Zhang, T.; Wang, C.; Xiong, L.; Ma, Y.; Zhu, Y.; Gao, R.; Wang, L.; Jiang, N. The preservable effects of ultrasound-assisted alginate oligosaccharide soaking on cooked crayfish subjected to Freeze-Thaw cycles. Ultrason. Sonochemistry 2022, 92, 106259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Xia, X.; Liu, Q.; Chen, Q.; Kong, B. Changes in microstructure, quality and water distribution of porcine longissimus muscles subjected to ultrasound-assisted immersion freezing during frozen storage. Meat Sci. 2019, 151, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Hafezparast-Moadab, N.; Hamdami, N.; Dalvi-Isfahan, M.; Farahnaky, A. Effects of radiofrequency-assisted freezing on microstructure and quality of rainbow trout (Oncorhynchus mykiss) fillet. Innov. Food Sci. Emerg. Technol. 2018, 47, 81–87. [Google Scholar] [CrossRef]
- Saengsuk, N.; Laohakunjit, N.; Sanporkha, P.; Kaisangsri, N.; Selamassakul, O.; Ratanakhanokchai, K.; Uthairatanakij, A.; Waeonukul, R. Comparative physicochemical characteristics and in vitro protein digestibility of alginate/calcium salt restructured pork steak hydrolyzed with bromelain and addition of various hydrocolloids (low acyl gellan, low methoxy pectin and κ-carrageenan). Food Chem. 2022, 393, 133315. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Mei, J.; Xie, J. Effects of multi-frequency ultrasound on the freezing rates, quality properties and structural characteristics of cultured large yellow croaker (Larimichthys crocea). Ultrason. Sonochemistry 2021, 76, 105657. [Google Scholar] [CrossRef] [PubMed]
- Ozogul, Y.; Yuvka, İ.; Ucar, Y.; Durmus, M.; Kösker, A.R.; Öz, M.; Ozogul, F. Evaluation of effects of nanoemulsion based on herb essential oils (rosemary, laurel, thyme and sage) on sensory, chemical and microbiological quality of rainbow trout (Oncorhynchus mykiss) fillets during ice storage. LWT 2017, 75, 677–684. [Google Scholar] [CrossRef]
- Zhao, X.; Han, G.; Wen, R.; Xia, X.; Chen, Q.; Kong, B. Influence of lard-based diacylglycerol on rheological and physicochemical properties of thermally induced gels of porcine myofibrillar protein at different NaCl concentrations. Food Res. Int. 2020, 127, 108723. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Jin, M.; Sun, C.; Bai, Y.; Dong, X.; Qi, H. Rapeseed oil as the extraction solvent motivates fucoxanthin-loaded high internal phase emulsion preparation for food 3D printing. LWT-Food Sci. Technol. 2023, 187, 115349. [Google Scholar] [CrossRef]
- Shen, X.; Wang, R.; Xiong, X.; Yin, Y.; Cai, Y.; Ma, Z.; Liu, N.; Zhu, Z.-J. Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nat. Commun. 2019, 10, 1516. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, H.; Emara, A.M.; Hu, Y.; Wang, Z.; Wang, M.; He, Z. Effect of in vitro oxidation on the water retention mechanism of myofibrillar proteins gel from pork muscles. Food Chem. 2020, 315, 126226. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Guo, M.; Liao, E.; Wang, Q.; Peng, L.; Jin, W.; Wang, H. Effects of repeated freezing and thawing on myofibrillar protein and quality characteristics of marinated Enshi black pork. Food Chem. 2022, 378, 131994. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kong, B.; Xia, X.; Liu, Q.; Diao, X. Structural changes of the myofibrillar proteins in common carp (Cyprinus carpio) muscle exposed to a hydroxyl radical-generating system. Process Biochem. 2013, 48, 863–870. [Google Scholar] [CrossRef]
