Cost–Benefit and Market Viability Analysis of Metals and Salts Recovery from SWRO Brine Compared with Terrestrial Mining and Traditional Chemical Production Methods
Abstract
1. Introduction
2. Methods
2.1. Characterization of SWRO Brine Composition
2.2. Identification of Recovery Technologies
2.3. Economic Data Collection
2.4. Simulation of Integrated Brine Recovery in a Desalination Plant
2.4.1. Simulation and Economic Modeling
Mineral Mass Balance
- Mr = mass of recoverable mineral (kg)
- Cb = concentration of the target ion in brine (kg/m3)
- Vb = volume of brine treated (m3)
- ηr = recovery efficiency (dimensionless, 0–1)
Product Revenue Estimation
- R = total revenue from product sales (USD)
- Pi = market price of mineral i (USD/kg or USD/ton)
- Mr,i = mass of mineral i recovered (kg or tons)
- n = number of different minerals recovered
Operating Cost Calculation (OPEX)
Net Water Cost Evaluation
- = net water cost after byproduct credit (USD/m3)
- = revenue per m3 of brine treated (USD/m3)
Cost–Benefit Ratio (CBR)
- R = total revenue over period t (USD)
- = capital expenditure (USD)
- t = number of years of plant operation
Payback Period (PBP) Estimation
2.5. Cost–Benefit Analysis Framework (CAPEX/OPEX and LCC Modeling)
2.5.1. Capital Expenditures (CAPEX)
2.5.2. Operating Expenditures (OPEX)
2.5.3. Revenue and Credits
2.5.4. Net Present Value and Profitability Metrics
2.6. Costs and Revenues in the Model
2.7. Market Viability Analysis (Price Volatility, Market Size, Strategic Value)
Commodity Price Volatility
2.8. Life-Cycle Cost and Total Water Cost Analysis
2.9. Comparison with Terrestrial Mining
2.10. Case Study and Sensitivity Analysis
ION (Symbol) | Conc. in Brine (g/L) | Fraction of Total Salts (%) | Potential Products | Extraction Methods |
---|---|---|---|---|
Chloride (Cl−) | 35 | 55% | Chlorine gas (Cl2); HCl acid; NaCl salt | Electrochlorination; membrane electrolysis (chlor-alkali); crystallization (NaCl) |
Sodium (Na+) | 19 | 30% | Sodium chloride (NaCl); Caustic soda (NaOH); Soda ash (Na2CO3) | Crystallization (solar or forced); bipolar electrodialysis (NaOH/HCl from NaCl) |
Sulfate (SO42−) | 5 | 8% | Gypsum (CaSO4·2H2O); Epsom salt (MgSO4·7H2O) | Precipitation with Ca2+ (gypsum); fractional crystallization for salts |
Magnesium (Mg2+) | 2.5 | 4% | Magnesium hydroxide (Mg(OH)2)/oxide (MgO); MgCl2; Mg metal | Alkaline precipitation (using lime or dolime); thermal decomposition; electrolytic reduction |
Calcium (Ca2+) | 0.8 | 1.20% | Calcium carbonate (CaCO3); Gypsum (CaSO4·2H2O) | Carbonate precipitation (soda ash addition for CaCO3); selective crystallization (gypsum) |
Potassium (K+) | 0.8 | 1.10% | Potash (KCl salt or K2SO4 fertilizer) | Evaporative crystallization from bittern; ion exchange to concentrate K+ |
Bicarbonate (HCO3−) | 0.2 (as CO32−) | 0.30% | Calcium carbonate (CaCO3); CO2 (gas) | Lime dosing to precipitate CaCO3 (releasing CO2 gas) |
Bromide (Br−) | 0.12 | 0.20% | Bromine (Br2); Sodium bromide (NaBr) | Chemical oxidation (e.g., with chlorine) + air stripping of Br2; selective adsorption on resin |
Minor traces: Boron (as B(OH)3); Lithium (Li+); Rubidium (Rb+); Strontium (Sr2+) | ppm levels | <0.2% combined | Boric acid (H3BO3); Lithium carbonate (Li2CO3); Rb salts; SrCO3 | Specialized methods (boron-selective resin; lithium ion-sieves or selective adsorption precipitation for Sr) |
