Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (178)

Search Parameters:
Keywords = seawater renewal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6816 KB  
Article
Experimental Evaluation of the Performance of a Flat Sheet Reverse Osmosis Membrane Under Variable and Intermittent Operation Emulating a Photovoltaic-Driven Desalination System
by Evangelos Dimitriou, Dimitrios Loukatos, Konstantinos G. Arvanitis and George Papadakis
Water 2025, 17(24), 3576; https://doi.org/10.3390/w17243576 - 16 Dec 2025
Viewed by 485
Abstract
The integration of Reverse Osmosis (RO) desalination with Renewable Energy (RE) sources offers a sustainable approach to freshwater production, particularly in remote and off-grid regions. However, the variable and intermittent output of RE power can cause operational instability that affects membrane performance and [...] Read more.
The integration of Reverse Osmosis (RO) desalination with Renewable Energy (RE) sources offers a sustainable approach to freshwater production, particularly in remote and off-grid regions. However, the variable and intermittent output of RE power can cause operational instability that affects membrane performance and system reliability. This study experimentally evaluated a flat sheet seawater RO membrane under variable conditions emulating a Photovoltaic (PV)-powered system over three days. Three scenarios were examined: (i) steady full-load operation representing PV with battery storage, (ii) variable operation representing sunny-day PV output, and (iii) highly variable operation representing cloudy-day PV output. A Variable Frequency Drive (VFD) regulated by an Arduino microcontroller adjusted high-pressure pump operation in real time to replicate power fluctuations without energy storage. Each scenario operated for eight hours per day and was tested with and without end-of-day rinsing. Under the highly variable cloudy-day scenario without rinsing, water permeability decreased by 37%, salt rejection decreased by 18%, and membrane resistance increased by 37%, indicating compaction and fouling effects. Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR) confirmed structural changes in membranes exposed to fluctuating conditions. These results highlight the need for improved operational strategies to protect membrane longevity in RE-powered desalination systems. Full article
Show Figures

Figure 1

18 pages, 657 KB  
Article
Transboundary and National Environmental Impacts of Seawater Desalination in Central Chile: An LCA-Based Analysis Across Energy Transition Scenarios
by Roberto Meza-Olivares, Adrián-Enrique Ortiz-Rojas, Camila Mery-Araya and Jaime Chacana-Olivares
Sustainability 2025, 17(24), 11178; https://doi.org/10.3390/su172411178 - 13 Dec 2025
Viewed by 378
Abstract
The environmental impact of seawater reverse osmosis desalination in central Chile was assessed using Life Cycle Assessment (LCA) with the EcoInvent database to address the region’s high water stress. The study analyzed the operational phase using 1 m3 of product water as [...] Read more.
The environmental impact of seawater reverse osmosis desalination in central Chile was assessed using Life Cycle Assessment (LCA) with the EcoInvent database to address the region’s high water stress. The study analyzed the operational phase using 1 m3 of product water as the functional unit, considering power demand, chemicals, and membranes across eight scenarios that varied energy matrix composition, membrane lifespan, water use, and seawater source. Eighteen environmental indicators were evaluated using the ReCiPe 2016 Midpoint (H) method. Results revealed that eight impact indicators were primarily national in origin, while ten exhibited transboundary characteristics. Power demand was the dominant contributor, exceeding 75% of impacts in 17 of 18 categories. A 25% power increase raised environmental impacts by an average of +21.5%, while the projected 2050 renewable energy scenario showed substantial reductions averaging −43.0%. This demonstrates that power consumption is the principal driver of environmental impacts, underscoring the importance of energy-efficiency measures and integration of Non-Conventional Renewable Energies (NCRE), particularly as fossil-based sources constitute the main contributors to environmental burdens at both national and transboundary scales. Full article
Show Figures

