Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (145)

Search Parameters:
Keywords = saturated power load

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 3362 KB  
Article
Optimization of Industrial Park Integrated Energy System Considering Carbon Trading and Supply–Demand Response
by Xunwen Zhao, Nan Li, Hailin Mu and Chengwei Jiang
Energies 2026, 19(1), 117; https://doi.org/10.3390/en19010117 - 25 Dec 2025
Viewed by 179
Abstract
To address the challenge of the synergistic optimization of carbon reduction and economic operation in the integrated energy systems (IES) of industrial parks, this paper proposes an optimization scheduling model that incorporates carbon trading and supply–demand response (SDR) coordination mechanisms. This model is [...] Read more.
To address the challenge of the synergistic optimization of carbon reduction and economic operation in the integrated energy systems (IES) of industrial parks, this paper proposes an optimization scheduling model that incorporates carbon trading and supply–demand response (SDR) coordination mechanisms. This model is based on an IES coupling power-to-gas (P2G) and carbon capture and storage (CCS) technologies. First, the K-means clustering algorithm identifies three typical daily scenarios—transitional season, summer, and winter—from annual operation data. Then, we construct a synergistic optimization model that integrates a carbon trading mechanism, tiered carbon quota allocation, and SDR coordination. The model is solved via mixed-integer linear programming (MILP) to minimize total system operating costs. Systematic comparative analysis across six scenarios quantifies the incremental benefits: P2G–CCS coupling achieves a 15.2% cost reduction and 49.3% emission reduction during transitional seasons; supply–demand response contributes 3.5% cost and 5.6% emission reductions; technology synergies yield an additional 21.6 percentage points of emission reduction beyond individual contributions. The integrated system achieves 100% renewable energy utilization and optimizes peak-to-valley differences across electricity, heating, and cooling loads. Carbon price sensitivity analysis reveals three response stages—low sensitivity, rapid reduction, and saturation—with the saturation point at 200 CNY/t (28.6 USD/t), providing quantitative guidance for tiered carbon pricing design. This research provides theoretical support and practical guidance for achieving low-carbon economic operations in industrial parks. Full article
Show Figures

Figure 1

22 pages, 4036 KB  
Article
Control Techniques and Design of Load-Side Controls for the Mitigation of Late-Time High-Altitude Electromagnetic Pulse
by Connor A. Lehman, Rush D. Robinett, Wayne W. Weaver and David G. Wilson
Energies 2026, 19(1), 17; https://doi.org/10.3390/en19010017 - 19 Dec 2025
Viewed by 258
Abstract
This paper introduces a novel control archetype designed to mitigate high-altitude electromagnetic pulse (HEMP) E3 disturbances on the power grid, as well as information on performance and specifications of different control laws for the controller archetype. This method of protection has been [...] Read more.
This paper introduces a novel control archetype designed to mitigate high-altitude electromagnetic pulse (HEMP) E3 disturbances on the power grid, as well as information on performance and specifications of different control laws for the controller archetype. This method of protection has been overlooked in the literature until now. A controlled voltage supply is placed on the load-side of a transformer, diverting unwanted power from the transformer core to prevent saturation. The controlled voltage source is modeled using four control laws: an integral controller (capacitor), Linear Quadratic Regulator (LQR), an energy storage minimized feedforward control law, and a Hamiltonian feedback law. Results show that the Hamiltonian feedback law and the energy storage minimization feedforward control law both flat-line magnetic flux with similar actuator requirements. The LQR approach requires less energy storage than the other two laws, depending on control tuning, as it allows greater exogenous current flow through the neutral path to ground. This leads to further optimization opportunities based on acceptable exogenous current levels. A sweep of different LQR gains revealed a reduction of approximately 32% in minimum control effort, 47% in minimum power to maintain saturation bounds, 20% in energy storage requirements, and 59% in required controller bandwidth. Voltage and bandwidth requirements of the load-side controller are comparable to neutral blocking requirements with energy and power requirements being higher for the load-side controller. This, however, comes with the benefit of being able to use pre-existing assets—neutral blocking devices have not been deployed. Additionally, the load-side blocking capacitor degrades transformer performance compared to the unmitigated system. Full article
Show Figures