- Orlowska, M.; Havet, M.; Le-Bail, A. Controlled ice nucleation under high voltage DC electrostatic field conditions. Food Res. Int. 2009, 42, 879–884. [Google Scholar] [CrossRef]
- Zhang, S.-S.; Duan, J.-Y.; Zhang, T.-T.; Lv, M.; Gao, X.-G. Effect of compound dietary fiber of soybean hulls on the gel properties of myofibrillar protein and its mechanism in recombinant meat products. Front. Nutr. 2023, 10, 1129514. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhou, K.; Chen, B.; Ma, Y.; Tang, C.; Li, P.; Wang, Z.; Xu, F.; Li, C.; Zhou, H.; et al. Mechanism of low-voltage electrostatic fields on the water-holding capacity in frozen beef steak: Insights from myofilament lattice arrays. Food Chem. 2023, 428, 136786. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Hu, F.; Mehmood, W.; Li, X.; Zhang, C.; Blecker, C. The rise of thawing drip: Freezing rate effects on ice crystallization and myowater dynamics changes. Food Chem. 2022, 373, 131461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, F.; Diao, X.; Kong, B.; Xia, X. Moisture migration, microstructure damage and protein structure changes in porcine longissimus muscle as influenced by multiple freeze-thaw cycles. Meat Sci. 2017, 133, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Nikoo, M.; Benjakul, S.; Ehsani, A.; Li, J.; Wu, F.; Yang, N.; Xu, B.; Jin, Z.; Xu, X. Antioxidant and cryoprotective effects of a tetrapeptide isolated from Amur sturgeon skin gelatin. J. Funct. Foods 2014, 7, 609–620. [Google Scholar] [CrossRef]
- Zheng, Y.; Shi, Y.; Yang, X.; Guo, Q. Flammulina velutipes polysaccharide improves the water-holding capacity in the dorsal muscle of freeze-thawed cultured large yellow croaker (Larimichthys crocea). Food Chem. 2023, 403, 134401. [Google Scholar] [CrossRef] [PubMed]
- Mumyapan, M.; Aktaş, N.; Gerçekaslan, K.E. Seed pumpkin flour as a dietary fiber source in Bologna-Type sausages. J. Food Process. Preserv. 2022, 46, e16586. [Google Scholar] [CrossRef]
- Alvarado, C.; McKee, S. Marination to Improve Functional Properties and Safety of Poultry Meat. J. Appl. Poult. Res. 2007, 16, 113–120. [Google Scholar] [CrossRef]
- Leygonie, C.; Britz, T.J.; Hoffman, L.C. Oxidative stability of previously frozen ostrich Muscularis iliofibularis packaged under different modified atmospheric conditions. Int. J. Food Sci. Technol. 2011, 46, 1171–1178. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.-Z.; Brooks, J.D.; Corke, H. Antibacterial and antioxidant effects of five spice and herb extracts as natural preservatives of raw pork. J. Sci. Food Agric. 2009, 89, 1879–1885. [Google Scholar] [CrossRef]
- Kim, T.-K.; Shim, J.-Y.; Hwang, K.-E.; Kim, Y.-B.; Sung, J.-M.; Paik, H.-D.; Choi, Y.-S. Effect of hydrocolloids on the quality of restructured hams with duck skin. Poult. Sci. 2018, 97, 4442–4449. [Google Scholar] [CrossRef] [PubMed]
