Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (249)

Search Parameters:
Keywords = seasonal permafrost

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1465 KB  
Review
Soil Amendments in Cold Regions: Applications, Challenges and Recommendations
by Zhenggong Miao, Ji Chen, Shouhong Zhang, Rui Shi, Tianchun Dong, Yaojun Zhao and Jingyi Zhao
Agriculture 2026, 16(3), 326; https://doi.org/10.3390/agriculture16030326 - 28 Jan 2026
Abstract
Soil amendments are widely applied to improve soil fertility and structure, yet their performance in cold regions is constrained by low accumulated temperatures, frequent freeze–thaw (FT) cycles, and permafrost sensitivity. In this review, ‘cold regions’ refers to high-latitude and high-altitude areas characterized by [...] Read more.
Soil amendments are widely applied to improve soil fertility and structure, yet their performance in cold regions is constrained by low accumulated temperatures, frequent freeze–thaw (FT) cycles, and permafrost sensitivity. In this review, ‘cold regions’ refers to high-latitude and high-altitude areas characterized by long winters and seasonally frozen soils and/or permafrost. We screened the peer-reviewed literature using keyword-based searches supplemented by backward/forward citation tracking; studies were included when they assessed amendment treatments in cold region soils and reported measurable changes in physical, chemical, biological, or environmental indicators. Across organic, inorganic, biological, synthetic, and composite amendments, the most consistent benefits are improved aggregation and nutrient retention, stronger pH buffering, and the reduced mobility of potentially toxic elements. However, effectiveness is often site-specific and may be short-lived, and unintended risks—including greenhouse gas emissions, contaminant accumulation, and thermal disturbances—can offset gains. Cold-specific constraints are dominated by limited thermal regimes, FT disturbance, and the trade-off between surface warming for production and permafrost protection. We therefore propose integrated countermeasures: prescription-based amendment portfolios tailored to soils and seasons; the prioritization and screening of local resources; coupling with engineering and land surface strategies; a minimal cold region MRV loop; and the explicit balancing of agronomic benefits with environmental safeguards. These insights provide actionable pathways for sustainable agriculture and ecological restoration in cold regions under climate change. Full article
(This article belongs to the Section Agricultural Soils)
16 pages, 1309 KB  
Article
The Influence of Vegetation and Snow Cover on Soil Greenhouse Gas Fluxes in the Permafrost Region of Northeast China
by Xiangwen Wu, Dalong Ma, Hongwei Ni and Shuying Zang
Atmosphere 2026, 17(1), 68; https://doi.org/10.3390/atmos17010068 - 7 Jan 2026
Viewed by 326
Abstract
Permafrost is an important carbon pool for terrestrial ecosystems and a significant source of atmospheric greenhouse gases, but the effects of ground vegetation and snow cover on permafrost greenhouse gas fluxes are still unclear. The soil–atmosphere exchange fluxes of greenhouse gases (mainly carbon [...] Read more.
Permafrost is an important carbon pool for terrestrial ecosystems and a significant source of atmospheric greenhouse gases, but the effects of ground vegetation and snow cover on permafrost greenhouse gas fluxes are still unclear. The soil–atmosphere exchange fluxes of greenhouse gases (mainly carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)) occupy key roles during the winter snow and the vegetation growing seasons. Here, a typical Larix gmelinii forest, located in the permafrost region of the Daxing’an Mountains, northeast China, was studied. Using the static chamber-gas chromatograph method, the relationship between soil greenhouse gas emissions, ground vegetation, and snow cover was investigated. We found that the CO2, CH4, and N2O cumulative fluxes from vegetative soils had increased by 19.5%, 37.5%, and 10.7%, compared with fluxes from areas where the ground vegetation had been removed. Snow cover increased soil CO2 cumulative flux by 53.1% and soil N2O cumulative flux by 28.6%, and soil CH4 cumulative flux decreased by 39.3%. Our results show that snow cover and ground vegetation removal reduce CO2 and N2O emissions from permafrost soils. Ground vegetation removal also increases the absorption of CH4 in permafrost soils, while snow cover removal promotes CH4 emissions. These findings confirm the effects of ground vegetation and snow cover on the transformation processes of greenhouse gases from forest ecosystems in permafrost regions. Therefore, this research provides scientific data support for the improvement of land surface climate models and the mitigation of climate change in cold regions. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