Graphical abstract

37 pages, 3987 KB  
Review
Hydrogen Production from Marine Renewable Energy: A Review
by Min Ning, Yuanxin Yao, Yuechen Zhan, Feng Pan, Yongjie Fu, Daoyi Chen, Mucong Zi and Mengran Shi
Energies 2025, 18(24), 6490; https://doi.org/10.3390/en18246490 - 11 Dec 2025
Viewed by 775
Abstract
Hydrogen energy, with its high calorific value and zero carbon emissions, serves as a crucial solution for addressing global energy and environmental challenges while achieving carbon neutrality. The ocean offers abundant renewable energy resources including offshore wind, solar, and marine energy, along with [...] Read more.
Hydrogen energy, with its high calorific value and zero carbon emissions, serves as a crucial solution for addressing global energy and environmental challenges while achieving carbon neutrality. The ocean offers abundant renewable energy resources including offshore wind, solar, and marine energy, along with vast seawater reserves, making it an ideal platform for green hydrogen production. This review systematically examines recent research progress in several key marine hydrogen production approaches: seawater electrolysis through both desalination-coupled and direct methods, photocatalytic seawater splitting, biological hydrogen production via algae and bacteria, and hybrid renewable energy systems, each demonstrating varying levels of technological development and industrial readiness. Despite significant advancements, challenges remain, such as reduced electrolysis efficiency caused by seawater impurities, high costs of catalysts and corrosion-resistant materials, and the intermittent nature of renewable energy sources. Future improvements require innovations in catalyst design, membrane technology, and system integration to enhance efficiency, durability, and economic feasibility. The review concludes by outlining the technological development directions for marine hydrogen energy, highlighting how hydrogen production from marine renewable energy can facilitate a sustainable blue economy through large-scale renewable energy storage and utilization. Full article
Show Figures

Figure 1

15 pages, 1659 KB  
Article
Simple Analytical Approximations for Donnan Ion Partitioning in Permeable Ion-Exchange Membranes Under Reverse Electrodialysis Conditions
by Antonio Ángel Moya
Membranes 2025, 15(12), 365; https://doi.org/10.3390/membranes15120365 - 1 Dec 2025
Viewed by 592
Abstract
Reverse electrodialysis (RED) is a relatively recent technology for renewable energy harvesting from the interaction of river and seawater. This paper revisits the thermodynamic equilibrium governing the ionic transport processes through ion-exchange membranes (IEMs) under RED conditions and theoretically derives approximate analytical expressions [...] Read more.
Reverse electrodialysis (RED) is a relatively recent technology for renewable energy harvesting from the interaction of river and seawater. This paper revisits the thermodynamic equilibrium governing the ionic transport processes through ion-exchange membranes (IEMs) under RED conditions and theoretically derives approximate analytical expressions for the ionic concentrations at the inner boundaries of a permeable membrane with well-stirred baths. The equation for the Donnan ion partitioning at the membrane–solution interface, which is based on the equality of the electrochemical potential in the two phases, is analysed for binary salts with symmetric (1:1) and asymmetric (2:1) electrolytes, by considering bathing solutions with the equivalent concentrations 0.02 M in the dilute bath, and 0.5, 1, and 1.5 M in the concentrate one. Simple approximate analytical expressions exhibiting the evolution with the membrane fixed-charge concentration of the counter-ionic concentrations at the inner boundaries of the membrane, the concentration gradients inside the membrane, the total Donnan electric potential, and the ionic partitioning coefficients have been derived. The approximate generalised expressions for a general z1:z2 binary electrolyte are also presented for the first time. Full article
Show Figures

Figure 1

15 pages, 1869 KB  
Article
Bioinspired Fractal Design of (Reverse) Electrodialysis Stacks
by Joost Veerman
Processes 2025, 13(11), 3720; https://doi.org/10.3390/pr13113720 - 18 Nov 2025
Viewed by 576
Abstract
This paper offers a perspective on the future of energy harvesting through reverse electrodialysis (RED), particularly in systems using seawater and river water as feed solutions. Although significant progress has been made in membrane development and in optimizing flow configurations—through the introduction of [...] Read more.
This paper offers a perspective on the future of energy harvesting through reverse electrodialysis (RED), particularly in systems using seawater and river water as feed solutions. Although significant progress has been made in membrane development and in optimizing flow configurations—through the introduction of alternative spacers and profiled membranes that enhance mixing and reduce polarization—the overall advancement of RED technology has stagnated for nearly a decade. A persistent negative scale factor continues to favor small-scale applications while limiting the feasibility of large-scale power generation. We propose that renewed progress may arise from fractal-inspired system architectures, in which the efficiency of small RED units is preserved and amplified through hierarchical organization and cooperative operation of many such elements. Two conceptual approaches are outlined. The first explores fractal geometries within the intermembrane compartments, focusing particularly on the river water compartment, which typically exhibits the highest ohmic resistance. The second envisions the modular aggregation of numerous cross-flow stacks into large-scale assemblies whose overall performance scales constructively with the number of units. Together, these ideas suggest a new design paradigm in which scalability and efficiency are reconciled through fractal system organization. Full article
Show Figures