Figure 1

22 pages, 1380 KB  
Article
Selection of Optimal Cluster Head Using MOPSO and Decision Tree for Cluster-Oriented Wireless Sensor Networks
by Rahul Mishra, Sudhanshu Kumar Jha, Shiv Prakash and Rajkumar Singh Rathore
Future Internet 2025, 17(12), 577; https://doi.org/10.3390/fi17120577 - 15 Dec 2025
Viewed by 257
Abstract
Wireless sensor networks (WSNs) consist of distributed nodes to monitor various physical and environmental parameters. The sensor nodes (SNs) are usually resource constrained such as power source, communication, and computation capacity. In WSN, energy consumption varies depending on the distance between sender and [...] Read more.
Wireless sensor networks (WSNs) consist of distributed nodes to monitor various physical and environmental parameters. The sensor nodes (SNs) are usually resource constrained such as power source, communication, and computation capacity. In WSN, energy consumption varies depending on the distance between sender and receiver SNs. Communication among SNs having long distance requires significantly additional energy that negatively affects network longevity. To address these issues, WSNs are deployed using multi-hop routing. Using multi-hop routing solves various problems like reduced communication and communication cost but finding an optimal cluster head (CH) and route remain an issue. An optimal CH reduces energy consumption and maintains reliable data transmission throughout the network. To improve the performance of multi-hop routing in WSN, we propose a model that combines Multi-Objective Particle Swarm Optimization (MOPSO) and a Decision Tree for dynamic CH selection. The proposed model consists of two phases, namely, the offline phase and the online phase. In the offline phase, various network scenarios with node densities, initial energy levels, and BS positions are simulated, required features are collected, and MOPSO is applied to the collected features to generate a Pareto front of optimal CH nodes to optimize energy efficiency, coverage, and load balancing. Each node is labeled as selected CH or not by the MOPSO, and the labelled dataset is then used to train a Decision Tree classifier, which generates a lightweight and interpretable model for CH prediction. In the online phase, the trained model is used in the deployed network to quickly and adaptively select CHs using features of each node and classifying them as a CH or non-CH. The predicted nodes broadcast the information and manage the intra-cluster communication, data aggregation, and routing to the base station. CH selection is re-initiated based on residual energy drop below a threshold, load saturation, and coverage degradation. The simulation results demonstrate that the proposed model outperforms protocols such as LEACH, HEED, and standard PSO regarding energy efficiency and network lifetime, making it highly suitable for applications in green computing, environmental monitoring, precision agriculture, healthcare, and industrial IoT. Full article
(This article belongs to the Special Issue Clustered Federated Learning for Networks)
Show Figures