28 pages, 4038 KB  
Review
Are Nature-Based Climate Solutions in the Russian Arctic Feasible? A Review
by Sergey V. Dudov, Aleksandra V. Pryadilina, Anton S. Kumaniaev, Maxim V. Bocharnikov, Andrey D. Naumov, Sergey S. Chernianskii and Vladimir Y. Slobodyan
Sustainability 2025, 17(22), 10409; https://doi.org/10.3390/su172210409 - 20 Nov 2025
Viewed by 970
Abstract
Arctic ecosystems are highly vulnerable to ongoing and projected climate change. Rapid warming and growing anthropogenic pressure are driving a profound transformation of these regions, increasingly positioning the Arctic as a persistent, globally significant source of greenhouse gases. In the Russian Arctic—a critical [...] Read more.
Arctic ecosystems are highly vulnerable to ongoing and projected climate change. Rapid warming and growing anthropogenic pressure are driving a profound transformation of these regions, increasingly positioning the Arctic as a persistent, globally significant source of greenhouse gases. In the Russian Arctic—a critical zone for national economic growth and transport infrastructure—intensive development is replacing natural ecosystems with anthropogenically modified ones. In this context, Nature-based Solutions (NbS) represent a vital tool for climate change adaptation and mitigation. However, many NbS successfully applied globally have limited applicability in the Arctic due to its inaccessibility, short growing season, low temperatures, and permafrost. This review demonstrates the potential for adapting existing NbS and developing new ones tailored to the Arctic’s environmental and socioeconomic conditions. We analyze five key NbS pathways: forest management, sustainable grazing, rewilding, wetland conservation, and ecosystem restoration. Our findings indicate that protective and restorative measures are the most promising; these can deliver measurable benefits for both climate, biodiversity and traditional land-use. Combining NbS with biodiversity offset mechanisms appears optimal for preserving ecosystems while enhancing carbon sequestration in biomass and soil organic matter and reducing soil emissions. The study identifies critical knowledge gaps and proposes priority research areas to advance Arctic-specific NbS, emphasizing the need for multidisciplinary carbon cycle studies, integrated field and remote sensing data, and predictive modeling under various land-use scenarios. Full article
Show Figures

Figure 1

23 pages, 3612 KB  
Article
Soil Freeze–Thaw Disturbance Index and Its Indicative Significance on the Qinghai–Tibet Plateau
by Zongyi Jin, Linna Chai, Xiaoyan Li, Shaojie Zhao, Cunde Xiao and Shaomin Liu
Remote Sens. 2025, 17(22), 3682; https://doi.org/10.3390/rs17223682 - 10 Nov 2025
Viewed by 820
Abstract
The soil freeze–thaw process is a dominant disturbance in the seasonally frozen ground and the active layer of permafrost, which plays a crucial role in the surface energy balance, water cycle, and carbon exchange and has a pronounced influence on vegetation phenology. This [...] Read more.
The soil freeze–thaw process is a dominant disturbance in the seasonally frozen ground and the active layer of permafrost, which plays a crucial role in the surface energy balance, water cycle, and carbon exchange and has a pronounced influence on vegetation phenology. This study proposes a novel density-based Freeze–Thaw Disturbance Index (FTDI) based on the identification of the freeze–thaw disturbance region (FTDR) over the Qinghai–Tibet Plateau (QTP). FTDI is defined as an areal density metric based on geomorphic disturbances, i.e., the proportion of FTDRs within a given region, with higher values indicating greater areal densities of disturbance. As a measure of landform clustering, FTDI complements existing freeze–thaw process indicators and provides a means to assess the geomorphic impacts of climate-driven freeze–thaw changes during permafrost degradation. The main conclusions are as follows: the FTDR results that are identified by the random forest model are reliable and highly consistent with ground observations; the FTDRs cover 8.85% of the total area of the QTP, and mainly in the central and eastern regions, characterized by prolonged freezing durations and the average annual ground temperature (MAGT) is close to 0 °C, making the soil in these regions highly susceptible to warming-induced disturbances. Most of the plateau exhibits low or negligible FTDI values. As a geomorphic indicator, FTDI reflects the impact of potential freeze–thaw dynamic phase changes on the surface. Higher FTDI values indicate a greater likelihood of surface thawing processes triggered by rising temperatures, which impact surface processes. Regions with relatively high FTDI values often contain substantial amounts of organic carbon, and may experience delayed vegetation green-up despite general warming trends. This study introduces the FTDI derived from the FTDR as a novel index, offering fresh insights into the study of freeze–thaw processes in the context of climate change. Full article
Show Figures

