Soil Freeze–Thaw Disturbance Index and Its Indicative Significance on the Qinghai–Tibet Plateau
Highlights
- A density-based Freeze–Thaw Disturbance Index (FTDI) was proposed to quantify the spatial clustering of disturbance features.
- Higher FTDI values indicate a greater likelihood of surface thawing processes triggered by rising temperatures.
- Regions with relatively high FTDI values often contain substantial amounts of organic carbon and may experience delayed vegetation green-up despite general warming trends.
- FTDI reflects the impact of potential freeze–thaw dynamic phase changes on the geomorphology and offers a new perspective for monitoring permafrost degradation.
Abstract
1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. Data Resources
2.2.1. Satellite Imagery
2.2.2. Validation Data
- UAV image data
- 2.
- Hillslope thermokarst dataset
2.2.3. Auxiliary Data
3. Methods
3.1. Classification of FTDR and Non-FTDR Areas
3.1.1. Preparing the FTDR and Non-FTDR Samples
3.1.2. Random Forest Model and the Feed-In Classification Features
3.1.3. Classification Accuracy Assessment of the RF-Derived FTDR
3.2. Calculation of the FTDI
3.3. Calculation of the Freeze–Thaw Factors
4. Results
4.1. Model Performance and Classification Accuracy
4.2. RF-Derived FTDR
4.3. The FTDR-Derived FTDI
5. Discussion
5.1. Characterizing the FTDR and FTDI on the Basis of Freeze–Thaw Factors
5.2. The Indicative Significance of FTDI for SOC Stocks and Vegetation Phenology
5.2.1. SOC Stocks
5.2.2. Vegetation Phenology
5.3. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, M.; Yao, T.; Gou, X.; Hirose, N.; Fujii, H.Y.; Hao, L.; Levia, D.F. Diurnal Freeze/Thaw Cycles of the Ground Surface on the Tibetan Plateau. Chin. Sci. Bull. 2007, 52, 136–139. [Google Scholar] [CrossRef]
- Langer, M.; Westermann, S.; Muster, S.; Piel, K.; Boike, J. The Surface Energy Balance of a Polygonal Tundra Site in Northern Siberia—Part 2: Winter. Cryosphere 2011, 5, 509–524. [Google Scholar] [CrossRef]
- Rawlins, M.A.; Nicolsky, D.J.; McDonald, K.C.; Romanovsky, V.E. Simulating Soil Freeze/Thaw Dynamics with an Improved pan--Arctic Water Balance Model. J. Adv. Model. Earth Syst. 2013, 5, 659–675. [Google Scholar] [CrossRef]
- Zheng, G.; Yang, Y.; Yang, D.; Dafflon, B.; Lei, H.; Yang, H. Satellite-Based Simulation of Soil Freezing/Thawing Processes in the Northeast Tibetan Plateau. Remote Sens. Environ. 2019, 231, 111269. [Google Scholar] [CrossRef]
- Jiang, H.; Yi, Y.; Zhang, W.; Yang, K.; Chen, D. Sensitivity of Soil Freeze/Thaw Dynamics to Environmental Conditions at Different Spatial Scales in the Central Tibetan Plateau. Sci. Total Environ. 2020, 734, 139261. [Google Scholar] [CrossRef]
- Chen, X.; Jeong, S.; Park, C.-E.; Park, H.; Joo, J.; Chang, D.; Yun, J. Different Responses of Surface Freeze and Thaw Phenology Changes to Warming among Arctic Permafrost Types. Remote Sens. Environ. 2022, 272, 112956. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Y.; Sun, Y.; Niu, F.; GuoyuLi; Gao, Z. Creep Characteristics and Process Analyses of a Thaw Slump in the Permafrost Region of the Qinghai-Tibet Plateau, China. Geomorphology 2017, 293, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Z.; Sun, Y. Effects of a Thaw Slump on Active Layer in Permafrost Regions with the Comparison of Effects of Thermokarst Lakes on the Qinghai–Tibet Plateau, China. Geoderma 2018, 314, 47–57. [Google Scholar] [CrossRef]