Figure 1

15 pages, 10241 KB  
Article
Effect of Fine Content on Liquefaction Resistance of Saturated Marine Sandy Soils Subjected to Cyclic Loading
by Shang Gao, Wenwen Zhang, Qi Wu and Shuanglan Wu
J. Mar. Sci. Eng. 2025, 13(12), 2333; https://doi.org/10.3390/jmse13122333 - 8 Dec 2025
Viewed by 222
Abstract
Offshore wind turbines are subjected to environmental loads such as wind and ocean waves throughout their entire service lives. Saturated sandy soils experience liquefaction under cyclic shear stresses induced by earthquakes or strong wave actions, which can result in the tilting, settlement, or [...] Read more.
Offshore wind turbines are subjected to environmental loads such as wind and ocean waves throughout their entire service lives. Saturated sandy soils experience liquefaction under cyclic shear stresses induced by earthquakes or strong wave actions, which can result in the tilting, settlement, or even overturning of structures. This study investigates the effect of fine content (FC) on the liquefaction resistance (CRR) of saturated sandy soils with different density states. Sandy soils with varying FC values are examined under three scenarios: (1) constant relative density; (2) constant void ratio; and (3) constant skeleton void ratio. A series of undrained cyclic triaxial tests are conducted on sandy soils with different FC and density states (Dr, e, and esk). The results indicate that an increase in FC leads to a decrease in CRR at constant Dr or e, whereas CRR at constant esk increases with increasing FC. No clear correlation is observed between Dr, e, or esk and CRR for saturated sandy soils with varying FC. Since esk does not account for the effect of fine particles on the contact state of skeleton particles, the equivalent skeleton void ratio (esk*) is introduced to describe the particle contact state of sandy soils with different fine contents (FCs), considering the degree of fine particle participation. In addition, the test data reveal that the CRR of sandy soils with different FC and density states decreases with increasing esk*, and a power relationship between the reduction in CRR and the increase in esk* is established. This finding indicates that esk*, which considers the proportion of fines contributing to the load-sustaining framework, serves as a reliable index for evaluating the CRR of various sandy soils. We find that grain shape plays a significant role in influencing CRR, and the overall CRR of sandy soils increases as the grain shape changes from spherical to angular, compared to the published test results for other sandy soils. Full article
(This article belongs to the Special Issue Advances in Marine Geomechanics and Geotechnics)
Show Figures

Figure 1

10 pages, 3795 KB  
Article
A Methodology for Designing High-Efficiency Power Amplifiers Using Simple Microstrip Harmonic Tuning Circuits
by Guohua Zhang and Shaohua Zhou
Electronics 2025, 14(23), 4767; https://doi.org/10.3390/electronics14234767 - 4 Dec 2025
Viewed by 265
Abstract
This paper presents a simple effective methodology for designing high-efficiency power amplifiers (PAs) utilizing a compact microstrip harmonic-tuned load network. The proposed approach employs a combination of a two-section transformer and three shunt-connected stubs, reducing component count relative to conventional harmonic-tuned circuits. The [...] Read more.
This paper presents a simple effective methodology for designing high-efficiency power amplifiers (PAs) utilizing a compact microstrip harmonic-tuned load network. The proposed approach employs a combination of a two-section transformer and three shunt-connected stubs, reducing component count relative to conventional harmonic-tuned circuits. The novel load network achieves optimized load impedances at the fundamental, second, and third harmonics while accounting for parasitic effects of packaged transistors. For experimental validation, an inverse Class-F (Class-F−1) PA is designed and fabricated using a Cree GaN HEMT (model CGH40010F) operating at 2.5 GHz. The measured results demonstrate a peak power-added efficiency (PAE) of 79.8% with a saturated output power (Psat) of 40.2 dBm. Full article
Show Figures

