The Pore Evolution and Pattern of Sweet-Spot Reservoir Development of the Ultra-Tight Sandstone in the Second Member of the Xujiahe Formation in the Eastern Slope of the Western Sichuan Depression
Abstract
1. Introduction
2. Geological Setting
3. Samples and Methods
4. Results
4.1. Rock Mineralogical Characteristics
4.2. Pore Characteristics
4.3. Physical Properties
4.4. Type of Diagenesis
4.4.1. Compaction Effect
4.4.2. Authigenic Mineral Precipitation
4.4.3. Dissolution
4.4.4. Tectonic Rupture and Hydrocarbon Injection
5. Discussion
5.1. Analysis of Reservoir Pore Evolution Characteristics
5.1.1. Chronology of Reservoir Porosity
- (1)
- Formation period of major authigenic minerals
- (2)
- Analysis of dissolution period
- (3)
- Diagenetic sequence
5.1.2. Quantitative Pore-Type Characterization of Reservoir Pore
5.1.3. Characterization of Reservoir Pore
5.2. Hydrocarbons Charge History
5.3. Reservoir Evolution and Oil and Gas Filling Coupling Characteristics
5.4. Development Mode of Sweet-Spot Reservoir
5.4.1. Type 1
5.4.2. Type 2
5.4.3. Type 3
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, J.; Dong, D.; Ni, Y.; Gong, D.; Huang, S.; Hong, F.; Zhang, Y.; Liu, Q.; Wu, X.; Feng, Z. Distribution patterns of tight sandstone gas and shale gas. Pet. Explor. Dev. 2024, 51, 767–779. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, J.; Yong, Z.; Ma, H. Tight Sandstone Reservoir Characteristics and Sand Body Distribution of the Eighth Member of Permian Shihezi Formation in the Longdong Area, Ordos Basin. Minerals 2025, 15, 463. [Google Scholar] [CrossRef]
- Zhang, X.; Deng, H.; Li, T.; Xu, Z.; Fu, M.; Ling, C.; Duan, B.; Chen, Q.; Chen, G. The conditions and modelling of hydrocarbon accumulation in tight sandstone reservoirs: A case study from the Jurassic Shaximiao formation of western Sichuan Basin, China. Geoenergy Sci. Eng. 2023, 225, 211702. [Google Scholar] [CrossRef]
- Lin, J.; Zhao, W.; Bo, D.; Fan, Y.; Zhou, G.; Hao, J. Densification Mechanism and Natural Gas Accumulation Process, Triassic Xujiahe Formation, Hechuan Area, Sichuan Basin, China. Lithosphere 2023, 2022, 4522740. [Google Scholar]
- Yang, P.; Zhang, L.; Liu, K.; Cao, B.; Gao, J.; Qiu, G. Diagenetic history and reservoir evolution of tight sandstones in the second member of the Upper Triassic Xujiahe Formation, western Sichuan Basin, China. J. Pet. Sci. Eng. 2021, 201, 108451. [Google Scholar] [CrossRef]
- Shang, X.; Li, M.; Duan, T. Sedimentary system and sand bodies distribution of the second member of the Xujiahe Formation in the Xinchang area, Western Sichuan Depression, China. Interpretation 2021, 9, T927–T944. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Y.; Chen, F.; Li, M.; Wen, Z.; Luo, X.; Ding, Z.; Li, B.; Xue, Y. Hydrocarbon fluid evolution and accumulation process in ultradeep reservoirs of the northern Fuman Oilfield, Tarim Basin Front. Earth Sci. 2024, 12, 1399595. [Google Scholar]
- Wang, F.; Feng, W.-P.; Guan, J.; Hao, J.-C. Key Questions of the Fluid Inclusion Analysis in Petroliferous Basins and their Significances. Bull. Mineral. Petrol. Geochem. 2018, 37, 441–450+561. [Google Scholar]
- Wang, Y.; Cao, Y.; Xi, K.; Song, G.; Liu, H. A recovery method for porosity evolution of clastic reservoirs with geological time: A case study from the upper submember of Ess in the Dongying depression, Jiyang Subbasin. Acta Pet. Sin. 2013, 34, 1100–1111. [Google Scholar]
- Ye, S.; Yang, Y.; Cai, L.; Yan, L.; Li, W.; He, J. Reservoir densification process in overlying tight sandstone gas area. Nat. Gas Ind. 2019, 39 (Suppl. S1), 36–41. [Google Scholar]
- Chen, X.; Ji, Y.; Yang, K. Impacts of sedimentary characteristics and diagenesis on reservoir quality of the 4th member of the Upper Triassic Xujiahe formation in the western Sichuan basin, southwest China. Mar. Pet. Geol. 2024, 167, 106981. [Google Scholar] [CrossRef]
- Liu, L.; Liu, X.; Sang, Q.; Li, W.; Xiong, J.; Liang, L. Pore-throat structure and fractal characteristics of tight gas sandstone reservoirs: A case study of the second member of the Upper Triassic Xujiahe Formation in Zhongba area, western Sichuan depression, China. Geol. J. 2024, 59, 1879–1891. [Google Scholar] [CrossRef]