- Lewkowicz, A.G.; Way, R.G. Extremes of Summer Climate Trigger Thousands of Thermokarst Landslides in a High Arctic Environment. Nat. Commun. 2019, 10, 1329. [Google Scholar] [CrossRef]
- Mu, C.; Shang, J.; Zhang, T.; Fan, C.; Wang, S.; Peng, X.; Zhong, W.; Zhang, F.; Mu, M.; Jia, L. Acceleration of Thaw Slump during 1997–2017 in the Qilian Mountains of the Northern Qinghai-Tibetan Plateau. Landslides 2020, 17, 1051–1062. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate Change and the Permafrost Carbon Feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Abbott, B.W.; Jones, M.C.; Walter Anthony, K.; Olefeldt, D.; Schuur, E.A.G.; Koven, C.; McGuire, A.D.; Grosse, G.; Kuhry, P.; et al. Permafrost Collapse Is Accelerating Carbon Release. Nature 2019, 569, 32–34. [Google Scholar] [CrossRef]
- Mu, C.; Abbott, B.W.; Norris, A.J.; Mu, M.; Fan, C.; Chen, X.; Jia, L.; Yang, R.; Zhang, T.; Wang, K.; et al. The Status and Stability of Permafrost Carbon on the Tibetan Plateau. Earth-Sci. Rev. 2020, 211, 103433. [Google Scholar] [CrossRef]
- Jin, X.-Y.; Jin, H.-J.; Iwahana, G.; Marchenko, S.S.; Luo, D.-L.; Li, X.-Y.; Liang, S.-H. Impacts of Climate-Induced Permafrost Degradation on Vegetation: A Review. Adv. Clim. Change Res. 2021, 12, 29–47. [Google Scholar] [CrossRef]
- Jin, X.; Jin, H.; Luo, D.; Sheng, Y.; Wu, Q.; Wu, J.; Wang, W.; Huang, S.; Li, X.; Liang, S.; et al. Impacts of Permafrost Degradation on Hydrology and Vegetation in the Source Area of the Yellow River on Northeastern Qinghai-Tibet Plateau, Southwest China. Front. Earth Sci. 2022, 10, 845824. [Google Scholar] [CrossRef]
- Olefeldt, D.; Goswami, S.; Grosse, G.; Hayes, D.; Hugelius, G.; Kuhry, P.; McGuire, A.D.; Romanovsky, V.E.; Sannel, A.B.K.; Schuur, E.A.G.; et al. Circumpolar Distribution and Carbon Storage of Thermokarst Landscapes. Nat. Commun. 2016, 7, 13043. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.W.; Jones, J.B. Permafrost Collapse Alters Soil Carbon Stocks, Respiration, CH4, and N2O in Upland Tundra. Glob. Change Biol. 2015, 21, 4570–4587. [Google Scholar] [CrossRef] [PubMed]
- Mu, C.; Zhang, T.; Zhang, X.; Li, L.; Guo, H.; Zhao, Q.; Cao, L.; Wu, Q.; Cheng, G. Carbon Loss and Chemical Changes from Permafrost Collapse in the Northern Tibetan Plateau. J. Geophys. Res. Biogeosciences 2016, 121, 1781–1791. [Google Scholar] [CrossRef]
- Liu, F.; Chen, L.; Abbott, B.W.; Xu, Y.; Yang, G.; Kou, D.; Qin, S.; Strauss, J.; Wang, Y.; Zhang, B.; et al. Reduced Quantity and Quality of SOM along a Thaw Sequence on the Tibetan Plateau. Environ. Res. Lett. 2018, 13, 104017. [Google Scholar] [CrossRef]
- Wang, T.; Yang, D.; Yang, Y.; Piao, S.; Li, X.; Cheng, G.; Fu, B. Permafrost Thawing Puts the Frozen Carbon at Risk over the Tibetan Plateau. Sci. Adv. 2020, 6, eaaz3513. [Google Scholar] [CrossRef]
- Jones, B.M.; Grosse, G.; Arp, C.D.; Jones, M.C.; Walter Anthony, K.M.; Romanovsky, V.E. Modern Thermokarst Lake Dynamics in the Continuous Permafrost Zone, Northern Seward Peninsula, Alaska. J. Geophys. Res. 2011, 116, G00M03. [Google Scholar] [CrossRef]