- Piñero, M.P.; Parra, K.; Huerta-Leidenz, N.; Arenas de Moreno, L.; Ferrer, M.; Araujo, S.; Barboza, Y. Effect of oat’s soluble fibre (β-glucan) as a fat replacer on physical, chemical, microbiological and sensory properties of low-fat beef patties. Meat Sci. 2008, 80, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Liu, C.; Wang, B.; Kong, L.; Wen, R.; Zhang, H.; Yu, X.; Bai, Y.; Jang, A. Hygroscopic properties of whey protein hydrolysates and their effects on water retention in pork patties during repeated freeze–thaw cycles. LWT-Food Sci. Technol. 2023, 184, 114984. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, J.; Wang, M.; Zhang, Y.; Han, L.; Ren, G. Effect of the composition of coating water retaining agent on the quality of conditioned chicken meatballs after frozen storage. Food Control 2024, 166, 110752. [Google Scholar] [CrossRef]
- Yim, D.-G.; Choi, Y.-S.; Nam, K.-C. Sea tangle (Laminaria japonica) supplementation on meat quality of Korean native black goat. J. Anim. Sci. Technol. 2019, 61, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Moroney, N.C.; O’Grady, M.N.; O’Doherty, J.V.; Kerry, J.P. Effect of a brown seaweed (Laminaria digitata) extract containing laminarin and fucoidan on the quality and shelf-life of fresh and cooked minced pork patties. Meat Sci. 2013, 94, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, S.; Nagarajan, R.; Kumar, J.; Salemme, A.; Togna, A.R.; Saso, L.; Bruno, F. Antioxidant Activity of Synthetic Polymers of Phenolic Compounds. Polymers 2020, 12, 1646. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lyu, B.; Fu, H.; Li, J.; Ji, L.; Gong, H.; Zhang, R.; Liu, J.; Yu, H. The development process of plant-based meat alternatives: Raw material formulations and processing strategies. Food Res. Int. 2023, 167, 112689. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Luo, W.; He, M.; Zhao, Y.; Sun, J.; Mao, X. Effects of different thawing methods on the physicochemical properties and myofibrillar protein characteristics of Litopenaeus vannamei. LWT-Food Sci. Technol. 2023, 192, 115668. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, W.; Wei, H.; Deng, S.; Yu, X.; Huang, T. The mechanisms and applications of cryoprotectants in aquatic products: An overview. Food Chem. 2023, 408, 135202. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Ye, J.; Xie, J. Freezing-induced myofibrillar protein denaturation: Role of pH change and freezing rate. LWT 2021, 152, 112381. [Google Scholar] [CrossRef]
- Leiter, A.; Emmer, P.; Gaukel, V. Influence of gelation on ice recrystallization inhibition activity of κ-carrageenan in sucrose solution. Food Hydrocoll. 2018, 76, 194–203. [Google Scholar] [CrossRef]
- Chelh, I.; Gatellier, P.; Santé-Lhoutellier, V. Technical note: A simplified procedure for myofibril hydrophobicity determination. Meat Sci. 2006, 74, 681–683. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Cui, F.; Wang, J.; Zhu, W.; Xu, Y.; Yi, S.; Li, X.; Li, J. Effects of ultrasound-assisted immersion freezing on the muscle quality and myofibrillar protein oxidation and denaturation in Sciaenops ocellatus. Food Chem. 2022, 377, 131949. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, Y.; Xia, X.; Sun, Q.; Sun, F.; Kong, B. Changes in protein oxidation, structure, and thermal stability of chicken breast subjected to ultrasound-assisted immersion freezing during frozen storage. Food Chem. 2023, 398, 133874. