Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (314)

Search Parameters:
Keywords = sandstone gas reservoir

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 11697 KiB  
Article
Layered Production Allocation Method for Dual-Gas Co-Production Wells
by Guangai Wu, Zhun Li, Yanfeng Cao, Jifei Yu, Guoqing Han and Zhisheng Xing
Energies 2025, 18(15), 4039; https://doi.org/10.3390/en18154039 - 29 Jul 2025
Viewed by 193
Abstract
The synergistic development of low-permeability reservoirs such as deep coalbed methane (CBM) and tight gas has emerged as a key technology to reduce development costs, enhance single-well productivity, and improve gas recovery. However, due to fundamental differences between coal seams and tight sandstones [...] Read more.
The synergistic development of low-permeability reservoirs such as deep coalbed methane (CBM) and tight gas has emerged as a key technology to reduce development costs, enhance single-well productivity, and improve gas recovery. However, due to fundamental differences between coal seams and tight sandstones in their pore structure, permeability, water saturation, and pressure sensitivity, significant variations exist in their flow capacities and fluid production behaviors. To address the challenges of production allocation and main reservoir identification in the co-development of CBM and tight gas within deep gas-bearing basins, this study employs the transient multiphase flow simulation software OLGA to construct a representative dual-gas co-production well model. The regulatory mechanisms of the gas–liquid distribution, deliquification efficiency, and interlayer interference under two typical vertical stacking relationships—“coal over sand” and “sand over coal”—are systematically analyzed with respect to different tubing setting depths. A high-precision dynamic production allocation method is proposed, which couples the wellbore structure with real-time monitoring parameters. The results demonstrate that positioning the tubing near the bottom of both reservoirs significantly enhances the deliquification efficiency and bottomhole pressure differential, reduces the liquid holdup in the wellbore, and improves the synergistic productivity of the dual-reservoirs, achieving optimal drainage and production performance. Building upon this, a physically constrained model integrating real-time monitoring data—such as the gas and liquid production from tubing and casing, wellhead pressures, and other parameters—is established. Specifically, the model is built upon fundamental physical constraints, including mass conservation and the pressure equilibrium, to logically model the flow paths and phase distribution behaviors of the gas–liquid two-phase flow. This enables the accurate derivation of the respective contributions of each reservoir interval and dynamic production allocation without the need for downhole logging. Validation results show that the proposed method reliably reconstructs reservoir contribution rates under various operational conditions and wellbore configurations. Through a comparison of calculated and simulated results, the maximum relative error occurs during abrupt changes in the production capacity, approximately 6.37%, while for most time periods, the error remains within 1%, with an average error of 0.49% throughout the process. These results substantially improve the timeliness and accuracy of the reservoir identification. This study offers a novel approach for the co-optimization of complex multi-reservoir gas fields, enriching the theoretical framework of dual-gas co-production and providing technically adaptive solutions and engineering guidance for multilayer unconventional gas exploitation. Full article
Show Figures

Figure 1

14 pages, 2616 KiB  
Article
Evaluation Model of Water Production in Tight Gas Reservoirs Considering Bound Water Saturation
by Wenwen Wang, Bin Zhang, Yunan Liang, Sinan Fang, Zhansong Zhang, Guilan Lin and Yue Yang
Processes 2025, 13(7), 2317; https://doi.org/10.3390/pr13072317 - 21 Jul 2025
Viewed by 262
Abstract
Tight gas is an unconventional resource abundantly found in low-porosity, low-permeability sandstone reservoirs. Production can be significantly reduced due to water production during the development process. Therefore, it is necessary to predict water production during the logging phase to formulate development strategies for [...] Read more.
Tight gas is an unconventional resource abundantly found in low-porosity, low-permeability sandstone reservoirs. Production can be significantly reduced due to water production during the development process. Therefore, it is necessary to predict water production during the logging phase to formulate development strategies for tight gas wells. This study analyzes the water production mechanism in tight sandstone reservoirs and identifies that the core of water production evaluation in the Shihezi Formation of the Linxing block is to clarify the pore permeability structure of tight sandstone and the type of intra-layer water. The primary challenge lies in the accurate characterization of bound water saturation. By integrating logging data with core experiments, a bound water saturation evaluation model based on grain size diameter and pore structure index was established, achieving a calculation accuracy of 92% for the multi-parameter-fitted bound water saturation. Then, based on the high-precision bound water saturation, a gas–water ratio prediction model for the first month of production, considering water saturation, grain size diameter, and fluid type, was established, improving the prediction accuracy to 87.7%. The bound water saturation evaluation and water production evaluation models in this study can achieve effective water production prediction in the early stage of production, providing theoretical support for the scientific development of tight gas in the Linxing block. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