Figure 1

16 pages, 1598 KB  
Article
Sliding Mode Control of Symmetric Permanent Magnet Synchronous Motor Based on Novel Adaptive Reaching Law and Combining Improved Terminal Fast Sliding Mode Disturbance Observer
by Mingyuan Hu, Changning Wei, Lei Zhang, Ping Wang, Dongjun Zhang and Tongwei Xie
Symmetry 2025, 17(12), 2057; https://doi.org/10.3390/sym17122057 - 2 Dec 2025
Viewed by 327
Abstract
Permanent Magnet Synchronous Motors (PMSMs) exhibit inherent symmetry in their electromagnetic structure yet behave as nonlinear and strongly coupled systems that are susceptible to internal parameter perturbations and external disturbances, posing challenges to effective control under dynamic operating conditions. To address these issues, [...] Read more.
Permanent Magnet Synchronous Motors (PMSMs) exhibit inherent symmetry in their electromagnetic structure yet behave as nonlinear and strongly coupled systems that are susceptible to internal parameter perturbations and external disturbances, posing challenges to effective control under dynamic operating conditions. To address these issues, this paper proposes a sliding mode control strategy for PMSMs that integrates a Novel Adaptive Reaching Law (NARL) and an Improved Terminal Fuzzy Sliding Mode Disturbance Observer (IFTSMDO), denoted as SMC-NARL-IFTSMDO. The NARL is designed with a state-dependent dynamic gain adjustment mechanism and terminal attractive factor characteristics: it increases the gain to ensure fast convergence when the system state is far from the sliding mode surface, and adaptively attenuates the gain to suppress chattering when approaching the sliding mode surface, thereby balancing the contradiction between convergence speed and chattering in traditional sliding mode control. The IFTSMDO constructs a composite sliding mode surface incorporating error derivatives, terminal power terms, and saturation functions, which enhances the sensitivity of disturbance estimation in the small-error stage, avoids high-frequency chattering caused by sign functions, and provides accurate feedforward compensation for the speed loop controller to improve the system’s anti-disturbance capability. Additionally, the asymptotic stability of the proposed control strategy is strictly proven using the Lyapunov stability theory, laying a solid theoretical foundation for its application. Experiments are conducted on a TMS320F28379D DSP-based platform, and quantitative results show that compared with the traditional sliding mode control (SMC-TRL), the proposed strategy reduces the no-load startup response time by 60%, the steady-state speed fluctuation by 60%, and the speed fluctuation under load disturbance by 81.5%, fully demonstrating its superiority in dynamic response and anti-disturbance performance. Full article
(This article belongs to the Special Issue Symmetry in Intelligent Spindle Modelling and Vibration Analysis)
Show Figures

Figure 1

10 pages, 2350 KB  
Article
Design of Dual Continuous-Mode Class-J Power Amplifiers with Harmonic Matching Networks for X and Ku Bands
by Yang Yuan, Xuesong Zhao, Jingxin Fan and Zhongjun Yu
Micromachines 2025, 16(12), 1362; https://doi.org/10.3390/mi16121362 - 29 Nov 2025
Viewed by 243
Abstract
In this article, two wideband high-efficiency Class-J power amplifiers operating in X and Ku bands, respectively, are designed based on continuous mode. The optimal impedance regions of the transistors are determined using harmonic load-pull techniques. An on-chip output matching network with second harmonic [...] Read more.
In this article, two wideband high-efficiency Class-J power amplifiers operating in X and Ku bands, respectively, are designed based on continuous mode. The optimal impedance regions of the transistors are determined using harmonic load-pull techniques. An on-chip output matching network with second harmonic control functionality is designed to achieve Class-J operation. To verify the feasibility of designed circuits, both power amplifiers are designed and fabricated using a 0.25 mm GaAs pseudomorphic high electron mobility transistor (pHEMT) process. The power amplifiers are both biased at 6 V/−1 V. The measured results show the X-band and Ku-band power amplifiers achieve peak saturated output powers of 31.2 dBm and 30.8 dBm, respectively. The power-added efficiencies (PAEs) of the two amplifiers within their operating bands reach up to 48% and 45.3%, respectively. Compact size and high efficiency make them suitable for integration into phased array transmit/receiver (T/R) modules. Full article
Show Figures