Graphical abstract

21 pages, 4871 KB  
Article
Study on Spatio-Temporal Evolution Characteristics of Vegetation Carbon Sink in the Hexi Corridor, China
by Qiang Yang, Shaokun Jia, Chang Li, Wenkai Chen, Yutong Liang and Yuanyuan Chen
Land 2025, 14(11), 2215; https://doi.org/10.3390/land14112215 - 8 Nov 2025
Viewed by 491
Abstract
As a critical ecological barrier in the arid and semi-arid regions of northwestern China, the spatio-temporal evolution of vegetation carbon sequestration in the Hexi Corridor is of great significance to the ecological security of this region. Based on multi-source remote sensing and meteorological [...] Read more.
As a critical ecological barrier in the arid and semi-arid regions of northwestern China, the spatio-temporal evolution of vegetation carbon sequestration in the Hexi Corridor is of great significance to the ecological security of this region. Based on multi-source remote sensing and meteorological data, this study integrated second-order partial correlation analysis, ridge regression, and other methods to reveal the spatio-temporal evolution patterns of Gross Primary Productivity (GPP) in the Hexi Corridor from 2003 to 2022, as well as the response characteristics of GPP to air temperature, precipitation, and Vapor Pressure Deficit (VPD). From 2003 to 2022, GPP in the Hexi Corridor showed an overall increasing trend, the spatial distribution of GPP showed a pattern of being higher in the east and lower in the west. In the central oasis region, intensive irrigation agriculture supported consistently high GPP values with sustained growth. Elevated air temperatures extended the growing season, further promoting GPP growth. Due to irrigation and sufficient soil moisture, the contributions of precipitation and VPD were relatively low. In contrast, desert and high-altitude permafrost areas, constrained by water and heat limitations, exhibited consistently low GPP values, which further declined due to climate fluctuations. In desert regions, high air temperatures intensified evaporation, suppressing GPP, while precipitation and VPD played more significant roles. This study provides a detailed analysis of the spatio-temporal change patterns of GPP in the Hexi Corridor and its response to climatic factors. In the future, the Hexi Corridor needs to adopt dual approaches of natural restoration and precise regulation, coordinate ecological security, food security, and economic development, and provide a scientific paradigm for carbon neutrality and ecological barrier construction in arid areas of Northwest China. Full article
Show Figures

Figure 1

23 pages, 20901 KB  
Article
Application of the Red Edge Water Index for Extracting Thermokarst Lakes and Detecting Drainage Events on the Qinghai–Tibet Plateau
by Tiantian Li, Guanghao Zhou, Wenhui Liu, Hairui Liu, Jianqiang Zhang, Renjie He and Heming Yang
Atmosphere 2025, 16(11), 1269; https://doi.org/10.3390/atmos16111269 - 8 Nov 2025
Viewed by 442
Abstract
Thermokarst lakes play a crucial role in regulating hydrological, ecological, and biogeochemical processes in permafrost regions. However, due to the limited spatial resolution of earlier satellite imagery, small thermokarst lakes—highly sensitive to climate change and permafrost degradation—have often been overlooked, hindering accurate spatiotemporal [...] Read more.
Thermokarst lakes play a crucial role in regulating hydrological, ecological, and biogeochemical processes in permafrost regions. However, due to the limited spatial resolution of earlier satellite imagery, small thermokarst lakes—highly sensitive to climate change and permafrost degradation—have often been overlooked, hindering accurate spatiotemporal analyses. To address this limitation, five water indices—Modified Normalized Difference Water Index (MNDWI), Multi-Band Water Index (MBWI), Automated Water Extraction Index (AWEIsh and AWEInsh), and Red Edge Water Index (RWI)—were employed based on Sentinel-2 imagery from 2021 to extract thermokarst lakes in the Qinghai–Tibet Highway (QTH) region, China. Visual validation indicated that the Red Edge Water Index (RWI) yielded the best performance, with an error of only 10.21%, significantly lower than other indices (e.g., MNDWI: 41.36%; MBWI: 38.80%). Seasonal comparisons revealed that the applicability of different water indices varies, with autumn months (September to October) being the optimal period for lake extraction due to stable and unfrozen surface conditions. Using the RWI, 56 thermokarst lake drainage events were identified in the study area from 2016 to 2025 (as of September 2025), most occurring after 2019—likely associated with climatic factors—and small lakes were found to be more prone to drainage, accompanied by notable surface subsidence in drained regions. These findings are applicable across the Qinghai–Tibet Plateau (QTP) and provide a scientific basis for monitoring thermokarst lakes, delineating accurate lake boundaries, and exploring drainage mechanisms. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