- Karlsson, J.M.; Lyon, S.W.; Destouni, G. Thermokarst Lake, Hydrological Flow and Water Balance Indicators of Permafrost Change in Western Siberia. J. Hydrol. 2012, 464–465, 459–466. [Google Scholar] [CrossRef]
- Olthof, I.; Fraser, R.H.; Schmitt, C. Landsat-Based Mapping of Thermokarst Lake Dynamics on the Tuktoyaktuk Coastal Plain, Northwest Territories, Canada since 1985. Remote Sens. Environ. 2015, 168, 194–204. [Google Scholar] [CrossRef]
- Armstrong, L.; Lacelle, D.; Fraser, R.H.; Kokelj, S.; Knudby, A. Thaw Slump Activity Measured Using Stationary Cameras in Time-Lapse and Structure-from-Motion Photogrammetry. Arct. Sci. 2018, 4, 827–845. [Google Scholar] [CrossRef]
- Balser, A.W.; Jones, J.B.; Gens, R. Timing of Retrogressive Thaw Slump Initiation in the Noatak Basin, Northwest Alaska, USA. J. Geophys. Res. Earth Surf. 2014, 119, 1106–1120. [Google Scholar] [CrossRef]
- Lantuit, H.; Pollard, W.H. Fifty Years of Coastal Erosion and Retrogressive Thaw Slump Activity on Herschel Island, Southern Beaufort Sea, Yukon Territory, Canada. Geomorphology 2008, 95, 84–102. [Google Scholar] [CrossRef]
- Lantz, T.C.; Kokelj, S.V. Increasing Rates of Retrogressive Thaw Slump Activity in the Mackenzie Delta Region, N.W.T., Canada. Geophys. Res. Lett. 2008, 35, L06502. [Google Scholar] [CrossRef]
- Swanson, D.K.; Nolan, M. Growth of Retrogressive Thaw Slumps in the Noatak Valley, Alaska, 2010–2016, Measured by Airborne Photogrammetry. Remote Sens. 2018, 10, 983. [Google Scholar] [CrossRef]
- Brooker, A.; Fraser, R.H.; Olthof, I.; Kokelj, S.V.; Lacelle, D. Mapping the Activity and Evolution of Retrogressive Thaw Slumps by Tasselled Cap Trend Analysis of a Landsat Satellite Image Stack. Permafr. Periglac. Process. 2014, 25, 243–256. [Google Scholar] [CrossRef]
- Lara, M.J.; Chipman, M.L.; Hu, F.S. Automated Detection of Thermoerosion in Permafrost Ecosystems Using Temporally Dense Landsat Image Stacks. Remote Sens. Environ. 2019, 221, 462–473. [Google Scholar] [CrossRef]
- Runge, A.; Nitze, I.; Grosse, G. Remote Sensing Annual Dynamics of Rapid Permafrost Thaw Disturbances with LandTrendr. Remote Sens. Environ. 2022, 268, 112752. [Google Scholar] [CrossRef]
- Zou, D.; Zhao, L.; Sheng, Y.; Chen, J.; Hu, G.; Wu, T.; Wu, J.; Xie, C.; Wu, X.; Pang, Q.; et al. A New Map of Permafrost Distribution on the Tibetan Plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar] [CrossRef]
- Shading, W. Thaw Slumping in Fenghuo Mountain Area Along Qinghai-Xizang Highway. J. Glaciol. Geocryol. 1990, 12, 63–70. [Google Scholar]
- Luo, J.; Niu, F.; Lin, Z.; Liu, M.; Yin, G. Recent Acceleration of Thaw Slumping in Permafrost Terrain of Qinghai-Tibet Plateau: An Example from the Beiluhe Region. Geomorphology 2019, 341, 79–85. [Google Scholar] [CrossRef]
- Huang, L.; Liu, L.; Jiang, L.; Zhang, T. Automatic Mapping of Thermokarst Landforms from Remote Sensing Images Using Deep Learning: A Case Study in the Northeastern Tibetan Plateau. Remote Sens. 2018, 10, 2067. [Google Scholar] [CrossRef]
- Huang, L.; Liu, L.; Luo, J.; Lin, Z.; Niu, F. Automatically Quantifying Evolution of Retrogressive Thaw Slumps in Beiluhe (Tibetan Plateau) from Multi-Temporal CubeSat Images. Int. J. Appl. Earth Obs. Geoinformation 2021, 102, 102399. [Google Scholar] [CrossRef]