17 pages, 2902 KiB  
Article
Analysis of Sand Production Mechanisms in Tight Gas Reservoirs: A Case Study from the Wenxing Gas Area, Northwestern Sichuan Basin
by Qilin Liu, Xinyao Zhang, Cheng Du, Kaixiang Di, Shiyi Xie, Huiying Tang, Jing Luo and Run Shu
Processes 2025, 13(7), 2278; https://doi.org/10.3390/pr13072278 - 17 Jul 2025
Viewed by 323
Abstract
In tight sandstone gas reservoirs, proppant flowback severely limits stable gas production. This study uses laboratory flowback experiments and field analyses of the ShaXimiao tight sandstone in the Wenxing gas area to investigate the mechanisms controlling sand production. The experiments show that displacing [...] Read more.
In tight sandstone gas reservoirs, proppant flowback severely limits stable gas production. This study uses laboratory flowback experiments and field analyses of the ShaXimiao tight sandstone in the Wenxing gas area to investigate the mechanisms controlling sand production. The experiments show that displacing fluid viscosity significantly affects the critical sand-flow velocity: with high-viscous slickwater (5 mPa·s), the critical velocity is 66% lower than with low-viscous formation water (1.15 mPa·s). The critical velocity for coated proppant is three times that of the mixed quartz sand and coated proppant. If the confining pressure is maintained, but the flow rate is further increased after the proppant flowback, a second instance of sand production can be observed. X-ray diffraction (XRD) tests were conducted for sand produced from practical wells to help find the sand production reasons. Based on experimental and field data analysis, sand production in Well X-1 primarily results from proppant detachment during rapid shut-in/open cycling operations, while in Well X-2, it originates from proppant crushing. The risk of formation sand production is low for both wells (the volumetric fraction of calcite tested from the produced sands is smaller than 0.5%). These findings highlight the importance of fluid viscosity, proppant consolidation, and pressure management in controlling sand production. Full article
(This article belongs to the Special Issue Advances in Enhancing Unconventional Oil/Gas Recovery, 2nd Edition)
Show Figures

Figure 1

19 pages, 13286 KiB  
Article
Differential Evolutionary Mechanisms of Tight Sandstone Reservoirs and Their Influence on Reservoir Quality: A Case Study of Carboniferous–Permian Sandstones in the Shenfu Area, Ordos Basin, China
by Xiangdong Gao, You Guo, Hui Guo, Hao Sun, Xiang Wu, Mingda Zhang, Xirui Liu and Jiawen Deng
Minerals 2025, 15(7), 744; https://doi.org/10.3390/min15070744 - 16 Jul 2025
Viewed by 164
Abstract
The Carboniferous–Permian tight sandstone gas reservoirs in the Shenfu area of the Ordos Basin in China are characterized by the widespread development of multiple formations. However, significant differences exist among the tight sandstones of different formations, and their formation mechanisms and key controlling [...] Read more.
The Carboniferous–Permian tight sandstone gas reservoirs in the Shenfu area of the Ordos Basin in China are characterized by the widespread development of multiple formations. However, significant differences exist among the tight sandstones of different formations, and their formation mechanisms and key controlling factors remain unclear, hindering the effective selection and development of favorable tight gas intervals in the study area. Through comprehensive analysis of casting thin section (CTS), scanning electron microscopy (SEM), cathodoluminescence (CL), X-ray diffraction (XRD), particle size and sorting, porosity and permeability data from Upper Paleozoic tight sandstone samples, combined with insights into depositional environments, burial history, and chemical reaction processes, this study clarifies the characteristics of tight sandstone reservoirs, reveals the key controlling factors of reservoir quality, confirms the differential evolutionary mechanisms of tight sandstone of different formations, reconstructs the diagenetic sequence, and constructs an evolution model of reservoir minerals and porosity. The research results indicate depositional processes laid the foundation for the original reservoir properties. Sandstones deposited in tidal flat and deltaic environments exhibit superior initial reservoir qualities. Compaction is a critical factor leading to the decline in reservoir quality across all formations. However, rigid particles such as quartz can partially mitigate the pore reduction caused by compaction. Early diagenetic carbonate cementation reduces reservoir quality by occupying primary pores and hindering the generation of secondary porosity induced by acidic fluids, while later-formed carbonate further densifies the sandstone by filling secondary intragranular pores. Clay mineral cements diminish reservoir porosity and permeability by filling intergranular and intragranular pores. The Shanxi and Taiyuan Formations display relatively poorer reservoir quality due to intense illitization. Overall, the reservoir quality of Benxi Formation is the best, followed by Xiashihezi Formation, with the Taiyuan and Shanxi Formations exhibiting comparatively lower qualities. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