Figure 1

21 pages, 978 KB  
Article
Control Technology of Master-Master Working Mode for Advanced Aircraft Dual-Redundancy Electro-Hydrostatic Flight Control Actuation System
by Xin Bao, Yan Li, Zhong Wang and Rui Wang
Appl. Syst. Innov. 2025, 8(6), 178; https://doi.org/10.3390/asi8060178 - 25 Nov 2025
Viewed by 460
Abstract
In response to the demands for high reliability, excellent dynamic response, and high-precision control of advanced aircraft actuation systems, this study focuses on the control technology for the master-master operating mode of dual-redundancy electro-hydrostatic actuation (EHA) systems. A multi-domain coupling model integrating motor [...] Read more.
In response to the demands for high reliability, excellent dynamic response, and high-precision control of advanced aircraft actuation systems, this study focuses on the control technology for the master-master operating mode of dual-redundancy electro-hydrostatic actuation (EHA) systems. A multi-domain coupling model integrating motor magnetic circuit saturation, hydraulic viscosity-temperature characteristics, and mechanical clearances was established, based on which a current-loop decoupling technique using vector control was developed. Furthermore, the study combined adaptive sliding mode control (ASMC) and an improved active disturbance rejection control (ADRC) to enhance the robustness of the speed loop and the disturbance rejection capability of the position loop, respectively. To address the key challenges of synchronous error accumulation and uneven load distribution in the master-master mode, a dual-redundancy dynamic model accounting for hydraulic coupling effects was developed, and a two-level cooperative control strategy of "position synchronization-dynamic load balancing" was proposed based on the cross-coupling control (CCC) framework. Experimental results demonstrate that the position loop control error is less than ±0.02 mm, and the load distribution accuracy is improved to over 97%, fully meeting the design requirements of advanced aircraft. These findings provide key technical support for the engineering application of power-by-wire flight control systems in advanced aircraft. Full article
Show Figures

Figure 1

19 pages, 3858 KB  
Article
An Enhanced Grid-Forming Control Strategy for Suppressing Magnetizing Inrush Current During Black Start of Wind-Storage Systems
by Tieheng Zhang, Yucheng Hou, Yifeng Ding, Yi Wan, Xin Cao, Derui Cai and Jianhui Meng
Electronics 2025, 14(22), 4431; https://doi.org/10.3390/electronics14224431 - 13 Nov 2025
Viewed by 501
Abstract
Grid-forming wind-storage systems can serve as black-start power sources capable of autonomously establishing voltage and frequency references when the external grid is unavailable, thereby providing crucial support for rapid grid restoration. However, during the black-start process, energizing unloaded transformers often induces severe magnetizing [...] Read more.
Grid-forming wind-storage systems can serve as black-start power sources capable of autonomously establishing voltage and frequency references when the external grid is unavailable, thereby providing crucial support for rapid grid restoration. However, during the black-start process, energizing unloaded transformers often induces severe magnetizing inrush currents, which may cause transient overcurrent, damage grid-forming converters, and compromise system stability. To address this issue, this paper proposes a segmented zero-voltage start strategy and a dual-side converter multi-mode switching control scheme based on small-capacity distributed energy storage. First, the formation mechanism of transformer magnetizing inrush under no-load energization is analyzed. A segmented zero-voltage start module is embedded into the outer voltage loop of the virtual synchronous generator (VSG) controller to enable a smooth rise in output voltage, effectively mitigating transient impacts caused by magnetic core saturation. Second, considering the operating requirements during self-start and load restoration stages, a coordinated control framework for dual-side converters is designed to achieve dynamic voltage, frequency, and power regulation with limited energy storage capacity, thereby improving transient stability and energy utilization efficiency. Finally, real-time hardware-in-the-loop (HIL) simulations conducted on an RT-LAB platform verify the feasibility of the proposed control strategy. The results demonstrate that the method can significantly suppress magnetizing inrush current, transient overvoltage, and overcurrent, thus enhancing the success rate and dynamic stability of black-start operations in grid-forming wind-storage systems. Full article
Show Figures