- Cao, T.S.; Luo, L.; Tan, X.F.; Tan, D.P.; Sun, X.; Gao, Z.P.; Wang, J.; Cha, X.J. Genesis and pore evolution of tight sandstone reservoir: Taking Lower Shihezi Formation in the Shilijiahan block of Hangjinqi area as an example. Fault-Block Oil Gas Field 2021, 28, 598–603. [Google Scholar]
- Cui, Y.; Wang, G.; Jones, S.J.; Zhou, Z.; Ran, Y.; Lai, J.; Li, R.; Deng, L. Prediction of diagenetic facies using well logs—A case study from the upper Triassic Yanchang formation, Ordos Basin, China. Mar. Pet. Geol. 2017, 81, 50–65. [Google Scholar] [CrossRef]
- Luo, L.; Gao, X.; Meng, W.; Tan, X.; Shao, H.; Xiao, C. The origin and alteration of calcite cement in tight sandstones of the Jurassic Shishugou Group, Fukang Sag, Junggar Basin, NW China: Implications for fluid–rock interactions and porosity evolution. Aust. J. Earth Sci. 2018, 65, 427–445. [Google Scholar] [CrossRef]
- Zhao, C.; Jiang, Y.; Liu, J.; Wang, L.; Zeng, T. A recovery method of porosity evolution based on forward and inverse analyses: A case study of the tight sandstone of Xujiahe Formation, Northeast Sichuan Basin. Acta Pet. Sin. 2021, 42, 708–723. [Google Scholar]
- Chen, R.; Dou, T.; Shi, X.; Lin, M.; Yang, Q. Mechanism of Pore Structure Evolution in Tight Sandstone Subjected to ScCO2–H2O Treatment. Processes 2025, 13, 896. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, Y. Exploration potential and development direction of continental tight sandstone gas in the Sichuan Basin. Nat. Gas Ind. 2022, 42, 1–11. [Google Scholar]
- Wu, D.; Yu, Y.; Lin, L.; Liu, S.; Li, B.; Ye, X. Study on Reservoir Characteristics, the Tightening Process and Reservoir Quality in Source-to-Sink Systems in the Xu-2 Member of the Xujiahe Formation in the Western Sichuan Basin, Western China. Minerals 2025, 15, 625. [Google Scholar] [CrossRef]
- Bian, C.S.; Wang, H.J.; Wang, Z.C.; Xu, Z.H. Exploration status and potential evaluation of tight gas in Sichuan Basin. Strateg. Study CAE 2012, 14, 74–80. [Google Scholar]
- Zhihong, Z.; Denghua, L.; Senshu, B.; Jun, J.; Xin, Z.; Zhuoya, L.; Xuan, G. Resource potentials of natural gas in Sichuan Basin. China Pet. Explor. 2017, 22, 12–20. [Google Scholar]
- Wu, D.; Yu, Y.; Lin, L.; Chen, H.; Liu, S. Characteristics and Control Factors of a High-Quality Deeply Buried Calcareous Sandstone Reservoir, the Fourth Member of the Upper Xujiahe Formation in the Western Sichuan Basin, China. Minerals 2024, 14, 872. [Google Scholar] [CrossRef]
- Huang, L.S.; Yan, J.P.; Liu, M.J.; Zhang, Z.; Ye, S.J.; Zhang, F.; Wang, Z.; Xie, G. Diagenetic facies logging identification and application of deep tight sandstone gas reservoir: A case study of the third member of Xujiahe formation in Dayi area of western Sichuan depression. J. China Univ. Min. Technol. 2022, 51, 107–123. [Google Scholar]
- Liu, Z.Q.; Xu, S.L.; Liu, J.L.; Ma, L.Y.; Liu, S.B.; Fan, X.; Jin, W.J.; Li, W.P. Enrichment laws of deep tight sandstone gas reservoirs in the Western Sichuan Depression, Sichuan Basin. Nat. Gas Ind. 2020, 40, 31–40. [Google Scholar]
- Wang, Z.K.; Lin, L.B.; Yu, Y.U.; Wu, D.; Liu, L. The main controlling factors of high quality reservoir in the second member of Xujiahe Formation in Xinchang area, Western Sichuan, China. Fault-Block Oil Gas Field 2022, 29, 207–213. [Google Scholar]
- Luo, L.; Gao, X.Z.; Meng, W.B.; Tan, X.F.; Feng, M.S.; Shao, H.B. The formation mechanism of the relatively high-quality reservoir in tight sandstones with deep burial: A case study of Xujiahe Formation in Xinchang structural belt of Western Sichuan Depression. Acta Geosci. Sin. 2017, 38, 930–944. [Google Scholar]
- Li, W.; Liu, Z.; Hu, Z.; Jin, W.; Li, P.; Liu, J.; Xu, S.; Ma, A. Characteristics of and main factors controlling the tight sandstone reservoir fractures in the 2nd member of Xujiahe Formation in Xinchang area, Western Sichuan Depression, Sichuan Basin. Oil Gas Geol. 2021, 42, 884–897+1010. [Google Scholar]
- Wang, L.; Cai, L.; Li, D.; Zhang, S. Characteristics of Xuer gas reservoir in Zhongjiang Huilong structure on the eastern slope of western Sichuan depression. China Pet. Chem. Ind. Stand. Qual. 2022, 42, 103–105. [Google Scholar]
- Wu, W.; Wu, D. Prediction of fracture dominant migrating channel of eastern slope in western Sichuan depression. China Sci. 2019, 14, 476–480+523. [Google Scholar]
- SY/T 5368-2016; Identification for Thin Section of Rocks. Petroleum Industry Press: Beijing, China, 2016.