20 pages, 1539 KiB  
Article
The Impact of Rock Morphology on Gas Dispersion in Underground Hydrogen Storage
by Tri Pham, Rouhi Farajzadeh and Quoc P. Nguyen
Energies 2025, 18(14), 3693; https://doi.org/10.3390/en18143693 - 12 Jul 2025
Viewed by 247
Abstract
Fluid dispersion directly influences the transport, mixing, and efficiency of hydrogen storage in depleted gas reservoirs. Pore structure parameters, such as pore size, throat geometry, and connectivity, influence the complexity of flow pathways and the interplay between advective and diffusive transport mechanisms. Hence, [...] Read more.
Fluid dispersion directly influences the transport, mixing, and efficiency of hydrogen storage in depleted gas reservoirs. Pore structure parameters, such as pore size, throat geometry, and connectivity, influence the complexity of flow pathways and the interplay between advective and diffusive transport mechanisms. Hence, these factors are critical for predicting and controlling flow behavior in the reservoirs. Despite its importance, the relationship between pore structure and dispersion remains poorly quantified, particularly under elevated flow conditions. To address this gap, this study employs pore network modeling (PNM) to investigate the influence of sandstone and carbonate structures on fluid flow properties at the micro-scale. Eleven rock samples, comprising seven sandstone and four carbonate, were analyzed. Pore network extraction from CT images was used to obtain detailed pore structure parameters and their statistical measures. Pore-scale simulations were conducted across 60 scenarios with varying average interstitial velocities and water as the injected fluid. Effluent hydrogen concentrations were measured to generate elution curves as a function of injected pore volumes (PV). This approach enables the assessment of the relationship between the dispersion coefficient and pore structure parameters across all rock samples at consistent average interstitial velocities. Additionally, dispersivity and n-exponent values were calculated and correlated with pore structure parameters. Full article
(This article belongs to the Special Issue Green Hydrogen Energy Production)
Show Figures

Figure 1

17 pages, 5746 KiB  
Article
Gas Prediction in Tight Sandstone Reservoirs Based on a Seismic Dispersion Attribute Derived from Frequency-Dependent AVO Inversion
by Laidong Hu, Mingchun Chen and Han Jin
Processes 2025, 13(7), 2210; https://doi.org/10.3390/pr13072210 - 10 Jul 2025
Viewed by 238
Abstract
Accurate gas prediction is crucial for identifying gas-bearing zones in tight sandstone reservoirs. Traditional seismic techniques, primarily grounded in elastic theory, often overlook inelastic dispersion effects inherent to such formations. To overcome this limitation, we introduce a gas prediction approach utilizing a dispersion [...] Read more.
Accurate gas prediction is crucial for identifying gas-bearing zones in tight sandstone reservoirs. Traditional seismic techniques, primarily grounded in elastic theory, often overlook inelastic dispersion effects inherent to such formations. To overcome this limitation, we introduce a gas prediction approach utilizing a dispersion attribute derived from frequency-dependent inversion based on an AVO equation parameterized by a gas indicator and related properties. Rock physics modeling, based on multi-scale fracture theory, reveals the frequency-dependent gas indicator is highly responsive to variations in porosity and gas saturation. Seismic AVO simulations exhibit distinguishable signatures corresponding to these variations, supporting the potential to estimate reservoir properties from pre-stack seismic data. Synthetic data tests confirm that the values of the proposed dispersion attribute increase with increasing porosity and gas saturation. Additionally, the calculated dispersion attribute exhibits a strong positive correlation with gas content, validating its effectiveness for gas evaluation. Field application results further demonstrate that the proposed dispersion attribute shows prominent anomalies in sandstone reservoirs with high gas content. Compared to the conventional P-wave dispersion attribute, the proposed dispersion attribute exhibits superior reliability in detecting gas-rich zones. These results demonstrate the utility of the method in predicting gas-bearing regions in tight sandstone reservoirs. Full article
Show Figures