22 pages, 4905 KB  
Article
Spatiotemporal Evolution and Driving Factors of Surface Temperature Changes Before and After Ecological Restoration of Mines in the Plateau Alpine Permafrost Regions Based on Landsat Images
by Lei Chen, Linxue Ju, Junxing Liu, Sen Jiao, Yi Zhang, Xianyang Yin and Caiya Yue
Earth 2025, 6(4), 141; https://doi.org/10.3390/earth6040141 - 6 Nov 2025
Viewed by 522
Abstract
Land surface temperature (LST) is a key indicator reflecting the ecological environmental disturbance caused by open-pit coal mining activities and determining the ecological status in alpine permafrost regions. Thus, it is crucial to study the spatiotemporal variations and influencing mechanisms of LST throughout [...] Read more.
Land surface temperature (LST) is a key indicator reflecting the ecological environmental disturbance caused by open-pit coal mining activities and determining the ecological status in alpine permafrost regions. Thus, it is crucial to study the spatiotemporal variations and influencing mechanisms of LST throughout all stages of small-scale mining–large-scale land surface damage–ecological restoration. Landsat imagery over nine periods was extracted from the growing seasons between 1990 and 2024. This study retrieved LST while simultaneously calculating albedo, soil moisture, and normalized difference vegetation index (NDVI) for each time phase. By integrating land use/cover (LUCC) data, the spatiotemporal evolution patterns of LST in the mining area throughout all stages were revealed. Based on the Geodetector method, an identification approach for factors influencing LST spatial differentiation was established. This approach was applicable to the entire process characterized by significant land type transitions. The results indicate that the spatiotemporal variations in LST were significantly correlated with land surface damage and restoration caused by human activities in the mining area. With the implementation of ecological restoration, high and ultra-high temperatures decreased by about 25.98% compared to the period when the surface damage was the most severe. The main influencing factors of LST differentiation were identified for different land use types, i.e., natural and restored meadows (soil wetness, albedo, and NDVI), mine pits (albedo, aspect, and elevation), and mining waste dumps (aspect and albedo before restoration; aspect and NDVI after restoration). This study can provide a reference for monitoring the ecological environment changes and ecological restoration of global coalfields with the same climatic characteristics. Full article
Show Figures

Figure 1

22 pages, 11631 KB  
Article
Local Surface Environmental Changes in a Basin in the Permafrost Region of Qinghai-Tibet Plateau Affected by Lake Outburst Event
by Saize Zhang, Shifen Wu, Zekun Ding, Fujun Niu and Yanhu Mu
Remote Sens. 2025, 17(19), 3392; https://doi.org/10.3390/rs17193392 - 9 Oct 2025
Viewed by 748
Abstract
The outburst of Zonag Lake in the permafrost region of the Qinghai-Tibet Plateau (QTP) has significantly altered the local environment, particularly affecting surface conditions and permafrost dynamics. By employing remote sensing and GIS tools, this study analyzed the spatial and temporal variations in [...] Read more.
The outburst of Zonag Lake in the permafrost region of the Qinghai-Tibet Plateau (QTP) has significantly altered the local environment, particularly affecting surface conditions and permafrost dynamics. By employing remote sensing and GIS tools, this study analyzed the spatial and temporal variations in surface environmental changes (surface temperature, vegetation, and dryness) within the Zonag–Salt Lake basin. The results indicate that the outburst caused higher surface temperatures and reduced vegetation cover around Zonag Lake. Analysis using the Temperature–Vegetation Dryness Index (TVDI) reveals higher dryness levels in downstream areas, especially from Kusai Lake to Salt Lake, compared to the upstream Zonag Lake. Temporal trends from 2000 to 2023 show a decrease in average Land Surface Temperature (LST) and an increase in the Normalized Difference Vegetation Index (NDVI). Geographical centroid shifts in environmental indices demonstrate migration patterns influenced by seasonal climate changes and the outburst event. Desertification around Zonag Lake accelerates permafrost development, while the wetting environment around Salt Lake promotes permafrost degradation. The Zonag Lake region is also an ecologically significant area, serving as a key calving ground for the Tibetan antelope (Pantholops hodgsonii), a nationally protected species. Thus, the environmental changes revealed in this study carry important implications for biodiversity conservation on the Tibetan Plateau. These findings highlight the profound impact of the Zonag Lake outburst on the surface environment and permafrost dynamics in the region, providing critical insights for understanding environmental responses to lake outbursts in high-altitude regions. Full article
(This article belongs to the Special Issue Remote Sensing of Water Dynamics in Permafrost Regions)
Show Figures