- Huang, L.; Luo, J.; Lin, Z.; Niu, F.; Liu, L. Using Deep Learning to Map Retrogressive Thaw Slumps in the Beiluhe Region (Tibetan Plateau) from CubeSat Images. Remote Sens. Environ. 2020, 237, 111534. [Google Scholar] [CrossRef]
- Wei, Z.; Du, Z.; Wang, L.; Lin, J.; Feng, Y.; Xu, Q.; Xiao, C. Sentinel—Based Inventory of Thermokarst Lakes and Ponds Across Permafrost Landscapes on the Qinghai—Tibet Plateau. Earth Space Sci. 2021, 8, e2021EA001950. [Google Scholar] [CrossRef]
- Luo, J.; Niu, F.; Lin, Z.; Liu, M.; Yin, G.; Gao, Z. Inventory and Frequency of Retrogressive Thaw Slumps in Permafrost Region of the Qinghai–Tibet Plateau. Geophys. Res. Lett. 2022, 49, e2022GL099829. [Google Scholar] [CrossRef]
- Peng, X.; Yang, G.; Frauenfeld, O.W.; Li, X.; Tian, W.; Chen, G.; Huang, Y.; Wei, G.; Luo, J.; Mu, C.; et al. The First Hillslope Thermokarst Inventory for the Permafrost Region of the Qilian Mountains. Earth Syst. Sci. Data 2024, 16, 2033–2045. [Google Scholar] [CrossRef]
- Deng, Y.; Li, X.; Shi, F.; Chai, L.; Zhao, S.; Ding, M.; Liao, Q. Nonlinear Effects of Thermokarst Lakes on Peripheral Vegetation Greenness across the Qinghai-Tibet Plateau Using Stable Isotopes and Satellite Detection. Remote Sens. Environ. 2022, 280, 113215. [Google Scholar] [CrossRef]
- Ding, J.; Chen, L.; Ji, C.; Hugelius, G.; Li, Y.; Liu, L.; Qin, S.; Zhang, B.; Yang, G.; Li, F.; et al. Decadal Soil Carbon Accumulation across Tibetan Permafrost Regions. Nat. Geosci. 2017, 10, 420–424. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Cheng, G.; Nan, Z.; Che, J.; Sheng, Y.; Wu, Q.; Jin, H.; Luo, D.; Tang, Z.; et al. Mapping the Permafrost Stability on the Tibetan Plateau for 2005–2015. Sci. China Earth Sci. 2021, 64, 62–79. [Google Scholar] [CrossRef]
- Cheng, G.; Zhao, L.; Li, R.; Wu, X.; Sheng, Y.; Hu, G.; Zou, D.; Jin, H.; Wu, Q. Characteristic, Changes and Impacts of Permafrost on Qinghai-Tibet Plateau. Chin. Sci. Bull. 2019, 64, 2783–2795. [Google Scholar] [CrossRef]
- Fu, Y.-H.; Gao, X.-J.; Zhu, Y.-M.; Guo, D. Climate Change Projection over the Tibetan Plateau Based on a Set of RCM Simulations. Adv. Clim. Change Res. 2021, 12, 313–321. [Google Scholar] [CrossRef]
- Gao, T.; Zhang, Y.; Kang, S.; Abbott, B.W.; Wang, X.; Zhang, T.; Yi, S.; Gustafsson, Ö. Accelerating Permafrost Collapse on the Eastern Tibetan Plateau. Environ. Res. Lett. 2021, 16, 054023. [Google Scholar] [CrossRef]
- Fitton, J.M.; Rennie, A.F.; Hansom, J.D.; Muir, F.M.E. Remotely Sensed Mapping of the Intertidal Zone: A Sentinel-2 and Google Earth Engine Methodology. Remote Sens. Appl. Soc. Environ. 2021, 22, 100499. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Bunting, E.L.; Munson, S.M.; Bradford, J.B. Assessing Plant Production Responses to Climate across Water-Limited Regions Using Google Earth Engine. Remote Sens. Environ. 2019, 233, 111379. [Google Scholar] [CrossRef]
- Deines, J.M.; Kendall, A.D.; Crowley, M.A.; Rapp, J.; Cardille, J.A.; Hyndman, D.W. Mapping Three Decades of Annual Irrigation across the US High Plains Aquifer Using Landsat and Google Earth Engine. Remote Sens. Environ. 2019, 233, 111400. [Google Scholar] [CrossRef]
- Jin, Z.; Azzari, G.; You, C.; Di Tommaso, S.; Aston, S.; Burke, M.; Lobell, D.B. Smallholder Maize Area and Yield Mapping at National Scales with Google Earth Engine. Remote Sens. Environ. 2019, 228, 115–128. [Google Scholar] [CrossRef]