Figure 1

18 pages, 4232 KiB  
Article
Experimental Investigation on the Influence of Proppant Crushing on the Propped Fracture Conductivity
by Wen Wang, Desheng Zhou, Tuan Gu, Yanhua Yan, Xin Yang and Shucan Xu
Processes 2025, 13(7), 2166; https://doi.org/10.3390/pr13072166 - 7 Jul 2025
Viewed by 254
Abstract
Hydraulic fracturing is a key stimulation technique for enhancing the productivity of tight sandstone reservoirs, with the conductivity of propped fractures serving as a critical parameter for evaluating stimulation effectiveness. This study investigated the conductivity behavior of propped fractures through laboratory experiments using [...] Read more.
Hydraulic fracturing is a key stimulation technique for enhancing the productivity of tight sandstone reservoirs, with the conductivity of propped fractures serving as a critical parameter for evaluating stimulation effectiveness. This study investigated the conductivity behavior of propped fractures through laboratory experiments using commonly used oilfield proppants. The effects of proppant size, type, concentration, and proppant combination on fracture conductivity were systematically evaluated. Results show that at low closure stress, conductivity differences among various proppant types are negligible. However, under high closure stress, proppants with lower compressive strength exhibit significantly higher crushing rates, resulting in reduced conductivity compared to high-strength proppants. In mixtures of silica sand and ceramic proppant proppants, increasing the ceramic content lowers the overall crushing rate and mitigates conductivity degradation. Additionally, blending proppants of different sizes under high stress reduces breakage, with finer particles contributing to this effect. Higher proppant concentrations also lead to lower crushing rates and improved fracture conductivity. This work provides valuable insights into optimizing proppant selection and design for reservoir stimulation and oil and gas recovery. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

27 pages, 6141 KiB  
Article
Pore-Throat Structure, Fractal Characteristics, and Main Controlling Factors in Extremely Low-Permeability Sandstone Reservoirs: The Case of Chang 3 Section in Huachi Area, Ordos Basin
by Huanmeng Zhang, Chenyang Wang, Jinkuo Sui, Yujuan Lv, Ling Guo and Zhiyu Wu
Fractal Fract. 2025, 9(7), 439; https://doi.org/10.3390/fractalfract9070439 - 3 Jul 2025
Viewed by 357
Abstract
The pore-throat structure of the extremely low-permeability sandstone reservoir in the Huachi area of the Ordos Basin is complex and highly heterogeneous. Currently, there are issues such as unclear understanding of the micro-pore-throat structural characteristics, primary controlling factors of reservoir quality, and classification [...] Read more.
The pore-throat structure of the extremely low-permeability sandstone reservoir in the Huachi area of the Ordos Basin is complex and highly heterogeneous. Currently, there are issues such as unclear understanding of the micro-pore-throat structural characteristics, primary controlling factors of reservoir quality, and classification boundaries of the reservoir in the study area, which seriously restricts the exploration and development effectiveness of the reservoir in this region. It is necessary to use a combination of various analytical techniques to comprehensively characterize the pore-throat structure and establish reservoir classification evaluation standards in order to better understand the reservoir. This study employs a suite of analytical and testing techniques, including cast thin sections (CTS), scanning electron microscopy (SEM), cathodoluminescence (CL), X-ray diffraction (XRD), as well as high-pressure mercury injection (HPMI) and constant-rate mercury injection (CRMI), and applies fractal theory for analysis. The research findings indicate that the extremely low-permeability sandstone reservoir of the Chang 3 section primarily consists of arkose and a minor amount of lithic arkose. The types of pore-throat are diverse, with intergranular pores, feldspar dissolution pores, and clay interstitial pores and microcracks being the most prevalent. The throat types are predominantly sheet-type, followed by pore shrinkage-type and tubular throats. The pore-throat network of low-permeability sandstone is primarily composed of nanopores (pore-throat radius r < 0.01 μm), micropores (0.01 < r < 0.1 μm), mesopores (0.1 < r < 1.0 μm), and macropores (r > 1.0 μm). The complexity of the reservoir pore-throat structure was quantitatively characterized by fractal theory. Nanopores do not exhibit ideal fractal characteristics. By splicing high-pressure mercury injection and constant-rate mercury injection at a pore-throat radius of 0.12 μm, a more detailed characterization of the full pore-throat size distribution can be achieved. The average fractal dimensions for micropores (Dh2), mesopores (Dc3), and macropores (Dc4) are 2.43, 2.75, and 2.95, respectively. This indicates that the larger the pore-throat size, the rougher the surface, and the more complex the structure. The degree of development and surface roughness of large pores significantly influence the heterogeneity and permeability of the reservoir in the study area. Dh2, Dc3, and Dc4 are primarily controlled by a combination of pore-throat structural parameters, sedimentary processes, and diagenetic processes. Underwater diversion channels and dissolution are key factors in the formation of effective storage space. Based on sedimentary processes, reservoir space types, pore-throat structural parameters, and the characteristics of mercury injection curves, the study area is divided into three categories. This classification provides a theoretical basis for predicting sweet spots in oil and gas exploration within the study area. Full article
Show Figures