Figure 1

16 pages, 2562 KB  
Article
Ultra-Wideband Power Amplifier Using Non-Foster Characteristics of Coupled Transmission Lines
by Hyeongjin Jeon, Sooncheol Bae, Kyungdong Bae, Soohyun Bin, Sangyeop Kim, Yunhyung Ju, Minseok Ahn, Gyuhyeon Mun, Keum Cheol Hwang, Kang-Yoon Lee and Youngoo Yang
Electronics 2025, 14(22), 4413; https://doi.org/10.3390/electronics14224413 - 13 Nov 2025
Viewed by 353
Abstract
This paper presents a simplified matching network using coupled transmission lines (CTLs) for broadband power amplifiers. The proposed structure consists of a CTL with an electrical length shorter than λ/4 and a single shunt component, exhibiting excellent frequency characteristics across a wide [...] Read more.
This paper presents a simplified matching network using coupled transmission lines (CTLs) for broadband power amplifiers. The proposed structure consists of a CTL with an electrical length shorter than λ/4 and a single shunt component, exhibiting excellent frequency characteristics across a wide bandwidth at both the input and load networks of the transistor. The reactance variation of the non-Foster elements in the equivalent circuit of the CTL with respect to frequency was analyzed, and the external reactive components were accordingly optimized to extend the bandwidth of the matching network. The proposed network was applied to the input and load networks of a GaN HEMT-based power amplifier. It was designed to maintain required performances over a wide frequency range of 1.9–4.9 GHz, covering both LTE and sub-6 GHz 5G bands, thereby achieving a fractional bandwidth (FBW) of 88.2%. The CTLs were fabricated on a two-layer printed-circuit board (PCB), and the additional shunt components were designed using surface-mount devices (SMDs). The overall power-amplifier module occupied a small area of 40 × 35 mm2. Using the continuous-wave (CW) signal, the proposed power amplifier exhibited a power gain of 10–14.8 dB and a drain efficiency (DE) of 47.5–60% at a saturated output power of 7.1–9.3 W across the entire operating frequency band. Using a 5G New Radio (NR) signal with a 100 MHz bandwidth and a peak-to-average power ratio (PAPR) of 7.8 dB, the amplifier achieved an average output power of 30 dBm, a DE of 20–27.5%, and an adjacent-channel leakage power ratio (ACLR) better than −30 dBc. Full article
Show Figures

Figure 1

19 pages, 2675 KB  
Article
Multi-Time-Scale Optimization and Control Method for High-Penetration Photovoltaic Electrolytic Aluminum Plants
by Lixin Wu, Qunhai Huo, Qiran Liu, Jingyuan Yin and Jie Yang
Energies 2025, 18(21), 5840; https://doi.org/10.3390/en18215840 - 5 Nov 2025
Viewed by 396
Abstract
In response to the high energy consumption and carbon emission issues in the electrolytic aluminum industry, this paper proposes a multi-time-scale optimization and control method for electrolytic aluminum plants with high photovoltaic penetration. First, a plant architecture is established, which includes traditional power [...] Read more.
In response to the high energy consumption and carbon emission issues in the electrolytic aluminum industry, this paper proposes a multi-time-scale optimization and control method for electrolytic aluminum plants with high photovoltaic penetration. First, a plant architecture is established, which includes traditional power systems, renewable energy systems, and electrolytic aluminum loads. A mathematical model for flexible resources such as thermal power units, on-load tap-changing transformers, thyristor-controlled voltage regulators, saturable reactors, and electrolytic cells is developed. Based on this, a two-level optimization control strategy is designed, consisting of a day-ahead and real-time control layer: the day-ahead layer targets economic and low-carbon operation, while the real-time layer aims to stabilize the DC bus voltage. Using actual data from an electrolytic aluminum plant in Southwest China, simulations are conducted on the MATLAB 2021a platform, and the effectiveness of the strategy is verified through hardware-in-the-loop experiments. The results demonstrate that the proposed method can effectively increase the photovoltaic utilization rate, reduce thermal power output and operational costs, and decrease carbon emissions, providing a feasible solution for the green and low-carbon transformation of the electrolytic aluminum industry. Full article
Show Figures