Figure 1

18 pages, 21941 KB  
Article
Phenological Shifts of Vegetation in Seasonally Frozen Ground and Permafrost Zones of the Qinghai–Tibet Plateau
by Tianyang Fan, Xinyan Zhong, Chong Wang, Lingyun Zhou and Zhinan Zhou
Remote Sens. 2025, 17(19), 3391; https://doi.org/10.3390/rs17193391 - 9 Oct 2025
Viewed by 827
Abstract
Vegetation phenology serves as a crucial indicator reflecting vegetation responses to the growth environment and climate change. Existing studies have demonstrated that in permafrost regions, the impact of frozen soil changes on vegetation phenology is more direct and pronounced compared to climate factors. [...] Read more.
Vegetation phenology serves as a crucial indicator reflecting vegetation responses to the growth environment and climate change. Existing studies have demonstrated that in permafrost regions, the impact of frozen soil changes on vegetation phenology is more direct and pronounced compared to climate factors. Amid the slowdown of global warming in the 21st century, permafrost dynamics continued to drive uncertain variations in vegetation phenological stages across the Qinghai–Tibet Plateau (QTP). Using MODIS Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) data during 2001–2024, this study derived vegetation phenological parameters and analyzed their spatiotemporal patterns on the QTP. The results indicate that overall, the start of growing season (SOS) was advanced, the end of growing season (EOS) was delayed, and the length of growing season (LOG) was extended throughout the study period. Additionally, divergent phenological trends were observed across three distinct phases, and regarding frozen soil types, vegetation phenology in permafrost and seasonally frozen ground regions exhibited distinct characteristics. From 2001 to 2024, both permafrost and seasonally frozen ground regions showed an advanced SOS and prolonged LOG, but significant differences were observed in EOS dynamics. For vegetation types, alpine meadow displayed advanced SOS and EOS, alongside an extended LOG. The alpine steppe exhibited advanced SOS and delayed EOS with an extended LOG. Alpine desert displayed SOS advancement and EOS delay, alongside LOG extension. These findings revealed variations in vegetation phenological changes under different frozen soil types and highlighted divergent responses of distinct frozen soil types to climate change. They suggested that the influence of frozen soil types should be considered when investigating vegetation phenological dynamics at the regional scale. Full article
Show Figures

Graphical abstract

23 pages, 11972 KB  
Article
The Variability in the Thermophysical Properties of Soils for Sustainability of the Industrial-Affected Zone of the Siberian Arctic
by Tatiana V. Ponomareva, Kirill Yu. Litvintsev, Konstantin A. Finnikov, Nikita D. Yakimov, Georgii E. Ponomarev and Evgenii I. Ponomarev
Sustainability 2025, 17(19), 8892; https://doi.org/10.3390/su17198892 - 6 Oct 2025
Viewed by 1081
Abstract
The sustainability of Arctic ecosystems that are extremely vulnerable is contingent upon the state of cryosoils. Understanding the principles of ecosystem stability in permafrost conditions, particularly under external natural or human-induced influences, necessitates an examination of the thermal and moisture regimes of the [...] Read more.
The sustainability of Arctic ecosystems that are extremely vulnerable is contingent upon the state of cryosoils. Understanding the principles of ecosystem stability in permafrost conditions, particularly under external natural or human-induced influences, necessitates an examination of the thermal and moisture regimes of the seasonally thawed soil layer. The study concentrated on the variability in the soil’s thermophysical properties in Central Siberia’s permafrost zone (the northern part of Krasnoyarsk Region, Taimyr, Russia). In the industrially affected area of interest, we evaluated and contrasted the differences in the thermophysical properties of soils between two opposing types of landscapes. On the one hand, these are soils that are characteristic of the natural landscape of flat shrub tundra, with a well-developed moss–lichen cover. An alternative is the soils in the landscape, which have exhibited significant degradation in the vegetation cover due to both natural and human-induced factors. The heat-insulating properties of background areas are controlled by the layer of moss and shrubs, while its disturbance determines the excessive heating of the soil at depth. In comparison to the background soil characteristics, degradation of on-ground vegetation causes the active layer depth of the soils to double and the temperature gradient to decrease. With respect to depth, we examine the changes in soil temperature and heat flow dynamics (q, W/m2). The ranges of thermal conductivity (λ, W/(m∙K)) were assessed using field-measured temperature profiles and heat flux values in the soil layers. The background soil was discovered to have lower thermal conductivity values, which are typical of organic matter, in comparison to the soil of the transformed landscape. Thermal diffusivity coefficients for soil layers were calculated using long-term temperature monitoring data. It is shown that it is possible to use an adjusted model of the thermal conductivity coefficient to reconstruct the dynamics of moisture content from temperature dynamics data. A satisfactory agreement is shown when the estimated (Wcalc, %) and observed (Wexp, %) moisture content values in the soil layer are compared. The findings will be employed to regulate the effects on landscapes in order to implement sustainable nature management in the region, thereby preventing the significant degradation of ecosystems and the concomitant risks to human well-being. Full article
(This article belongs to the Special Issue Land Use Strategies for Sustainable Development)
Show Figures