Figure 1

16 pages, 4663 KiB  
Article
Geological Conditions and Reservoir Formation Models of Low- to Middle-Rank Coalbed Methane in the Northern Part of the Ningxia Autonomous Region
by Dongsheng Wang, Qiang Xu, Shuai Wang, Quanyun Miao, Zhengguang Zhang, Xiaotao Xu and Hongyu Guo
Processes 2025, 13(7), 2079; https://doi.org/10.3390/pr13072079 - 1 Jul 2025
Viewed by 279
Abstract
The mechanism of low- to middle-rank coal seam gas accumulation in the Baode block on the eastern edge of the Ordos Basin is well understood. However, exploration efforts in the Shizuishan area on the western edge started later, and the current understanding of [...] Read more.
The mechanism of low- to middle-rank coal seam gas accumulation in the Baode block on the eastern edge of the Ordos Basin is well understood. However, exploration efforts in the Shizuishan area on the western edge started later, and the current understanding of enrichment and accumulation rules is unclear. It is important to systematically study enrichment and accumulation, which guide the precise exploration and development of coal seam gas resources in the western wing of the basin. The coal seam collected from the Shizuishan area of Ningxia was taken as the target. Based on drilling, logging, seismic, and CBM (coalbed methane) test data, geological conditions were studied, and factors and reservoir formation modes of CBM enrichment were summarized. The results are as follows. The principal coal-bearing seams in the study area are coal seams No. 2 and No. 3 of the Shanxi Formation and No. 5 and No. 6 of the Taiyuan Formation, with thicknesses exceeding 10 m in the southwest and generally stable thickness across the region, providing favorable conditions for CBM enrichment. Spatial variations in burial depth show stability in the east and south, but notable fluctuations are observed near fault F1 in the west and north. These burial depth patterns are closely linked to coal rank, which increases with depth. Although the southeastern region exhibits a lower coal rank than the northwest, its variation is minimal, reflecting a more uniform thermal evolution. Lithologically, the roof of coal seam No. 6 is mainly composed of dense sandstone in the central and southern areas, indicating a strong sealing capacity conducive to gas preservation. This study employs a system that fuses multi-source geological data for analysis, integrating multi-dimensional data such as drilling, logging, seismic, and CBM testing data. It systematically reveals the gas control mechanism of “tectonic–sedimentary–fluid” trinity coupling in low-gentle slope structural belts, providing a new research paradigm for coalbed methane exploration in complex structural areas. It creatively proposes a three-type CBM accumulation model that includes the following: ① a steep flank tectonic fault escape type (tectonics-dominated); ② an axial tectonic hydrodynamic sealing type (water–tectonics composite); and ③ a gentle flank lithology–hydrodynamic sealing type (lithology–water synergy). This classification system breaks through the traditional binary framework, systematically explaining the spatiotemporal matching relationships of the accumulated elements in different structural positions and establishing quantitative criteria for target area selection. It systematically reveals the key controlling roles of low-gentle slope structural belts and slope belts in coalbed methane enrichment, innovatively proposing a new gentle slope accumulation model defined as “slope control storage, low-structure gas reservoir”. These integrated results highlight the mutual control of structural, thermal, and lithological factors on CBM enrichment and provide critical guidance for future exploration in the Ningxia Autonomous Region. Full article
Show Figures