Figure 1

19 pages, 3502 KB  
Article
An All-Solid-State PFN Generator Based on SPT and Fast Recovery Diode
by Longyu Zhuang, Jie Zhuang and Junfeng Rao
Electronics 2025, 14(21), 4274; https://doi.org/10.3390/electronics14214274 - 31 Oct 2025
Viewed by 423
Abstract
This study presents a pulse generator employing a saturable pulse transformer (SPT) in conjunction with a fast recovery diode, integrated within an all-solid-state pulse-forming network (PFN). The saturation inductance of the SPT serves as a component of the initial LC section of the [...] Read more.
This study presents a pulse generator employing a saturable pulse transformer (SPT) in conjunction with a fast recovery diode, integrated within an all-solid-state pulse-forming network (PFN). The saturation inductance of the SPT serves as a component of the initial LC section of the PFN, thereby contributing to the preservation of output waveform integrity. The secondary energy storage capacitor is charged through the primary circuit and the SPT, subsequently discharging into the load under the regulation of the SPT. An increase in the SPT’s transformation ratio corresponds to a rise in its saturated inductance, which in turn prolongs the pulse rise time. To mitigate this effect, a fast recovery diode is incorporated to sharpen the pulse front. Specifically, upon saturation of the SPT, current reverses through the fast recovery diode, effectively short-circuiting the load. When the inductor current attains a predetermined threshold, the diode reverts to reverse cut-off and rapidly switches off, enabling the PFN to discharge swiftly into the load and generate a high-voltage pulse characterized by a rapid rising edge. Furthermore, augmenting the number of secondary windings on the SPT—each connected to a PFN module—and arranging multiple PFNs in series facilitates an increase in output voltage. Experimental evaluations demonstrated that a three-stage PFN pulse generator attained a peak voltage of −16.9 kV on an 80 Ω matched load, with pulse currents exceeding 200 A while maintaining a 19 ns front edge. These results indicate that the proposed approach is effective for producing high-voltage, narrow pulses with rapid rise times. Additionally, the pulse power generator is capable of delivering repetitive pulses of −16.9 kV at a frequency of 20 kHz in burst mode. Full article
(This article belongs to the Topic Power Electronics Converters, 2nd Edition)
Show Figures

Figure 1

28 pages, 8425 KB  
Article
Data Reduction Methodology for Dynamic Characteristic Extraction in Photoplethysmogram
by Nina Sviridova and Sora Okazaki
Sensors 2025, 25(19), 6232; https://doi.org/10.3390/s25196232 - 8 Oct 2025
Viewed by 726
Abstract
Photoplethysmogram (PPG) signals are increasingly utilized in wearable and mobile healthcare applications due to their non-invasive nature and ease of use in measuring physiological parameters, such as heart rate, blood pressure, and oxygen saturation. Recent advancements have highlighted green-light photoplethysmogram (gPPG) as offering [...] Read more.
Photoplethysmogram (PPG) signals are increasingly utilized in wearable and mobile healthcare applications due to their non-invasive nature and ease of use in measuring physiological parameters, such as heart rate, blood pressure, and oxygen saturation. Recent advancements have highlighted green-light photoplethysmogram (gPPG) as offering superior signal quality and accuracy compared to traditional red-light photoplethysmogram (rPPG). Given the deterministic chaotic nature of PPG signals’ dynamics, nonlinear time series analysis has emerged as a powerful method for extracting health-related information not captured by conventional linear techniques. However, optimal data conditions, including appropriate sampling frequency and minimum required time series length for effective nonlinear analysis, remain insufficiently investigated. This study examines the impact of downsampling frequencies and reducing time series lengths on the accuracy of estimating dynamical characteristics from gPPG and rPPG signals. Results demonstrate that a sampling frequency of 200 Hz provides an optimal balance, maintaining robust correlations in dynamical indices while reducing computational load. Furthermore, analysis of varying time series lengths revealed that the dynamical properties stabilize sufficiently at around 170 s, achieving an error of less than 5%. A comparative analysis between gPPG and rPPG revealed no significant statistical differences, confirming their similar effectiveness in estimating dynamical properties under controlled conditions. These results enhance the reliability and applicability of PPG-based health monitoring technologies. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