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Cao, Y.; Yin, T.; Huang, Q. Inhibitive effect of trehalose and sodium pyrophosphate on oxidation and structural changes of myofibrillar proteins in silver carp surimi during frozen storage. Food Res. Int. 2024, 187, 114361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ertbjerg, P. On the origin of thaw loss: Relationship between freezing rate and protein denaturation. Food Chem. 2019, 299, 125104. [Google Scholar] [CrossRef] [PubMed]
IDX | SN | Sample Name | Details |
---|---|---|---|
1 | K-1 | Yak meat patties with 10% seaweed addition | 5 g kelp + 45 g yak meat |
2 | K-2 | Yak meat patties with 20% seaweed addition | 10 g kelp + 40 g yak meat |
3 | K-3 | Yak meat patties with 30% seaweed addition | 15 g kelp + 35 g yak meat |
4 | K-4 | Yak meat patties with 40% seaweed addition | 20 g kelp + 30 g yak meat |
5 | K-5 | Yak meat patties with 50% seaweed addition | 25 g kelp + 25 g yak meat |
6 | K-6 | Yak meat patties with 60% seaweed addition | 30 g kelp + 20 g yak meat |
7 | K-7 | Yak meat patties with 70% seaweed addition | 35 g kelp + 15 g yak meat |
8 | D-K-1 | Thawed yak patties with 10% seaweed addition | 5 g kelp + 45 g yak meat |
9 | D-K-2 | Thawed yak patties with 20% seaweed addition | 10 g kelp + 40 g yak meat |
10 | D-K-3 | Thawed yak patties with 30% seaweed addition | 15 g kelp + 35 g yak meat |
11 | D-K-4 | Thawed yak patties with 40% seaweed addition | 20 g kelp + 30 g yak meat |
12 | D-K-5 | Thawed yak patties with 50% seaweed addition | 25 g kelp + 25 g yak meat |
13 | D-K-6 | Thawed yak patties with 60% seaweed addition | 30 g kelp + 20 g yak meat |
14 | D-K-7 | Thawed yak patties with 70% seaweed addition | 35 g kelp + 15 g yak meat |
Score | Odor | Color | Appearance Texture | Elasticity |
---|---|---|---|---|
9–10 (best) | Stronger intrinsic aroma; no unpleasant odor | Shiny surface | Tight; complete; clear texture | The most elastic; the depression disappears immediately after pressing |
7–8 (better) | Inherent aroma; no unpleasant odor | More shiny | Tight; clear texture | More elastic; the depression disappears quickly after pressing |
4–6 (good) | Light inherent aroma; slightly unpleasant odor | Slightly shiny | Not tight; not loose | More elastic; the depression disappears slowly after pressing |
2–3 (general) | No inherent aroma; fishy odor | Slightly dull | Not tight; partially loose | Elastic; the depression disappears slowly after pressing |
0–1 (poor) | Strong fishy odor | Matte | Not tight; loose | Inelastic; the depression does not disappear after pressing |
Different Seaweed Addition Ratios (%) | 10 | 20 | 30 | 40 | 50 | 60 | 70 |
---|---|---|---|---|---|---|---|
Thawing loss (%) | 8.2 ± 0.16 a | 6.47 ± 0.54 ab | 5.11 ± 0.19 bc | 3.69 ± 0.81 c | 4.31 ± 1.08 c | 4.94 ± 1.07 bc | 4.99 ± 1.29 bc |
Samples | L* | a* | b* | ∆E |
---|---|---|---|---|
K-1 | 34.68 ± 1.51 abc | 8.75 ± 1.13 ab | 10.4 ± 1.01 abc | 3.58 ± 1.08 ab |
D-K-1 | 36.04 ± 1.64 ab | 10.49 ± 0.66 a | 11.13 ± 0.34 a | |
K-2 | 37.2 ± 0.89 a | 7.22 ± 2.33 bc | 10.9 ± 1.48 ab | 4.32 ± 1.74 ab |