3. Results
3.1. Composition of Brine and Potential Recoverable Products
3.2. Simulation and Case Study: 100,000 m3/Day Desalination Plant with Brine Mining
3.2.1. Simulated Economic Outputs for Brine Recovery
3.2.2. CAPEX Derivation and Breakdown
3.3. Cost–Benefit Outcomes in Base and Variant Scenarios
3.4. Simulation Parameters
S/N | Parameter | Value | Unit/Remarks | References |
---|---|---|---|---|
1 | Plant capacity | 100,000 m3/day | Input design capacity | |
2 | Brine volume processed | 45,000 m3/day (assuming 45% recovery in SWRO) | Brine available for mineral recovery | |
3 | NaCl concentration in brine | 30 g/L | For salt recovery (NaCl) | [3] |
4 | Mg2+ concentration in brine | 1.3 g/L | For Mg(OH)â, precipitation | [3] |
5 | Br− concentration in brine | 65 mg/L | For bromine extraction | [3] |
6 | Average recovery efficiency (all minerals) | 50% | Applied uniformly across products | [32] |
7 | Energy consumption for SWRO only | 3.5 kWh/mÂ3 | Desalination energy baseline | [33,34] |
8 | Energy for brine processing (added) | 2.0 kWh/mÂ3 | Incremental energy for recovery | [33,34] |
9 | Reagent use (lime for Mg recovery) | 1.4 kg/mÂ3 | Reagent for Mg precipitation | [35] |
10 | Price of NaCl | USD 60/ton | Market average (bulk, industrial) | [36] |
11 | Price of MgO | USD 300/ton | Market average (high purity, refractories) | [37] |
12 | Price of Br2 | USD 2000/ton | Market average (industrial bromine) | [38] |
Product | Price (USD/ton) | Grade/Basis | Reference |
---|---|---|---|
Sodium Chloride (NaCl) | 60 | Bulk Industrial | [39] |
Magnesium Oxide (MgO) | 300 | High Purity (Refractories) | [37] |
Calcium Carbonate (CaCO3) | 30 | Industrial Grade | [4,26] |
Potassium Chloride (KCl) | 400 | Fertilizer Grade | [39] |
Bromine (Br2) | 2000 | Industrial Grade | [11,12,37] |
Lithium Carbonate (Li2CO3) | 4500 | Battery Grade | [15,40] |
3.5. Commodity Price Sensitivity Analysis
Sensitivity Scenario Assumptions
3.6. Recovery Efficiency and Yield
3.7. Energy Cost Sensitivity
3.8. Scale Effects
3.9. Cost Comparison: Brine Recovery Against Conventional Mining
3.9.1. Sodium Chloride (Salt)
3.9.2. Magnesium (Mg Compounds or Metal)
3.9.3. Calcium (CaCO3 and CaSO4)
3.9.4. Potassium (Potash Salts)
3.9.5. Bromine
3.9.6. Boron
3.9.7. Lithium
3.9.8. Rubidium and Cesium
3.9.9. Strontium
3.10. Regional Economics
3.11. Energy Use and Environmental Aspects
3.12. Life Cycle Cost Analysis and Total Water Cost Impact
4. Discussion
4.1. Economic Viability and Market Considerations
4.2. Sensitivity and Uncertainty
4.3. Risk Management
4.4. Case Studies and Real-World Progress
4.5. Toward Sustainable Desalination
5. Conclusions
5.1. Economic Viability and Cost Offset
5.2. Competition with Traditional Mining
5.3. Environmental and Strategic Benefits
5.4. Technical Feasibility and Completeness
5.5. Lifecycle and Sustainability
5.6. Challenges and Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Doyle, A. Too Much Salt: Water Desalination Plants Harm Environment. U.N. Reuters. Available online: https://www.reuters.com/article/world/too-much-salt-water-desalination-plants-harm-environment-un-idUSKCN1P81P4/#:~:text=Desalination%20plants%20pump%20out%20142,fresh%20water%2C%20the%20study%20said (accessed on 1 July 2025).