- Wong, B.A.; Thomas, C.; Halpin, P. Automating Offshore Infrastructure Extractions Using Synthetic Aperture Radar & Google Earth Engine. Remote Sens. Environ. 2019, 233, 111412. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual Maps of Global Artificial Impervious Area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Zhou, B.; Okin, G.S.; Zhang, J. Leveraging Google Earth Engine (GEE) and Machine Learning Algorithms to Incorporate in Situ Measurement from Different Times for Rangelands Monitoring. Remote Sens. Environ. 2020, 236, 111521. [Google Scholar] [CrossRef]
- Pan, X.; Guo, X.; Li, X.; Niu, X.; Yang, X.; Feng, M.; Che, T.; Jin, R.; Ran, Y.; Guo, J.; et al. National Tibetan Plateau Data Center: Promoting Earth System Science on the Third Pole. Bull. Am. Meteorol. Soc. 2021, 102, E2062–E2078. [Google Scholar] [CrossRef]
- Liu, F.; Wu, H.; Zhao, Y.; Li, D.; Yang, J.-L.; Song, X.; Shi, Z.; Zhu, A.-X.; Zhang, G.-L. Mapping High Resolution National Soil Information Grids of China. Sci. Bull. 2022, 67, 328–340. [Google Scholar] [CrossRef]
- Friedl, M.; Gray, J.; Sulla-Menashe, D. MCD12Q2 MODIS/Terra + Aqua Land Cover Dynamics Yearly L3 Global 500 m SIN Grid V006 [Data set]. NASA Land Processes Distributed Active Archive Center. 2019. Available online: https://doi.org/10.5067/MODIS/MCD12Q2.006 (accessed on 17 September 2025).
- Yu, H.; Luedeling, E.; Xu, J. Winter and Spring Warming Result in Delayed Spring Phenology on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2010, 107, 22151–22156. [Google Scholar] [CrossRef]
- Shen, M.; Wang, S.; Jiang, N.; Sun, J.; Cao, R.; Ling, X.; Fang, B.; Zhang, L.; Zhang, L.; Xu, X.; et al. Plant Phenology Changes and Drivers on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 3, 633–651. [Google Scholar] [CrossRef]
- Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A Remote Sensing Approach to Mapping Fire Severity in South-Eastern Australia Using Sentinel 2 and Random Forest. Remote Sens. Environ. 2020, 240, 111702. [Google Scholar] [CrossRef]
- Loozen, Y.; Rebel, K.T.; De Jong, S.M.; Lu, M.; Ollinger, S.V.; Wassen, M.J.; Karssenberg, D. Mapping Canopy Nitrogen in European Forests Using Remote Sensing and Environmental Variables with the Random Forests Method. Remote Sens. Environ. 2020, 247, 111933. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, X. Improving Land Cover Classification in an Urbanized Coastal Area by Random Forests: The Role of Variable Selection. Remote Sens. Environ. 2020, 251, 112105. [Google Scholar] [CrossRef]
- Bao, F.; Huang, K.; Wu, S. The Retrieval of Aerosol Optical Properties Based on a Random Forest Machine Learning Approach: Exploration of Geostationary Satellite Images. Remote Sens. Environ. 2023, 286, 113426. [Google Scholar] [CrossRef]
- Lacelle, D.; Brooker, A.; Fraser, R.H.; Kokelj, S.V. Distribution and Growth of Thaw Slumps in the Richardson Mountains–Peel Plateau Region, Northwestern Canada. Geomorphology 2015, 235, 40–51. [Google Scholar] [CrossRef]
- Crist, E.P.; Cicone, R.C. A Physically-Based Transformation of Thematic Mapper Data—The TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens. 1984, GE-22, 256–263. [Google Scholar] [CrossRef]