D-K-2 | 34.21 ± 0.88 abc | 8.59 ± 0.86 ab | 11.04 ± 0.38 ab | |
K-3 | 36.23 ± 2.58 ab | 6 ± 1.95 c | 10.18 ± 1.5 abc | 3.1 ± 0.92 b |
D-K-3 | 36.24 ± 1.14 ab | 5.95 ± 0.33 c | 10.84 ± 0.26 ab | |
K-4 | 36.33 ± 4.35 ab | 5.24 ± 2.07 c | 10.5 ± 2.71 abc | 5.73 ± 3.88 ab |
D-K-4 | 32.8 ± 0.55 bc | 3.02 ± 0.34 d | 9.2 ± 0.32 bcd | |
K-5 | 28.82 ± 4.15 e | 3.13 ± 1.73 d | 8.3 ± 2.3 d | 4.45 ± 2.51 ab |
D-K-5 | 29.18 ± 1.15 de | 2.88 ± 0.51 d | 8.05 ± 0.4 d | |
K-6 | 31.94 ± 3.05 cd | 2.63 ± 1.35 de | 8.85 ± 1.54 cd | 3.55 ± 1.45 ab |
D-K-6 | 32.39 ± 0.91 c | 2.08 ± 0.25 de | 9.92 ± 0.16 abc | |
K-7 | 29.9 ± 7.62 de | 2.11 ± 1.55 e | 8.5 ± 3.04 d | 7.51 ± 4.81 a |
D-K-7 | 31.44 ± 0.78 cd | 0.71 ± 0.22 f | 8.92 ± 0.35 cd |
Samples | Hardness/(N) | Springiness | Cohesiveness | Gumminess |
---|---|---|---|---|
K-1 | 816.04 ± 115.09 de | 0.27 ± 0.02 cde | 0.33 ± 0.004 a | 255.4 ± 37.39 de |
D-K-1 | 2320.11 ± 989.33 b | 0.16 ± 0.04 f | 0.25 ± 0.03 de | 560.94 ± 153.02 b |
K-2 | 1133.51 ± 65.06 cd | 0.34 ± 0.01 abc | 0.3 ± 0.01 b | 337.28 ± 10.2 cd |
D-K-2 | 3169.29 ± 567.48 a | 0.2 ± 0.01 ef | 0.27 ± 0.02 cd | 846.75 ± 182.41 a |
K-3 | 784.35 ± 85.16 de | 0.32 ± 0.05 abcd | 0.27 ± 0.02 cd | 209.59 ± 35.43 defg |
D-K-3 | 1675.75 ± 528.21 c | 0.23 ± 0.03 def | 0.25 ± 0.01 def | 413.94 ± 136.43 c |
K-4 | 497.72 ± 99.12 de | 0.4 ± 0.05 a | 0.26 ± 0.01 de | 127.8 ± 27.7 efgh |
D-K-4 | 1129.59 ± 300.45 cd | 0.25 ± 0.09 cde | 0.23 ± 0.02 efg | 256.2 ± 67.07 de |
K-5 | 434.44 ± 89.8 de | 0.35 ± 0.03 abc | 0.22 ± 0.01 fgh | 96.39 ± 20.24 gh |
D-K-5 | 1129.93 ± 229.52 cd | 0.27 ± 0.08 cde | 0.21 ± 0.01 gh | 240.52 ± 45 def |
K-6 | 417.7 ± 29.05 de | 0.38 ± 0.01 ab | 0.21 ± 0.01 ghi | 85.75 ± 7.76 gh |
D-K-6 | 1026.2 ± 177.31 cd | 0.28 ± 0.05 cde | 0.2 ± 0.01 hi | 202.77 ± 42.29 defg |
K-7 | 278.97 ± 10.37 e | 0.32 ± 0.005 abcd | 0.18 ± 0.01 i | 50.98 ± 3.98 h |
D-K-7 | 421.93 ± 54.78 de | 0.26 ± 0.04 cde | 0.23 ± 0.02 efg | 97.21 ± 12.98 gh |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chang, X.; Wang, Y.; Xie, J.; Han, G.; Qi, H. Seaweed, Used as a Water-Retaining Agent, Improved the Water Distribution and Myofibrillar Protein Properties of Plant-Based Yak Meat Burgers Before and After Freeze–Thaw Cycles. Foods 2025, 14, 2541. https://doi.org/10.3390/foods14142541
Wang Y, Chang X, Wang Y, Xie J, Han G, Qi H. Seaweed, Used as a Water-Retaining Agent, Improved the Water Distribution and Myofibrillar Protein Properties of Plant-Based Yak Meat Burgers Before and After Freeze–Thaw Cycles. Foods. 2025; 14(14):2541. https://doi.org/10.3390/foods14142541
Chicago/Turabian StyleWang, Yujiao, Xinyi Chang, Yingzhen Wang, Jiahao Xie, Ge Han, and Hang Qi. 2025. "Seaweed, Used as a Water-Retaining Agent, Improved the Water Distribution and Myofibrillar Protein Properties of Plant-Based Yak Meat Burgers Before and After Freeze–Thaw Cycles" Foods 14, no. 14: 2541. https://doi.org/10.3390/foods14142541
APA StyleWang, Y., Chang, X., Wang, Y., Xie, J., Han, G., & Qi, H. (2025). Seaweed, Used as a Water-Retaining Agent, Improved the Water Distribution and Myofibrillar Protein Properties of Plant-Based Yak Meat Burgers Before and After Freeze–Thaw Cycles. Foods, 14(14), 2541. https://doi.org/10.3390/foods14142541