- Werber, J.R.; Osuji, C.O.; Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016, 1, 16018. [Google Scholar] [CrossRef]
- Jones, E.; Qadir, M.; van Vliet, M.T.; Smakhtin, V.; Kang, S.-M. The state of desalination and brine production: A global outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef]
- del Villar, A.; Melgarejo, J.; García-López, M.; Fernández-Aracil, P.; Montano, B. The economic value of the extracted elements from brine concentrates of Spanish desalination plants. Desalination 2023, 560, 116678. [Google Scholar] [CrossRef]
- Webb, P. Seawater Chemical Composition—Salinity Patterns. LibreTexts: Geosciences. April 2022. Available online: https://geo.libretexts.org/Bookshelves/Oceanography/Introduction_to_Oceanography_(Webb)/05%3A_Chemical_Oceanography/5.03%3A_Salinity_Patterns (accessed on 1 July 2025).
- Borriello, A.; Calvo Santos, A.; Codina Lopez, L.; Curtale, R.; Feyen, L.; Gaborieau, N.; Garaffa, R.; Ghiani, M.; Guillen, J.; McGovern, L.; et al. The EU Blue Economy Report 2024; Publications Office of the European Union: Brussels, Belgium, 2024. [Google Scholar]
- Sharkh, B.A.; Al-Amoudi, A.A.; Farooque, M.; Fellows, C.M.; Ihm, S.; Lee, S.; Li, S.; Voutchkov, N. Seawater desalination concentrate—A new frontier for sustainable mining of valuable minerals. npj Clean Water 2022, 5, 9. [Google Scholar] [CrossRef]
- ACS. Magnesium Extraction from Seawater—Dow Chemical’s WWII-Era Process. ACS Landmark Review. Available online: www.acs.org/education/whatischemistry/landmarks/magnesium-extraction.html#:~:text=Dow%E2%80%99s%20%20Freeport%20%20seawater%20%20magnesium%20plant,to%20WWII%2C%20the%20entire%20world (accessed on 1 July 2025).
- Ghaffour, N.; Missimer, T.M.; Amy, G.L. Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. Desalination 2013, 309, 197–207. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Haralambous, K.-J.; Loizidou, M. Desalination brine disposal methods and treatment technologies—A review. Sci. Total Environ. 2019, 693, 133545. [Google Scholar] [CrossRef]
- Mavukkandy, M.O.; Chabib, C.M.; Mustafa, I.; Al Ghaferi, A.; AlMarzooqi, F. Brine management in desalination industry: From waste to resources generation. Desalination 2019, 472, 114187. [Google Scholar] [CrossRef]
- U.S.G. Survey. Bromine Statistics and Information—Mineral Commodity Summaries 2024. 2024. Available online: https://pubs.usgs.gov/periodicals/mcs2024/mcs2024-bromine.pdf (accessed on 1 July 2025).
- U.S.G. Survey. Lithium Statistics and Information—Mineral Commodity Summaries 2025. January 2025. Available online: https://pubs.usgs.gov/periodicals/mcs2025/mcs2025-lithium.pdf (accessed on 1 July 2025).
- Al-Karaghouli, A.; Kazmerski, L.L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew. Sustain. Energy Rev. 2013, 24, 343–356. [Google Scholar] [CrossRef]
- Panagopoulos, A. Beneficiation of saline effluents from seawater desalination plants: Fostering the zero liquid discharge (ZLD) approach-a techno-economic evaluation. J. Environ. Chem. Eng. 2021, 9, 105338. [Google Scholar] [CrossRef]
- Ihsanullah, I.; Mustafa, J.; Zafar, A.M.; Obaid, M.; Atieh, M.A.; Ghaffour, N. Waste to wealth: A critical analysis of resource recovery from desalination brine. Desalination 2022, 543, 116093. [Google Scholar] [CrossRef]
- EVBoosters. U.S. Lithium Production and Market Trends in 2023. Available online: https://evboosters.com/ev-charging-news/u-s-lithium-production-and-market-trends-in-2023/#:~:text=U,decrease (accessed on 1 July 2025).
- Ojo, O.; Inambao, F.; Oluwafemi Ezekiel, I. Lifecycle Cost (LCC) Analysis and Evaluation of the Economics of Seawater Reverse Osmosis Desalination—Current and Future Challenges for Better Water Supply Sustainability. Corros. Prot. 2023, 51, 492–514. [Google Scholar]
- TRENDS. The Future of Desalination: Between Financing and Climate Challenges. Available online: https://trendsresearch.org/insight/the-future-of-desalination-between-financing-and-climate-challenges/?srsltid=AfmBOorFipCj6KaBwoPFWK9rvcp0tFswnLd3Y5rpkhdCSSdiWWBZFATz#:~:text=increased%20financial%20liquidity%20and%20maturing,used%2C%20whether%20conventional%20or%20renewable (accessed on 1 July 2025).