- Zanchetta, A.; Bitelli, G.; Karnieli, A. Monitoring Desertification by Remote Sensing Using the Tasselled Cap Transform for Long-Term Change Detection. Nat. Hazards 2016, 83, 223–237. [Google Scholar] [CrossRef]
- Shi, T.; Xu, H. Derivation of Tasseled Cap Transformation Coefficients for Sentinel-2 MSI At-Sensor Reflectance Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4038–4048. [Google Scholar] [CrossRef]
- Kokelj, S.V.; Jorgenson, M.T. Advances in Thermokarst Research. Permafr. Periglac. Process. 2013, 24, 108–119. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Karoui, R.; Deckers, J.; De Baerdemaeker, J.; Ramon, H. Potential of Visible and Near-Infrared Spectroscopy to Derive Colour Groups Utilising the Munsell Soil Colour Charts. Biosyst. Eng. 2007, 97, 131–143. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Chen, Y.; Li, Y.; Li, H.; Xia, Q.; Kayumba, P.M. Evaluation of Consistency among Three NDVI Products Applied to High Mountain Asia in 2000–2015. Remote Sens. Environ. 2022, 269, 112821. [Google Scholar] [CrossRef]
- Yang, L.; Guan, Q.; Lin, J.; Tian, J.; Tan, Z.; Li, H. Evolution of NDVI Secular Trends and Responses to Climate Change: A Perspective from Nonlinearity and Nonstationarity Characteristics. Remote Sens. Environ. 2021, 254, 112247. [Google Scholar] [CrossRef]
- Watson, C.S.; King, O.; Miles, E.S.; Quincey, D.J. Optimising NDWI Supraglacial Pond Classification on Himalayan Debris-Covered Glaciers. Remote Sens. Environ. 2018, 217, 414–425. [Google Scholar] [CrossRef]
- Chen, F.; Chen, X.; Van De Voorde, T.; Roberts, D.; Jiang, H.; Xu, W. Open Water Detection in Urban Environments Using High Spatial Resolution Remote Sensing Imagery. Remote Sens. Environ. 2020, 242, 111706. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of Normalized Difference Built-up Index in Automatically Mapping Urban Areas from TM Imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Chen, X.-L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote Sensing Image-Based Analysis of the Relationship between Urban Heat Island and Land Use/Cover Changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Uhl, J.H.; Leyk, S. Towards a Novel Backdating Strategy for Creating Built-up Land Time Series Data Using Contemporary Spatial Constraints. Remote Sens. Environ. 2020, 238, 111197. [Google Scholar] [CrossRef]
- Li, T.; Chen, Y.-Z.; Han, L.-J.; Cheng, L.-H.; Lv, Y.-H.; Fu, B.-J.; Feng, X.-M.; Wu, X. Shortened Duration and Reduced Area of Frozen Soil in the Northern Hemisphere. Innovation 2021, 2, 100146. [Google Scholar] [CrossRef]
- Li, X.; Jin, R.; Pan, X.; Zhang, T.; Guo, J. Changes in the Near-Surface Soil Freeze–Thaw Cycle on the Qinghai-Tibetan Plateau. Int. J. Appl. Earth Obs. Geoinformation 2012, 17, 33–42. [Google Scholar] [CrossRef]
- Mu, C.C.; Abbott, B.W.; Zhao, Q.; Su, H.; Wang, S.F.; Wu, Q.B.; Zhang, T.J.; Wu, X.D. Permafrost Collapse Shifts Alpine Tundra to a Carbon Source but Reduces N2O and CH4 Release on the Northern Qinghai—Tibetan Plateau. Geophys. Res. Lett. 2017, 44, 8945–8952. [Google Scholar] [CrossRef]
- Wang, G.; Peng, Y.; Chen, L.; Abbott, B.W.; Ciais, P.; Kang, L.; Liu, Y.; Li, Q.; Peñuelas, J.; Qin, S.; et al. Enhanced Response of Soil Respiration to Experimental Warming upon Thermokarst Formation. Nat. Geosci. 2024, 17, 532–538. [Google Scholar] [CrossRef]