Figure 1

23 pages, 5067 KiB  
Article
Heterogeneity of Deep Tight Sandstone Reservoirs Using Fractal and Multifractal Analysis Based on Well Logs and Its Correlation with Gas Production
by Peiqiang Zhao, Qiran Lv, Yi Xin and Ning Wu
Fractal Fract. 2025, 9(7), 431; https://doi.org/10.3390/fractalfract9070431 - 30 Jun 2025
Viewed by 269
Abstract
Deep tight sandstone reservoirs are characterized by low porosity and permeability, complex pore structure, and strong heterogeneity. Conducting research on the heterogeneity characteristics of reservoirs could lay a foundation for evaluating their effectiveness and accurately identifying advantageous reservoirs, which is of great significance [...] Read more.
Deep tight sandstone reservoirs are characterized by low porosity and permeability, complex pore structure, and strong heterogeneity. Conducting research on the heterogeneity characteristics of reservoirs could lay a foundation for evaluating their effectiveness and accurately identifying advantageous reservoirs, which is of great significance for searching for “sweet spot” oil and gas reservoirs in tight reservoirs. In this study, the deep tight sandstone reservoir in the Dibei area, northern Kuqa depression, Tarim Basin, China, is taken as the research object. Firstly, statistical methods are used to calculate the coefficient of variation (CV) and coefficient of heterogeneity (TK) of core permeability, and the heterogeneity within the reservoir is evaluated by analyzing the variations in the reservoir permeability. Then, based on fractal theory, the fractal and multifractal parameters of the GR and acoustic logs are calculated using the box dimension, correlation dimension, and the wavelet leader methods. The results show that the heterogeneity revealed by the box dimension, correlation dimension, and multifractal singular spectrum calculated based on well logs is consistent and in good agreement with the parameters calculated based on core permeability. The heterogeneity of gas layers is comparatively weaker, while that of dry layers is stronger. In addition, the fractal parameters of GR and the acoustic logs of three wells with the oil test in the study area were analyzed, and the relationship between reservoir heterogeneity and production was determined: As reservoir heterogeneity decreases, production increases. Therefore, reservoir heterogeneity can be used as an indicator of production; specifically, reservoirs with weak heterogeneity have high production. Full article
Show Figures

Figure 1

25 pages, 12391 KiB  
Article
Pore Pressure Prediction and Fluid Contact Determination: A Case Study of the Cretaceous Sediments in the Bredasdorp Basin, South Africa
by Phethile Promise Shabangu, Moses Magoba and Mimonitu Opuwari
Appl. Sci. 2025, 15(13), 7154; https://doi.org/10.3390/app15137154 - 25 Jun 2025
Viewed by 427
Abstract
Pore pressure prediction gives drillers an early warning of potential oil and gas kicks, enabling them to adjust mud weight pre-emptively. A kick causes a delay in drilling practices, blowouts, and jeopardization of the wells. Changes in pore pressure affect the type of [...] Read more.
Pore pressure prediction gives drillers an early warning of potential oil and gas kicks, enabling them to adjust mud weight pre-emptively. A kick causes a delay in drilling practices, blowouts, and jeopardization of the wells. Changes in pore pressure affect the type of fluid contact in the reservoir. This study predicted the pore pressure and determined fluid contacts within the Lower Cretaceous and early Upper Cretaceous (Barremian to early Cenomanian) sandstone reservoirs of the Bredasdorp Basin using well logs and repeat formation test (RFT) data from three wells: E-BK1, E-AJ1, and E-CB1. Eaton’s method of developing a depth-dependent Normal Compact Trend (NCT), using resistivity and sonic wireline logs, as well as other methods including the Mathews and Kelly, Baker and Wood, and Modified Eaton and Bowers methods, were employed for pore pressure prediction. Eaton’s method provided reliable pore pressure results in all the wells when compared to alternative methods in this study. Overburden gradient and predicted pore pressures ranged from 1.84 gm/cc to 2.07 gm/cc and from 3563.74 psi to 4310.06 psi, respectively. Eaton’s resistivity and density/neutron log method results indicated normal pressure in E-BK1 and E-AJ1, as well as overpressured zones in E-AJ1. However, in E-CB1, the results showed only overpressured zones. The E-AJ1 significant overpressures were from 2685 m to 2716 m and from 2716 m to 2735 m in the pores exceeding 7991.54 psi. Gas–water contact (GOC) was encountered at 2967.5 m in E-BK1, while oil–gas contact (OGC) was at 2523 m in E-CB1, and gas–oil and oil–water contacts (GOC and OWC) were at 2699 m and 2723 m, respectively, in E-AJ1. In E-CB1, oil–water contact (OWC) was at 2528.5 m. Fluid contacts observed from the well logs and RFT data were in close agreement in E-AJ1, whereas there was no agreement in E-CB1 because the well log observations showed a shallower depth compared to RFT data with a difference of 5.5 m. This study illustrated the significance of an integrated approach to predicting fluid contacts and pore pressure within the reservoirs by showing that fluid contacts associated with overpressures were gas–water and oil–water contacts. In contrast, gas–oil contact was associated with normal pressure and under pressure. Full article
Show Figures