Figure 1

16 pages, 1424 KB  
Article
A Levelized Cost of Energy (LCOE) Analysis of a Reverse Electrodialysis (RED) Plant in Tuxpan, Mexico
by Monserrat Ortiz, Graciela Rivera and Edgar Mendoza
Energies 2025, 18(20), 5540; https://doi.org/10.3390/en18205540 - 21 Oct 2025
Viewed by 937
Abstract
The transition towards low-carbon energy systems requires the adoption of emerging renewable technologies that can diversify energy matrices and reduce greenhouse gas emissions. The present study evaluates the technical and economic feasibility of implementing a Reverse Electrodialysis (RED) plant for Salinity Gradient Energy [...] Read more.
The transition towards low-carbon energy systems requires the adoption of emerging renewable technologies that can diversify energy matrices and reduce greenhouse gas emissions. The present study evaluates the technical and economic feasibility of implementing a Reverse Electrodialysis (RED) plant for Salinity Gradient Energy (SGE) generation on the coast of Tuxpan, Veracruz, Mexico. This area has significant freshwater and seawater resources but high fossil-fuel dependence. A conceptual design was developed considering local hydrological and salinity conditions, membrane performance, and pre-treatment requirements. The analysis applied Levelized Cost of Energy (LCOE) and Net Present Value (NPV) methodologies to six water source combinations. Results indicate that the most favorable scenario, combining effluents from the municipal wastewater treatment plant and the Tuxpan river mouth, achieved the highest potential energy yield. However, high capital (USD 1.54 million) and operational costs resulted in negative NPVs, limiting short-term economic viability. Environmental assessment suggests RED could improve water quality and reduce pollutant discharge, though potential construction and operational impacts require mitigation. Despite current cost barriers, RED integration in coastal regions with similar characteristics offers a promising pathway for clean energy generation and environmental restoration, particularly if coupled with cost-reduction strategies and policy incentives. Full article
(This article belongs to the Special Issue Studies in Renewable Energy Production and Distribution)
Show Figures

Figure 1

29 pages, 4970 KB  
Review
Metal–Organic Frameworks for Seawater Electrolysis and Hydrogen Production: A Review
by Ivelina Tsacheva, Mehmet Suha Yazici, Abdul Hanif Mahadi, Aytekin Uzunoglu and Dzhamal Uzun
Electrochem 2025, 6(4), 37; https://doi.org/10.3390/electrochem6040037 - 20 Oct 2025
Viewed by 2303
Abstract
Electrolysis utilizing renewable electricity is an environmentally friendly, non-polluting, and sustainable method of hydrogen production. Seawater is the most desirable and inexpensive electrolyte for this process to achieve commercial acceptance compared to competing hydrogen production technologies. We reviewed metal–organic frameworks as possible electrocatalysts [...] Read more.
Electrolysis utilizing renewable electricity is an environmentally friendly, non-polluting, and sustainable method of hydrogen production. Seawater is the most desirable and inexpensive electrolyte for this process to achieve commercial acceptance compared to competing hydrogen production technologies. We reviewed metal–organic frameworks as possible electrocatalysts for hydrogen production by seawater electrolysis. Metal–organic frameworks are interesting for seawater electrolysis due to their large surface area, tunable permeability, and ease of functional processing, which makes them extremely suitable for obtaining modifiable electrode structures. Here we discussed the development of metal–organic framework-based electrocatalysts as multifunctional materials with applications for alkaline, PEM, and direct seawater electrolysis for hydrogen production. Their advantages and disadvantages were examined in search of a pathway to a successful and sustainable technology for developing electrode materials to produce hydrogen from seawater. Full article
Show Figures