Figure 1

34 pages, 3879 KB  
Article
Carbon Stocks and Microbial Activity in the Low Arctic Tundra of the Yana–Indigirka Lowland, Russia
by Andrei G. Shepelev, Aytalina P. Efimova and Trofim C. Maximov
Land 2025, 14(9), 1839; https://doi.org/10.3390/land14091839 - 9 Sep 2025
Viewed by 1015
Abstract
Arctic warming is expected to alter permafrost landscapes and shift tundra ecosystems from greenhouse gas sinks to sources. We quantified plant biomass and necromass, carbon stocks, and microbial activity across five Low-Arctic tundra sites in the Yana–Indigirka Lowland (Chokurdakh, NE Siberia) during the [...] Read more.
Arctic warming is expected to alter permafrost landscapes and shift tundra ecosystems from greenhouse gas sinks to sources. We quantified plant biomass and necromass, carbon stocks, and microbial activity across five Low-Arctic tundra sites in the Yana–Indigirka Lowland (Chokurdakh, NE Siberia) during the 2024 growing season. Above- and below-ground plant biomass was measured by harvest adjacent to 50 × 50 m permanent plots; total C and N were determined by dry combustion on an elemental analyzer. Total organic carbon (TOC) stocks were calculated by horizon from TOC (%), bulk density, and thickness. Microbial basal respiration (BR), substrate-induced respiration (SIR), microbial biomass C (MBC), and the metabolic quotient (qCO2) were assessed in litter/organic (O), peat (T), and mineral gley horizons. Mean above-ground biomass was 15.8 ± 1.5 t ha−1; total living biomass averaged 43.1 ± 1.6 t ha−1. Below-ground biomass exceeded above-ground by 1.73×. Carbon in above-ground, below-ground, and necromass pools averaged 7.8, 12.2, and 12.5 t C ha−1, respectively. Surface organic horizons dominated ecosystem C storage: litter–peat stocks ranged from 234 to 449 t C ha−1, whereas 0–30 cm mineral layers held 18–50 t C ha−1; total (surface + 0–30 cm) stocks spanned 258–511 t C ha−1 among sites. Key contributors to biomass and C storage were deciduous shrubs (Salix pulchra, Betula nana), bryophytes (notably Aulacomnium palustre), and the graminoids (Eriophorum vaginatum). BR and MBC were highest in O and T horizons (BR up to 21.9 μg C g−1 h−1; MBC up to 70,628 μg C g−1) and declined sharply in mineral soil; qCO2 decreased from O to mineral horizons, indicating more efficient C use at depth. These in situ data show that Low-Arctic tundra C stocks are concentrated in surface organic layers while microbial communities remain responsive to warming, implying high sensitivity of carbon turnover to thaw and hydrologic change. The dataset supports model parameterization and remote sensing of shrub–tussock tundra carbon dynamics. Full article
Show Figures