Figure 1

17 pages, 23135 KiB  
Article
The Pore Evolution and Pattern of Sweet-Spot Reservoir Development of the Ultra-Tight Sandstone in the Second Member of the Xujiahe Formation in the Eastern Slope of the Western Sichuan Depression
by Bingjie Cheng, Xin Luo, Zhiqiang Qiu, Cheng Xie, Yuanhua Qing, Zhengxiang Lv, Zheyuan Liao, Yanjun Liu and Feng Li
Minerals 2025, 15(7), 681; https://doi.org/10.3390/min15070681 - 25 Jun 2025
Viewed by 259
Abstract
In order to clarify the pore evolution and coupling characteristics with hydrocarbon charging in the deep-buried ultra-tight sandstone reservoirs of the second member of Xujiahe Formation (hereinafter referred to as the Xu 2 Member) on the eastern slope of the Western Sichuan Depression, [...] Read more.
In order to clarify the pore evolution and coupling characteristics with hydrocarbon charging in the deep-buried ultra-tight sandstone reservoirs of the second member of Xujiahe Formation (hereinafter referred to as the Xu 2 Member) on the eastern slope of the Western Sichuan Depression, this study integrates burial history and thermal history with analytical methods including core observation, cast thin section analysis, scanning electron microscopy, carbon-oxygen isotope analysis, and fluid inclusion homogenization temperature measurements. The Xu 2 Member reservoirs are predominantly composed of lithic sandstones and quartz-rich sandstones, with authigenic quartz and carbonates as the main cementing materials. The reservoir spaces are dominated by intragranular dissolution pores. The timing of reservoir densification varies among different submembers. The upper submember underwent compaction during the Middle-Late Jurassic period due to the high ductility of mudstone clasts and other compaction-resistant components. The middle-lower submembers experienced densification in the Late Jurassic period. Late Cretaceous tectonic uplift induced fracture development, which enhanced dissolution in the middle-lower submembers, increasing reservoir porosity to approximately 5%. Two distinct phases of hydrocarbon charging are identified in the Xu 2 Member. The earlier densification of the upper submember created unfavorable conditions for hydrocarbon accumulation. In contrast, the middle-lower submembers received hydrocarbon charging prior to reservoir densification, providing favorable conditions for natural gas enrichment and reservoir formation. Three sweet-spot reservoir development patterns are recognized: paleo-structural trap + (internal source rock) + source-connected fracture assemblage type, paleo-structural trap + internal source rock + late-stage fracture assemblage type, and paleo-structural trap + (internal source rock) + source-connected fracture + late-stage fracture assemblage type. Full article
(This article belongs to the Special Issue Deep Sandstone Reservoirs Characterization)
Show Figures