- Shahmansouri, A.; Min, J.; Jin, L.; Bellona, C. Feasibility of extracting valuable minerals from desalination concentrate: A comprehensive literature review. J. Clean. Prod. 2015, 100, 4–16. [Google Scholar] [CrossRef]
- Fastmarkets. Lithium Prices. Available online: https://www.fastmarkets.com/metals-and-mining/battery-raw-materials/lithium/lithium-prices/#:~:text=Track%20lithium%20commodity%20prices%20daily,throughout%202023%20and%20into%202024 (accessed on 1 July 2025).
- European Commission. CORDIS. Development of Radical Innovations to Recover Minerals and Metals from Seawater Desalination Brines. Available online: www.cordis.europa.eu/article/id/454291-multi-mineral-modular-brine-mining-process (accessed on 1 July 2025).
- Acciona. Selective Extraction of High-Value Elements from Seawater Brine (MINERALS Project). Available online: www.acciona.com/updates/articles/acciona-leads-project-extraction-highvalue-elements-seawater- (accessed on 1 July 2025).
- Fontana, D.; Forte, F.; Pietrantonio, M.; Pucciarmati, S.; Marcoaldi, C. Magnesium recovery from seawater desalination brines: A technical review. Environ. Dev. Sustain. 2023, 25, 13733–13754. [Google Scholar] [CrossRef]
- Yan, C.; Yi, W.; Ma, P.; Deng, X.; Li, F. Removal of boron from refined brine by using selective ion exchange resins. J. Hazard. Mater. 2008, 154, 564–571. [Google Scholar] [CrossRef]
- Panagopoulos, A. Techno-economic assessment and feasibility study of a zero liquid discharge (ZLD) desalination hybrid system in the Eastern Mediterranean. Chem. Eng. Process.-Process Intensif. 2022, 178, 109029. [Google Scholar] [CrossRef]
- U.S.G. Survey. Rubidium Statistics and Information—Mineral Commodity Summaries 2024. Available online: https://pubs.usgs.gov/periodicals/mcs2024/mcs2024-rubidium.pdf#:~:text=%5BPDF%5D%20rubidium%20,the%20prices%20for%2010 (accessed on 1 July 2025).
- U.S.G. Survey. Strontium Statistics and Information—Mineral Commodity Summaries 2024. Available online: https://pubs.usgs.gov/periodicals/mcs2024/mcs2024-strontium.pdf (accessed on 1 July 2025).
- Sosa-Fernandez, P.; Post, J.; Bruning, H.; Leermakers, F.; Rijnaarts, H. Electrodialysis-based desalination and reuse of sea and brackish polymer-flooding produced water. Desalination 2018, 447, 120–132. [Google Scholar] [CrossRef]
- Kumar, A.; Naidu, G.; Fukuda, H.; Du, F.; Vigneswaran, S.; Drioli, E.; Lienhard, J.H. Metals recovery from seawater desalination brines: Technologies, opportunities, and challenges. ACS Sustain. Chem. Eng. 2021, 9, 7704–7712. [Google Scholar] [CrossRef]
- Park, J.; Lee, S. Desalination Technology in South Korea: A Comprehensive Review of Technology Trends and Future Outlook. Membranes 2022, 12, 204. [Google Scholar] [CrossRef]
- Backer, S.N.; Bouaziz, I.; Kallayi, N.; Thomas, R.T.; Preethikumar, G.; Takriff, M.S.; Laoui, T.; Atieh, M.A. Brine solution: Current status, future management and technology development. Sustainability 2022, 14, 6752. [Google Scholar] [CrossRef]
- Gude, V.G. Desalination and water reuse to address global water scarcity. Rev. Environ. Sci. Bio/Technol. 2017, 16, 591–609. [Google Scholar] [CrossRef]
- Subramani, A.; Badruzzaman, M.; Oppenheimer, J.; Jacangelo, J.G. Energy minimization strategies and renewable energy utilization for desalination: A review. Water Res. 2011, 45, 1907–1920. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, W.; Zhang, Y.; Jegatheesan, V. A review of resource recovery from seawater desalination brine. Rev. Environ. Sci. Bio/Technol. 2021, 20, 333–361. [Google Scholar] [CrossRef]
- Dindorf, C.; Fortin, C.; Asleson, B.; Erdman, J. The Real Cost of Road Salt Use for Winter Maintenance in the Twin Cities Metropolitan Area; Minnesota Pollution Control Agency: St. Paul, MN, USA, 2014. [Google Scholar]
- Anfre. IM Prices. Asociación Nacional de Fabricantes e Instaladores de Productos Refractarios, Materiales y Servicios Afines. 2018. Available online: https://www.anfre.com/im-prices-march-2018/?utm_source (accessed on 1 July 2025).