Figure 1

19 pages, 20899 KB  
Article
Spatiotemporal Dynamics of Roadside Water Accumulation and Its Hydrothermal Impacts on Permafrost Stability: Integrating UAV and GPR
by Minghao Liu, Bingyan Li, Yanhu Mu, Jing Luo, Fei Yin and Fan Yu
Remote Sens. 2025, 17(17), 3110; https://doi.org/10.3390/rs17173110 - 6 Sep 2025
Viewed by 1243
Abstract
The Gonghe–Yushu Expressway (GYE) traverses the degrading permafrost region of the Qinghai–Xizang Plateau, where climate warming has resulted in widespread water ponding, posing significant engineering challenges. However, the spatiotemporal dynamics of this water accumulation and its impacts on permafrost embankment stability remain inadequately [...] Read more.
The Gonghe–Yushu Expressway (GYE) traverses the degrading permafrost region of the Qinghai–Xizang Plateau, where climate warming has resulted in widespread water ponding, posing significant engineering challenges. However, the spatiotemporal dynamics of this water accumulation and its impacts on permafrost embankment stability remain inadequately understood. This study integrates high-resolution unmanned aerial vehicle (UAV) remote sensing with ground-penetrating radar (GPR) to characterize the spatial patterns of water ponding and to quantify the spatial distribution, seasonal dynamics, and hydrothermal effects of roadside water on permafrost sections of the GYE. UAV-derived point cloud models, optical 3D models, and thermal infrared imagery reveal that approximately one-third of the 228 km study section of GYE exhibits water accumulation, predominantly occurring near the embankment toe in flat terrain or poorly drained areas. Seasonal monitoring showed a nearly 90% reduction in waterlogged areas from summer to winter, closely corresponding to climatic variations. Statistical analysis demonstrated significantly higher embankment distress rates in waterlogged areas (14.3%) compared to non-waterlogged areas (5.7%), indicating a strong correlation between surface water and accelerated permafrost degradation. Thermal analysis confirmed that waterlogged zones act as persistent heat sources, intensifying permafrost thaw and consequent embankment instability. GPR surveys identified notable subsurface disturbances beneath waterlogged sections, including a significant lowering of the permafrost table under the embankment and evidence of soil loosening due to hydrothermal erosion. These findings provide valuable insights into the spatiotemporal evolution of water accumulation along transportation corridors and inform the development of climate-adaptive strategies to mitigate water-induced risks in degrading permafrost regions. Full article
(This article belongs to the Special Issue Remote Sensing of Water Dynamics in Permafrost Regions)
Show Figures

Graphical abstract

27 pages, 28758 KB  
Article
Geomorphological Evidence of Ice Activity on Mars Surface at Mid-Latitudes
by Marco Moro, Adriano Nardi, Matteo Albano, Monica Pondrelli, Antonio Piersanti, Michele Saroli, Beatrice Baschetti, Erica Luzzi, Lucia Marinangeli and Nicola Bonora
Remote Sens. 2025, 17(17), 3072; https://doi.org/10.3390/rs17173072 - 3 Sep 2025
Viewed by 3837
Abstract
Extensive radar investigations, observed spectral signatures, geomorphological, and paleoclimate modeling support the presence of mid- to low-latitude ground ice on Mars. The presence of near-surface ice and glacial features has been proposed in Ismenius Lacus, but the ice composition and age remain unconstrained. [...] Read more.
Extensive radar investigations, observed spectral signatures, geomorphological, and paleoclimate modeling support the presence of mid- to low-latitude ground ice on Mars. The presence of near-surface ice and glacial features has been proposed in Ismenius Lacus, but the ice composition and age remain unconstrained. Our high-resolution stereoscopic analysis reveals distinctive landforms, including sharp-edged polyhedra, chevron patterns, and en-echelon open fractures, indicative of plastic glacial deformation. Current climatic conditions may support year-round ice stability, while sharp-edged polyhedra, open fractures, and the absence of superposed craters suggest active glaciation. The Ariguani delta system lacks fluvial signatures but aligns with glacial erosional and depositional processes. Unlike terrestrial glaciers, ice accumulation here is likely driven by escarpment-fed melt from seasonal permafrost thawing under lithostatic pressure, generating neo-glacial flows that sustain the glacial tongue. This mechanism can also explain regional features, including U-shaped valley subsidence, gravitational slides, flow of low-viscosity material lobes, and ring-mold craters. Thus, we propose sharp-edged polyhedra as diagnostic markers for identifying ongoing ice dynamics on Mars, enabling future automated detection of active glacial environments. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