Graphical abstract

31 pages, 5934 KB  
Article
Techno-Economic Optimization of a Hybrid Renewable Energy System with Seawater-Based Pumped Hydro, Hydrogen, and Battery Storage for a Coastal Hotel
by Tuba Tezer
Processes 2025, 13(10), 3339; https://doi.org/10.3390/pr13103339 - 18 Oct 2025
Viewed by 1228
Abstract
This study presents the design and techno-economic optimization of a hybrid renewable energy system (HRES) for a coastal hotel in Manavgat, Türkiye. The system integrates photovoltaic (PV) panels, wind turbines (WT), pumped hydro storage (PHS), hydrogen storage (electrolyzer, tank, and fuel cell), batteries, [...] Read more.
This study presents the design and techno-economic optimization of a hybrid renewable energy system (HRES) for a coastal hotel in Manavgat, Türkiye. The system integrates photovoltaic (PV) panels, wind turbines (WT), pumped hydro storage (PHS), hydrogen storage (electrolyzer, tank, and fuel cell), batteries, a fuel cell-based combined heat and power (CHP) unit, and a boiler to meet both electrical and thermal demands. Within this broader optimization framework, six optimal configurations emerged, representing grid-connected and standalone operation modes. Optimization was performed in HOMER Pro to minimize net present cost (NPC) under strict reliability (0% unmet load) and renewable energy fraction (REF > 75%) constraints. The grid-connected PHS–PV–WT configuration achieved the lowest NPC ($1.33 million) and COE ($0.153/kWh), with a renewable fraction of ~96% and limited excess generation (~21%). Off-grid PHS-based and PHS–hydrogen configurations showed competitive performance with slightly higher costs. Hydrogen integration additionally provides complementary storage pathways, coordinated operation, waste heat utilization, and redundancy under component unavailability. Battery-only systems without PHS or hydrogen storage resulted in 37–39% higher capital costs and ~53% higher COE, confirming the economic advantage of long-duration PHS. Sensitivity analyses indicate that real discount rate variations notably affect NPC and COE, particularly for battery-only systems. Component cost sensitivity highlights PV and WT as dominant cost drivers, while PHS stabilizes system economics and the hydrogen subsystem contributes minimally due to its small scale. Overall, these results confirm the techno-economic and environmental benefits of combining seawater-based PHS with optional hydrogen and battery storage for sustainable hotel-scale applications. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

44 pages, 3067 KB  
Article
Optimization of Green Hydrogen Production via Direct Seawater Electrolysis Powered by Hybrid PV-Wind Energy: Response Surface Methodology
by Sandile Mtolo, Emmanuel Kweinor Tetteh, Nomcebo Happiness Mthombeni, Katleho Moloi and Sudesh Rathilal
Energies 2025, 18(19), 5328; https://doi.org/10.3390/en18195328 - 9 Oct 2025
Cited by 1 | Viewed by 1249
Abstract
This study explored the optimization of green hydrogen production via seawater electrolysis powered by a hybrid photovoltaic (PV)-wind system in KwaZulu-Natal, South Africa. A Box–Behnken Design (BBD), adapted from Response Surface Methodology (RSM), was utilized to address the synergistic effect of key operational [...] Read more.
This study explored the optimization of green hydrogen production via seawater electrolysis powered by a hybrid photovoltaic (PV)-wind system in KwaZulu-Natal, South Africa. A Box–Behnken Design (BBD), adapted from Response Surface Methodology (RSM), was utilized to address the synergistic effect of key operational factors on the integration of renewable energy for green hydrogen production and its economic viability. Addressing critical gaps in renewable energy integration, the research evaluated the feasibility of direct seawater electrolysis and hybrid renewable systems, alongside their techno-economic viability, to support South Africa’s transition from a coal-dependent energy system. Key variables, including electrolyzer efficiency, wind and PV capacity, and financial parameters, were analyzed to optimize performance metrics such as the Levelized Cost of Hydrogen (LCOH), Net Present Cost (NPC), and annual hydrogen production. At 95% confidence level with regression coefficient (R2 > 0.99) and statistical significance (p < 0.05), optimal conditions of electricity efficiency of 95%, a wind-turbine capacity of 4960 kW, a capital investment of $40,001, operational costs of $40,000 per year, a project lifetime of 29 years, a nominal discount rate of 8.9%, and a generic PV capacity of 29 kW resulted in a predictive LCOH of 0.124$/kg H2 with a yearly production of 355,071 kg. Within the scope of this study, with the goal of minimizing the cost of production, the lowest LCOH observed can be attributed to the architecture of the power ratios (Wind/PV cells) at high energy efficiency (95%) without the cost of desalination of the seawater, energy storage and transportation. Electrolyzer efficiency emerged as the most influential factor, while financial parameters significantly affected the cost-related responses. The findings underscore the technical and economic viability of hybrid renewable-powered seawater electrolysis as a sustainable pathway for South Africa’s transition away from coal-based energy systems. Full article
(This article belongs to the Special Issue Green Hydrogen Energy Production)
Show Figures