29 pages, 9652 KB  
Article
Overcurrent Limiting Strategy for Grid-Forming Inverters Based on Current-Controlled VSG
by Alisher Askarov, Pavel Radko, Yuly Bay, Ivan Gusarov, Vagiz Kabirov, Pavel Ilyushin and Aleksey Suvorov
Mathematics 2025, 13(19), 3207; https://doi.org/10.3390/math13193207 - 7 Oct 2025
Cited by 2 | Viewed by 1915
Abstract
A key direction of the development of modern power systems is the application of a continuously increasing number of grid-forming power converters to provide various system services. One of the possible strategies for the implementation of grid-forming control is a control algorithm based [...] Read more.
A key direction of the development of modern power systems is the application of a continuously increasing number of grid-forming power converters to provide various system services. One of the possible strategies for the implementation of grid-forming control is a control algorithm based on a virtual synchronous generator (VSG). However, at present, the problem of VSG operation under abnormal conditions associated with an increase in output current remains unsolved. Existing current saturation algorithms (CSAs) lead to the degradation of grid-forming properties during overcurrent limiting or reduce the possible range of current output. In this regard, this paper proposes to use the structure of modified current-controlled VSG (CC-VSG) instead of traditional voltage-controlled VSG. A current vector amplitude limiter is used to limit the output current in the CC-VSG structure. At the same time, the angle of the current reference vector continues to be regulated based on the emerging operating conditions due to the voltage feedback in the used VSG equations. The presented simulation results have shown that it was possible to achieve a wide operating range for the current phase from 0° to 180° in comparison with a traditional VSG algorithm. At the same time, the properties of the grid-forming inverter, such as power synchronization without phase-locked loop controller, voltage, and frequency control, are preserved. In addition, in order to avoid saturation of the voltage controller, it is proposed to use a simple algorithm of blocking and switching the reference signal from the setpoint to the current voltage level. Due to this structure, it was possible to prevent saturation of integrators in the control loops and to provide a guaranteed exit from the limiting mode. The results of adding this structure showed a five-second reduction in the overvoltage that occurs when it is absent. A comparison with conditional integration also showed that it prevented lock-up in the limiting mode. The results of experimental verification of the developed prototype of the inverter with CC-VSG control and CSA are also given, including a comparison with the serial model of the hybrid inverter. The results obtained showed that the developed algorithm excludes both the dead time and the load current loss when the external grid is disconnected. In addition, there is no tripping during overload, unlike a hybrid inverter. Full article
(This article belongs to the Special Issue Applied Mathematics and Intelligent Control in Electrical Engineering)
Show Figures

Figure 1

13 pages, 1394 KB  
Article
Coupling Characteristics and Construction Method of Single-AC Multi-DC Hybrid Grid
by Xingning Han, Ying Huang, Guoteng Wang, Hui Cai, Mingxin Yan and Zheng Xu
Energies 2025, 18(19), 5131; https://doi.org/10.3390/en18195131 - 26 Sep 2025
Viewed by 341
Abstract
In regions with concentrated load centers in China, the AC transmission network is dense, leading to challenges such as difficulties in power flow control and excessive short-circuit currents. The scale effect of AC grids is approaching saturation, making it imperative to develop new [...] Read more.
In regions with concentrated load centers in China, the AC transmission network is dense, leading to challenges such as difficulties in power flow control and excessive short-circuit currents. The scale effect of AC grids is approaching saturation, making it imperative to develop new AC/DC hybrid grid structures. To enhance the controllability, security, and stability of AC/DC hybrid power systems, a single-AC multi-DC hybrid grid structure is proposed in this paper. The operational characteristics of this grid are analyzed in terms of power flow control capability, N-1 overload, short-circuit current, frequency stability, voltage stability, and synchronous stability, and a method for constructing the single-AC multi-DC hybrid grid is presented. Finally, simulation analysis is conducted on a typical single-AC multi-DC case, and the results indicate that this hybrid grid structure can simultaneously satisfy the controllability, security, and stability requirements of AC/DC power systems, making it a highly promising grid configuration. Full article
(This article belongs to the Special Issue Advanced Grid Integration with Power Electronics: 2nd Edition)
Show Figures

Figure 1

Back to TopTop