- Procurement Resource. Bromine Price Trend and Forecast. Available online: https://www.procurementresource.com/resource-center/bromine-price-trends?utm_source (accessed on 1 July 2025).
- US Geological Survey. Mineral Commodity Summaries; US Geological Survey: Reston, VA, USA, 2021; Volume 200. [Google Scholar]
- Panagopoulos, A. Techno-economic assessment of zero liquid discharge (ZLD) systems for sustainable treatment, minimization and valorization of seawater brine. J. Environ. Manag. 2022, 306, 114488. [Google Scholar] [CrossRef]
- Gadalla, M.A.; Fatah, A.A.; Elazab, H.A. A novel renewable energy powered zero liquid discharge scheme for RO desalination applications. Case Stud. Chem. Environ. Eng. 2023, 8, 100407. [Google Scholar] [CrossRef]
- Yao, M.; Tijing, L.D.; Naidu, G.; Kim, S.-H.; Matsuyama, H.; Fane, A.G.; Shon, H.K. A review of membrane wettability for the treatment of saline water deploying membrane distillation. Desalination 2020, 479, 114312. [Google Scholar] [CrossRef]
- Morgante, C.; Moghadamfar, T.; Lopez, J.; Cortina, J.; Tamburini, A. Evaluation of enhanced nanofiltration membranes for improving magnesium recovery schemes from seawater/brine: Integrating experimental performing data with a techno-economic assessment. J. Environ. Manag. 2024, 360, 121192. [Google Scholar] [CrossRef]
- Dong, H.; Unluer, C.; Yang, E.-H.; Al-Tabbaa, A. Recovery of reactive MgO from reject brine via the addition of NaOH. Desalination 2018, 429, 88–95. [Google Scholar] [CrossRef]
- Bang, J.-H.; Chae, S.-C.; Song, K.; Lee, S.-W. Optimizing experimental parameters in sequential CO2 mineralization using seawater desalination brine. Desalination 2021, 519, 115309. [Google Scholar] [CrossRef]
- Government of Canada. Potash Facts. Available online: https://natural-resources.canada.ca/minerals-mining/mining-data-statistics-analysis/minerals-metals-facts/potash-facts (accessed on 1 July 2025).
- Xing, P.; Wang, C.; Chen, Y.; Ma, B. Rubidium extraction from mineral and brine resources: A review. Hydrometallurgy 2021, 203, 105644. [Google Scholar] [CrossRef]
- Huang, D.; Ma, G.; Lv, P.; Zhou, Q. Extraction of rubidium ion from brine solutions by dicyclohexano-18-crown-6/ionic liquid system. Pol. J. Chem. Technol. 2023, 25, 61–68. [Google Scholar] [CrossRef]
- Lee, C.-H.; Chen, W.-S.; Liu, F.-W. Resources recovery-rubidium recovery from desalination brine through hydrometallurgy techniques. Sustain. Environ. Res. 2024, 34, 7. [Google Scholar] [CrossRef]
- de Nicolás, A.P.; Molina-García, Á.; García-Bermejo, J.T.; Vera-García, F. Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives. Renew. Sustain. Energy Rev. 2023, 187, 113733. [Google Scholar] [CrossRef]
- Panagopoulos, A. Assessing the energy footprint of desalination technologies and minimal/zero liquid discharge (MLD/ZLD) systems for sustainable water protection via renewable energy integration. Energies 2025, 18, 962. [Google Scholar] [CrossRef]
- Molinari, R.; Avci, A.H.; Argurio, P.; Curcio, E.; Meca, S.; Casas, S.; Plà-Castellana, M.; Arpke, H.; Cortina, J.L. Can brine from seawater desalination plants Be a source of critical metals? ChemViews 2022. [Google Scholar] [CrossRef]
- Efrat, T. From Sustainable to Self-Sustained: The Future of Seawater Desalination Merges Sustainability with Profitability. IDE Technologies, Desalination, Sea Water. September 2023. Available online: https://ide-tech.com/en/blog/from-sustainable-to-self-sustained-the-future-of-seawater-desalination-merges-sustainability-with-profitability/#:~:text=Desalination%20Brine%20Mining%20,the%20desalination%20plant%20needs (accessed on 1 July 2025).