Figure 1

35 pages, 2479 KB  
Article
Cost–Benefit and Market Viability Analysis of Metals and Salts Recovery from SWRO Brine Compared with Terrestrial Mining and Traditional Chemical Production Methods
by Olufisayo E. Ojo and Olanrewaju A. Oludolapo
Water 2025, 17(19), 2855; https://doi.org/10.3390/w17192855 - 30 Sep 2025
Cited by 1 | Viewed by 5090
Abstract
Seawater reverse osmosis (SWRO) desalination generates a concentrated brine byproduct rich in dissolved salts and minerals. This study presents an extensive economic and technical analysis of recovering all major ions from SWRO brine, which includes Na, Cl, Mg, Ca, SO4, K, [...] Read more.
Seawater reverse osmosis (SWRO) desalination generates a concentrated brine byproduct rich in dissolved salts and minerals. This study presents an extensive economic and technical analysis of recovering all major ions from SWRO brine, which includes Na, Cl, Mg, Ca, SO4, K, Br, B, Li, Rb, and Sr in comparison to conventional mining and chemical production of these commodities. Data from recent literature and case studies are compiled to quantify the composition of a typical SWRO brine and the potential yield of valuable products. A life-cycle cost framework is applied, incorporating capital expenditure (CAPEX), operational expenditure (OPEX), and total water cost (TWC) impacts. A representative simulation for a large 100,000 m3/day SWRO plant shows that integrated “brine mining” systems could recover on the order of 3.8 million tons of salts per year. At optimistic recovery efficiencies, the gross annual revenue from products (NaCl, Mg(OH)2/MgO, CaCO3, KCl, Br2, Li2CO3, etc.) can reach a few hundred million USD. This revenue is comparable to or exceeds the added costs of recovery processes under favorable conditions, potentially offsetting desalination costs by USD 0.5/m3 or more. We compare these projections with the economics of obtaining the same materials through conventional mining and chemical processes worldwide. Major findings indicate that recovery of abundant low-value salts (especially NaCl) can supply bulk revenue to cover processing costs, while extraction of scarce high-value elements (Li, Rb, Sr, etc.) can provide significant additional profit if efficient separation is achieved. The energy requirements and unit costs for brine recovery are analyzed against those of terrestrial or conventional mining; in many cases, brine-derived production is competitive due to avoided raw material extraction and potential use of waste or renewable energy. CAPEX for adding mineral recovery to a desalination plant is significant but can be justified by revenue and by strategic benefits such as reduced brine disposal. Our analysis, drawing on global data and case studies (e.g., projects in Europe and the Middle East), suggests that metals and salts recovery from SWRO brine is technically feasible and, at sufficient scale, economically viable in many regions. We provide detailed comparisons of cost, yield, and market value for each target element, along with empirical models and formulas for profitability. The results offer a roadmap for integrating brine mining into desalination operations and highlight key factors such as commodity prices, scale economies, energy integration, and policy incentives that influence the competitiveness of brine recovery against traditional mining. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

30 pages, 10854 KB  
Article
Addressing Development Challenges of the Emerging REEFS Wave Energy Converter
by José P. P. G. Lopes de Almeida and Vinícius G. Machado
Inventions 2025, 10(5), 85; https://doi.org/10.3390/inventions10050085 - 26 Sep 2025
Cited by 1 | Viewed by 981
Abstract
This article addresses the multifaceted challenges inherent in the development of the novel REEFS (Renewable Electric Energy From Sea) wave energy converter (WEC). Building on the submerged pressure differential principle, it frames similar WECs before focusing on REEFS that combines renewable energy generation [...] Read more.
This article addresses the multifaceted challenges inherent in the development of the novel REEFS (Renewable Electric Energy From Sea) wave energy converter (WEC). Building on the submerged pressure differential principle, it frames similar WECs before focusing on REEFS that combines renewable energy generation with coastal protection, functioning as an artificial reef. The review follows chronological criteria, encompassing experimental proof-of-concept, small-scale laboratory modeling, simplified and advanced computational fluid dynamics (CFD) simulations, and the design of a forthcoming real-sea model deployment. Key milestones include the validation of a passive variable porosity system, demonstration of wave-to-wire energy conversion, and quantification of wave attenuation for coastal defense. Additionally, the study introduces a second patent-protected REEFS configuration, isolating internal components from seawater via an elastic enveloping membrane. Challenges related to scaling, numerical modeling, and funding are thoroughly examined. The results highlight the importance of the proof-of-concept as the keystone of the development process, underscore the relevance of mixed laboratory-computational approaches and emphasize the need for a balanced equilibrium between intellectual property safeguard and scientific publishing. The REEFS development trajectory offers interesting insights for researchers and developers navigating the complex innovation seas of emerging wave energy technologies. Full article
Show Figures