Figure 1

26 pages, 8635 KiB  
Article
A Productivity Model for Infill Wells in Transitional Shale Gas Reservoirs Considering Stratigraphic Heterogeneity with Interbedded Lithologies
by Gaomin Li, Dengyun Lu, Jinzhou Zhao, Bin Guan, Wengao Zhou, Lan Ren, Ran Lin, Minzhong Chen and Jianjun Wu
Processes 2025, 13(7), 1984; https://doi.org/10.3390/pr13071984 - 23 Jun 2025
Viewed by 384
Abstract
Transitional shale gas represents a critical frontier for China’s oil and gas exploration, characterized by extensive distribution and substantial resource potential. However, its frequent interbedding with coal seams and tight sandstones results in a complex reservoir architecture, significantly increasing extraction challenges. Hydraulic fracturing [...] Read more.
Transitional shale gas represents a critical frontier for China’s oil and gas exploration, characterized by extensive distribution and substantial resource potential. However, its frequent interbedding with coal seams and tight sandstones results in a complex reservoir architecture, significantly increasing extraction challenges. Hydraulic fracturing remains the primary method for effectively stimulating production in such reservoirs. Nevertheless, due to the complex stacking patterns of coal, shale, and tight sandstone layers, fracturing often generates complex fracture networks, leading to pronounced stress-sensitive effects and fracture interference during production. Moreover, the development of transitional shale gas reservoirs typically employs multi-well pad fracturing (“factory-mode” drilling) with tight well spacing, intensifying the well interference and its impact on well group productivity. These factors collectively complicate post-fracturing production forecasting. Existing productivity models predominantly focus on single-lithology reservoirs with idealized fracture networks, neglecting critical factors such as the fracture interference, well interference, and stress sensitivity. To address this gap, this study targets the Ordos Basin’s transitional shale gas reservoirs. By integrating the multi-lithology, multi-layer stacked reservoir characteristics, we developed a productivity model for infill wells in such reservoirs. Using a semi-analytical approach, we analyzed post-fracturing production behavior in horizontal wells, optimized key development parameters, and provided a scientific basis for the efficient development of these reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 6931 KiB  
Article
Stress Sensitivity of Tight Sandstone Reservoirs Under the Effect of Pore Structure Heterogeneity
by Haiyang Pan, Yun Du, Qingling Zuo, Zhiqing Xie, Yao Zhou, Anan Xu, Junjian Zhang and Yuqiang Guo
Processes 2025, 13(7), 1960; https://doi.org/10.3390/pr13071960 - 20 Jun 2025
Viewed by 302
Abstract
The effect of the pore–fracture structure on the porosity and permeability affects the production process of tight sandstone gas. In this paper, 12 groups of tight sandstone samples are selected as the object, and the pore–fracture volume of a tight reservoir is quantitatively [...] Read more.
The effect of the pore–fracture structure on the porosity and permeability affects the production process of tight sandstone gas. In this paper, 12 groups of tight sandstone samples are selected as the object, and the pore–fracture volume of a tight reservoir is quantitatively characterized by a high-pressure mercury injection test. The multifractal and single fractal characteristics of different types of samples are calculated by fractal theory. On this basis, the pore volume variation under stress is discussed through the overlying pressure pore permeability test, and the pore–fracture compressibility is calculated. Finally, the main factors affecting the stress sensitivity of tight sandstone are summarized from the two aspects of the pore structure and mineral composition. The results are as follows. (1) The samples could be divided into types A and B by using the mercury-in and mercury-out curves. There is a significant hysteresis loop in the mercury inlet and outlet curves of type A, and the efficiency of the mercury inlet and outlet in the pores is relatively higher. The mercury removal curve of type B is almost parallel, and its mercury removal efficiency is relatively lower. (2) The applicability of singlet fractals in characterizing the heterogeneity of micropores is higher than that of multifractals. This is because the single fractal characteristics of the two types of samples have significant differences, while the differences in the multifractals are relatively weak. (3) A pore diameter of 100–1000 nm provides the main compression space for the type A samples. A pore distribution heterogeneity of 100–1000 nm affects the compression effect and stress sensitivity of this type B sample. Full article
Show Figures

Figure 1

21 pages, 2074 KiB  
Article
Influence of Clay Content on the Compaction and Permeability Characteristics of Sandstone Reservoirs
by Jin Pang, Tongtong Wu, Chunxi Zhou, Haotian Chen, Jiaao Gao and Xinan Yu
Processes 2025, 13(6), 1835; https://doi.org/10.3390/pr13061835 - 10 Jun 2025
Viewed by 473
Abstract
Clay content is a critical geological parameter influencing the pore structure, compaction sensitivity, and flow capacity of sandstone reservoirs. In this study, representative Tertiary sandstones from a major sedimentary basin in western China were selected, covering natural and synthetic core samples with clay [...] Read more.
Clay content is a critical geological parameter influencing the pore structure, compaction sensitivity, and flow capacity of sandstone reservoirs. In this study, representative Tertiary sandstones from a major sedimentary basin in western China were selected, covering natural and synthetic core samples with clay contents ranging from 20% to 70%. Utilizing a self-developed apparatus capable of both static and dynamic compaction experiments, we systematically performed staged static loading and gas–water two-phase displacement tests. This enabled us to obtain comprehensive datasets on porosity, permeability, pressure response, and two-phase flow characteristics under various clay content, confining pressure, and gas drive rate conditions. Results demonstrate that high clay content leads to pronounced pore structure compaction and substantially greater permeability reductions compared to low-clay reservoirs, indicating heightened stress sensitivity. The synergy between gas drive rate and confining pressure regulates intralayer water production efficiency: initially, increased gas drive enhances mobile water production, but efficiency drops sharply at late stages due to pore contraction and increased bound water. As confining pressure increases, the mixed-flow region for two-phase flow shrinks, with water permeability decreasing sharply and gas permeability increasing, revealing the dynamic fluid transport and productivity decline mechanisms controlled by effective stress. The research deepens understanding of compaction–flow mechanisms in clay-rich sandstones, offering bases for evaluating reservoir stress sensitivity and supporting efficient, sustainable gas reservoir development, which increasingly helps offset global energy shortages. Full article
Show Figures

Figure 1

Back to TopTop