- Wang, J.; Liu, D. Vegetation Green-up Date Is More Sensitive to Permafrost Degradation than Climate Change in Spring across the Northern Permafrost Region. Glob. Change Biol. 2022, 28, 1569–1582. [Google Scholar] [CrossRef]
- Wang, T.; Yang, D.; Zheng, G.; Shi, R. Possible Negative Effects of Earlier Thaw Onset and Longer Thaw Duration on Vegetation Greenness over the Tibetan Plateau. Agric. For. Meteorol. 2022, 326, 109192. [Google Scholar] [CrossRef]












| Site Name | Longitude (°E) | Latitude (°N) | Elevation (m) | Inside FTDR-Area (km2) | County | Collected Year |
|---|---|---|---|---|---|---|
| CD | 97.50 | 33.46 | 4366 | 0.10 | Chenduo | 2020 |
| NR | 92.23 | 32.09 | 4789 | 1.58 | Nyerong | 2020 |
| XH | 99.91 | 35.82 | 3916 | 0.02 | Xinghai | 2020 |
| ZD | 96.06 | 33.59 | 4370 | 1.25 | Zhiduo | 2020 |
| DR | 99.47 | 34.13 | 4381 | 0.44 | Dari | 2021 |
| REG | 102.57 | 33.85 | 3474 | 0.15 | Ruoergai | 2021 |
| TR | 101.82 | 35.56 | 3672 | 0.50 | Tongren | 2021 |
| GC1 | 99.97 | 37.59 | 3609 | 0.12 | Gangcha | 2022 |
| GC2 | 100.44 | 37.66 | 3803 | 0.39 | Gangcha | 2022 |
| MD | 97.68 | 34.13 | 4696 | 0.41 | Maduo | 2022 |
| QL1 | 100.78 | 37.73 | 3829 | 0.04 | Qilian | 2022 |
| QL2 | 100.79 | 37.74 | 3849 | 0.20 | Qilian | 2022 |
| QL3 | 100.51 | 37.65 | 3673 | 0.32 | Qilian | 2022 |
| QL4 | 100.94 | 37.71 | 3788 | 0.09 | Qilian | 2022 |
| ZK1 | 100.97 | 35.03 | 4078 | 0.37 | Zeku | 2022 |
| ZK2 | 100.99 | 35.04 | 3994 | 0.25 | Zeku | 2022 |
| ZK3 | 101.26 | 35.13 | 3968 | 1.14 | Zeku | 2022 |
| Factors | Abbreviations | Definition |
|---|---|---|
| Annual Freeze Days | FF | The number of days in a year when the surface is in a frozen state. |
| Annual Freeze–thaw Alternation Days | FT | The number of days in a year when the surface has a freeze–thaw alternation within one day. |
| Annual Thaw Days | TT | The number of days in a year when the surface is in a thawed state. |
| Spring Thawing Period Days | F-T_period | The number of days between the first appearance of a thaw and the complete thaw on the surface. |
| Autumn Freezing Period Days | T-F_period | The number of days between the first appearance of a freeze and the complete freeze on the surface. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Z.; Chai, L.; Li, X.; Zhao, S.; Xiao, C.; Liu, S. Soil Freeze–Thaw Disturbance Index and Its Indicative Significance on the Qinghai–Tibet Plateau. Remote Sens. 2025, 17, 3682. https://doi.org/10.3390/rs17223682
Jin Z, Chai L, Li X, Zhao S, Xiao C, Liu S. Soil Freeze–Thaw Disturbance Index and Its Indicative Significance on the Qinghai–Tibet Plateau. Remote Sensing. 2025; 17(22):3682. https://doi.org/10.3390/rs17223682
Chicago/Turabian StyleJin, Zongyi, Linna Chai, Xiaoyan Li, Shaojie Zhao, Cunde Xiao, and Shaomin Liu. 2025. "Soil Freeze–Thaw Disturbance Index and Its Indicative Significance on the Qinghai–Tibet Plateau" Remote Sensing 17, no. 22: 3682. https://doi.org/10.3390/rs17223682
APA StyleJin, Z., Chai, L., Li, X., Zhao, S., Xiao, C., & Liu, S. (2025). Soil Freeze–Thaw Disturbance Index and Its Indicative Significance on the Qinghai–Tibet Plateau. Remote Sensing, 17(22), 3682. https://doi.org/10.3390/rs17223682