Figure 1

28 pages, 1213 KB  
Review
Mineral-Based Magnesium Extraction Technologies: Current and Future Practices
by Bijan Taheri and Faïçal Larachi
Processes 2025, 13(9), 2945; https://doi.org/10.3390/pr13092945 - 15 Sep 2025
Cited by 3 | Viewed by 4307
Abstract
Magnesium is a valuable industrial metal prized for its strength and reactivity. Traditionally, magnesium was extracted from seawater and brines. However, to meet the rising global demand, it is now primarily sourced from mineral deposits. This shift has sparked renewed interest in extracting [...] Read more.
Magnesium is a valuable industrial metal prized for its strength and reactivity. Traditionally, magnesium was extracted from seawater and brines. However, to meet the rising global demand, it is now primarily sourced from mineral deposits. This shift has sparked renewed interest in extracting magnesium from non-saline sources, including carbonates, silicates, halides, oxides, and hydroxides. This review examines the extraction technologies currently used for these mineral-based resources, including pyrometallurgical, hydrometallurgical, and electrometallurgical methods. Each method is assessed based on the reactions involved in the transformation, operational principles, efficiency, and energy requirements. The review emphasizes the importance of mineral pretreatment—thermal, mechanical, and chemical—in improving magnesium recovery, especially from refractory silicates. By summarizing recent advancements and process innovations, the review aims to inform future research and industrial practices, and support the development of sustainable, cost-effective, and scalable magnesium extraction strategies. Full article
(This article belongs to the Special Issue Recent Trends in Extractive Metallurgy)
Show Figures

Figure 1

17 pages, 2759 KB  
Article
Harnessing Renewable Energy Sources in CO2 Refrigeration for Eco-Friendly Fish Cold Storage
by Arian Semedo and João Garcia
Processes 2025, 13(9), 2847; https://doi.org/10.3390/pr13092847 - 5 Sep 2025
Viewed by 1278
Abstract
This study explores innovative strategic solutions within a sustainability framework, focusing on four viable options for an integrated refrigeration system designed for fish preservation in Tarrafal de Santiago, Cape Verde. Tarrafal is a coastal town on Santiago Island, characterized by its reliance on [...] Read more.
This study explores innovative strategic solutions within a sustainability framework, focusing on four viable options for an integrated refrigeration system designed for fish preservation in Tarrafal de Santiago, Cape Verde. Tarrafal is a coastal town on Santiago Island, characterized by its reliance on fishing activities and the challenges posed by limited energy infrastructure and local environmental vulnerabilities. The evaluated solutions range from grid-dependent systems to fully autonomous configurations powered by renewable energy sources, incorporating various refrigeration facility designs adapted to regional conditions. The primary objective is to assess the energy efficiency, economic viability, and environmental impact of these options within the specific geographic and socioeconomic context of Tarrafal de Santiago. Four approaches were analyzed: Strategy A involves two R134a refrigeration systems powered by conventional grid electricity; Strategy B employs a transcritical CO2 (R744) system combined with grid electricity; Strategy C integrates an R744 refrigeration system powered by autonomous renewable energy sources; and Strategy D utilizes R744 refrigeration combined with seawater-based heat exchange and autonomous renewable energy generation. The results indicate that Strategy D offers the greatest advantages, with emissions amounting to 15,882 kg of CO2 equivalent and a return on investment within five years. Autonomous electricity generation in Strategy D leads to a 95% reduction in CO2 emissions. Although Strategy C entails a higher initial cost, it proves financially viable and significantly enhances energy sustainability. Its autonomous energy production results in a reduction of 360,697 kg of CO2 emissions compared to conventional systems, highlighting the substantial environmental benefits of integrating local renewable energy sources into coastal communities such as Tarrafal de Santiago. Full article
Show Figures