- US G.A.O. Science & Tech Spotlight: Critical Minerals from Seawater. Available online: https://www.gao.gov/products/gao-25-108484#:~:text=associated%20infrastructure%20may%20be%20subject,costs%20and%20mineral%20market%20values (accessed on 1 July 2025).
- SAMCO. Is It Possible to Extract Lithium from Seawater? Available online: https://samcotech.com/is-it-possible-to-extract-lithium-from-seawater/#:~:text=A%20large%20share%20of%20commercial,so%20using%20normal%C2%A0lithium%20extraction%20technologies (accessed on 1 July 2025).
S/N | Metric | Value |
---|---|---|
1 | Brine Volume (mA3/day) | 100,000 |
2 | NaCl Revenue (USD/mA3) | 0.7 |
3 | Mg(OH) Revenue (USD/mA3) | 0.5 |
4 | Br Revenue (USD/mA3) | 0.3 |
5 | Total Revenue (USD/mA3) | 1.5 |
6 | SWRO Cost (USD/mA3) | 0.8 |
7 | Brine Recovery Cost (USD/mA3) | 1 |
8 | Total OPEX (USD/mA3) | 1.8 |
9 | Net Water Cost (USD/mA3) | 0.3 |
10 | Capital Cost (USD million) | 150 |
11 | Payback Period (years) | 6.9 |
Cost Metric | SWRO Plant (No Recovery) | SWRO + Mineral Recovery |
---|---|---|
Capital Expenditure (CAPEX) | USD 100 million (desalination plant) | USD 150 million (desal + recovery systems) |
Operating Cost (OPEX) | USD 0.80 per m3 of water (energy, RO maintenance, etc.) | USD 1.80 per m3 of water (including ~USD 1.0 for brine processing) |
Product Revenue Credit | USD 0 per m3 (no byproducts) | USD 1.50 per m3 (from sale of salts/metals) |
Net Water Cost (per m3) | USD 0.80 per m3 | USD 0.30 per m3 (net) |
Total Water Cost (TWC) | USD 0.8/m3, which is within typical range USD 0.5–1.2 | Net USD 0.3/m3 (50–60% lower due to credits) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojo, O.E.; Oludolapo, O.A. Cost–Benefit and Market Viability Analysis of Metals and Salts Recovery from SWRO Brine Compared with Terrestrial Mining and Traditional Chemical Production Methods. Water 2025, 17, 2855. https://doi.org/10.3390/w17192855
Ojo OE, Oludolapo OA. Cost–Benefit and Market Viability Analysis of Metals and Salts Recovery from SWRO Brine Compared with Terrestrial Mining and Traditional Chemical Production Methods. Water. 2025; 17(19):2855. https://doi.org/10.3390/w17192855
Chicago/Turabian StyleOjo, Olufisayo E., and Olanrewaju A. Oludolapo. 2025. "Cost–Benefit and Market Viability Analysis of Metals and Salts Recovery from SWRO Brine Compared with Terrestrial Mining and Traditional Chemical Production Methods" Water 17, no. 19: 2855. https://doi.org/10.3390/w17192855
APA StyleOjo, O. E., & Oludolapo, O. A. (2025). Cost–Benefit and Market Viability Analysis of Metals and Salts Recovery from SWRO Brine Compared with Terrestrial Mining and Traditional Chemical Production Methods. Water, 17(19), 2855. https://doi.org/10.3390/w17192855