28 pages, 4155 KB  
Article
Scale and Reasons for Changes in Chemical Composition of Waters During the Spring Freshet on Kolyma River, Arctic Siberia
by Vladimir Shulkin, Sergei Davydov, Anna Davydova, Tatiana Lutsenko and Eugeniy Elovskiy
Water 2025, 17(16), 2400; https://doi.org/10.3390/w17162400 - 14 Aug 2025
Viewed by 722
Abstract
The information on the seasonal variability of the chemical composition of the Arctic rivers is necessary for the proper assessment of the status of river runoff and the influence of anthropogenic and natural factors. Spring freshet is an especially important period for the [...] Read more.
The information on the seasonal variability of the chemical composition of the Arctic rivers is necessary for the proper assessment of the status of river runoff and the influence of anthropogenic and natural factors. Spring freshet is an especially important period for the Arctic rivers with a sharp maximum of water discharge. The Kolyma River is the least studied large river with a basin located solely in the permafrost zone. The change in the concentration of dissolved organic carbon (DOC), major, trace, and rare earth (RE) elements was studied at the peak and waning of the spring freshet of 2024 in the lower reaches of the Kolyma River. The concentration of elements was determined in filtrates <0.45 μm and in suspended solids > 0.45 μm. The content of coarse colloids (0.05–0.45 μm) was estimated by the intensity of dynamic light scattering (DLS). It was shown that the freshet peak is characterized by a minimal specific conductivity, concentration of major cations, and chemical elements migrating mainly in solution (Li, Sr, and Ba). During the freshet decline, the concentration of these elements increases with dynamics depending on the water exchange. The waters from the Kolyma River main stream have a maximal content of coarse colloids and concentration of <0.45 μm forms of hydrolysates (Al, Ti, Fe, Mn, REEs, Zr, Y, Sc, and Th), DOC, P, and heavy metals (Cu, Ni, Cd, and Co) at the freshet peak. A decrease of 8–10 times for hydrolysates and coarse colloids (0.05–0.45 μm) and of 3–6 times for heavy metals was observed at the freshet waning during the first half of June. This indicates a large-scale accumulation of easy soluble forms of hydrolysates, DOC, and heavy metals in the seasonal thawing topsoil layer on the catchment upstream in the previous summer, with a flush out of these elements at the freshet peak of the current year. In the large floodplain watercourse Panteleikha River, the change in concentration of major cations and REEs, Zr, Y, Sc, and Th at the freshet is less accented compared with the Kolyma River main stream due to a slower water exchange. Yet, <0.45 μm forms of Fe, Mn, Co, As, V, and P show an increase of 4–6 times in the Panteleikha River in the second half of June compared with the freshet peak, which indicates an additional input of these elements from the thawing floodplain landscapes and bottom sediments of floodplain watercourses. The concentration of the majority of chemical elements in suspended matter (>0.45 μm) of the Kolyma River is rather stable during the high-water period. The relative stability in the chemical composition of the suspended solids means that the content of the suspension and not its composition is the key to the share of dissolved and suspended forms of chemical elements in the Kolyma River runoff. Full article
Show Figures

Figure 1

16 pages, 3385 KB  
Article
The Influence of Seasonal Freeze–Thaw in Northeast China on Greenhouse Gas Emissions and Microbial Community Structure in Peat Soil
by Yanru Gong, Tao Yang, Jiawen Yan and Xiaofei Yu
Water 2025, 17(16), 2395; https://doi.org/10.3390/w17162395 - 13 Aug 2025
Cited by 1 | Viewed by 1223
Abstract
Peat soil is a significant global carbon storage pool, accounting for one-third of the global soil carbon pool. Its greenhouse gas emissions have a significant impact on climate change. Seasonal freeze–thaw cycles are common natural phenomena in high-latitude and high-altitude regions. They significantly [...] Read more.
Peat soil is a significant global carbon storage pool, accounting for one-third of the global soil carbon pool. Its greenhouse gas emissions have a significant impact on climate change. Seasonal freeze–thaw cycles are common natural phenomena in high-latitude and high-altitude regions. They significantly affect the mineralization of soil organic carbon and greenhouse gas emissions by altering the physical structure, moisture conditions, and microbial communities of the soil. In this study, through the construction of an indoor simulation experiment of the typical freeze–thaw cycle models in spring and autumn in the Greater Xing‘an Range region of China and the Jinchuan peatland of Jilin Longwan National Nature Reserve, the physicochemical properties, greenhouse gas emission fluxes, microbial community structure characteristics, and key metabolic pathways of peat soils in permafrost and seasonally frozen ground areas were determined. The characteristics of greenhouse gas emissions and their influencing mechanisms for peat soil in northern regions under different freeze–thaw conditions were explored. The research found that the freeze–thaw cycle significantly changed the chemical properties of peat soil and significantly affected the emission rates of CO2, CH4, and N2O. It also clarified the interaction relationship between soil’s physicochemical properties (such as dissolved organic carbon (DOC), dissolved organic nitrogen (DON), ammonium nitrogen (NH4+), soil organic carbon (SOC), etc.) and the structure and metabolic function of microbial communities. It is of great significance for accurately assessing the role of peatlands in the global carbon cycle and formulating effective ecological protection and management strategies. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

Back to TopTop