Figure 1

31 pages, 946 KB  
Article
Performance Analysis of a Floating Seawater Desalination Structure Based on Heat Pipes
by Juan J. Vallejo Tejero, María Martínez Gómez, Francisco J. Muñoz Gutiérrez and Alejandro Rodríguez Gómez
Inventions 2025, 10(4), 72; https://doi.org/10.3390/inventions10040072 - 14 Aug 2025
Viewed by 1226
Abstract
This study presents a comprehensive numerical simulation and thermal performance analysis of a novel modular floating solar still system, featuring integrated heat-pipe vacuum tube collectors, designed for seawater desalination. This innovative system—subject of International Patent Application WO 2023/062261 A1—not only aims to enhance [...] Read more.
This study presents a comprehensive numerical simulation and thermal performance analysis of a novel modular floating solar still system, featuring integrated heat-pipe vacuum tube collectors, designed for seawater desalination. This innovative system—subject of International Patent Application WO 2023/062261 A1—not only aims to enhance efficiency and scalability beyond traditional solar stills, but also addresses the significant environmental challenge of concentrated brine discharge inherent in conventional desalination methods. The study evolved from an initial theoretical model to a rigorous dynamic thermal model, validated using real hourly meteorological data from Málaga, Andalusia, Spain. This modelling approach was developed to quantify heat transfer mechanisms and accurately predict system performance. The refined hourly simulation forecasts an annual freshwater production of approximately 174 L per unit. Notably, a preliminary economic assessment estimates the Cost of Produced Water per Litre (CPL) at 0.7509 EUR/litre, establishing a valuable baseline for future optimisation. These findings underscore the critical importance of dynamic hourly simulations for realistic performance prediction and validate the technical and preliminary economic feasibility of this novel approach. The system’s projected output, modular floating design, and significant environmental advantages position it as a promising and sustainable solution for freshwater production, particularly in coastal regions and sensitive marine ecosystems. This work provides a solid foundation for future experimental validation, cost optimisation, and scalable implementation of renewable energy-driven desalination. Full article
Show Figures

Figure 1

24 pages, 3062 KB  
Article
Green Hydrogen in Jordan: Stakeholder Perspectives on Technological, Infrastructure, and Economic Barriers
by Hussam J. Khasawneh, Rawan A. Maaitah and Ahmad AlShdaifat
Energies 2025, 18(15), 3929; https://doi.org/10.3390/en18153929 - 23 Jul 2025
Cited by 2 | Viewed by 2048
Abstract
Green hydrogen, produced via renewable-powered electrolysis, offers a promising path toward deep decarbonisation in energy systems. This study investigates the major technological, infrastructural, and economic challenges facing green hydrogen production in Jordan—a resource-constrained yet renewable-rich country. Key barriers were identified through a structured [...] Read more.
Green hydrogen, produced via renewable-powered electrolysis, offers a promising path toward deep decarbonisation in energy systems. This study investigates the major technological, infrastructural, and economic challenges facing green hydrogen production in Jordan—a resource-constrained yet renewable-rich country. Key barriers were identified through a structured survey of 52 national stakeholders, including water scarcity, low electrolysis efficiency, limited grid compatibility, and underdeveloped transport infrastructure. Respondents emphasised that overcoming these challenges requires investment in smart grid technologies, seawater desalination, advanced electrolysers, and policy instruments such as subsidies and public–private partnerships. These findings are consistent with global assessments, which recognise similar structural and financial obstacles in scaling up green hydrogen across emerging economies. Despite the constraints, over 50% of surveyed stakeholders expressed optimism about Jordan’s potential to develop a competitive green hydrogen sector, especially for industrial and power generation uses. This paper provides empirical, context-specific insights into the conditions required to scale green hydrogen in developing economies. It proposes an integrated roadmap focusing on infrastructure modernisation, targeted financial mechanisms, and enabling policy frameworks. Full article
(This article belongs to the Special Issue Green Hydrogen Energy Production)
Show Figures

Figure 1

Back to TopTop