- SY/T 5162-2021; Scanning Electron Microscopy Analysis of Rock Samples. Petroleum Industry Press: Beijing, China, 2021.
- SY/T 5238-2019; Carbon and Oxygen Isotope Analysis Method for Organic Matter and Carbonate Rock. Petroleum Industry Press: Beijing, China, 2019.
- SY/T 6010-2011; Test Method for Fluid Inclusion in Sedimentary Basins by Microscopic Thermometry. Petroleum Industry Press: Beijing, China, 2011.
- Zeng, Y.; Xia, W. Sedimentary Petrology; Geology Press: Beijing, China, 1986. [Google Scholar]
- Zhu, X.; Feng, L.; Lü, L. Diagenetic facies and pore evolution of tight sandstone reservoir: Taking Sha 21 sub-member in the north of central Sichuan Basin as an example. Fault-Block Oil Gas Field 2022, 29, 265–270. [Google Scholar]
- Qin, S.; Shi, W.; Wang, R.; Liu, K.; Zhang, W.; Qi, R.; Xu, Q. Characteristics of tight sandstone reservoirs and their controlling factors of He-1 Member in Hangjinqi Block, Ordos Basin. Earth Sci. 2022, 47, 1604–1618. [Google Scholar]
- Wang, A.; Zhong, D.K.; Liu, Z.Q.; Wang, W.; Du, H.Q.; Zhou, Z.H.; Tang, Z.C. Characteristics of deep tight sandstone reservoirs and their controlling factors of physical properties: A case study of the Xu-2 member in the western Yuanba area of the northeastern Sichuan Basin, China. Acta Sedimentol. Sin. 2022, 40, 410–421. [Google Scholar]
- Lyu, Z. Study on the Accumulation Chronology and Fluid Evolution History of the Western Sichuan Depression; Exploration and Development Research Institute of Sinopec Southwest Oil and Gas Branch: Chengdu, China, 2005; pp. 69–70. [Google Scholar]
- Friedman, I.; O’Neil, J.R. Compilation of stable isotope fractionation factors of geochemical interest. In Data of Geochemistry, 6th ed.; Professional Paper; United States Government Printing Office: Washington, DC, USA, 1977; pp. 1–12. [Google Scholar]
- Scherer, M. Parameters influencing porosity in sandstones: A model for sandstone porosity prediction. AAPG Bull. 1987, 71, 485–491. [Google Scholar] [CrossRef]
- Beard, D.C.; Weyl, P.K. Influence of Texture on Porosity and Permeability of Unconsolidated Sand. AAPG Bull. 1973, 57, 349–369. [Google Scholar]
- Hubbert, M.K.; Ruby, W.W. Mechanics of fluid-filled porous solid and its application to overthrust faulting: Role of fluid pressure in mechanics of overthrust faulting. Geol. Soc. Am. Bull. 1959, 70, 115–166. [Google Scholar] [CrossRef]
- Chen, D.; Pang, X.; Xiong, L.; Wang, L.; Xie, M. Porosity evolution in tight gas sands of the upper triassic Xujiahe Formation, western Sichuan Basin, China. Rev. Mex. Cienc. Geol. 2014, 31, 361–375. [Google Scholar]
Submember | Intragranular Pore (%) | Primary Residual Intergranular Pore (%) | Fracture (%) | Areal Porosity (%) | Number of Samples |
---|---|---|---|---|---|
Upper | 3.1 | 0 | 0.5 | 3.6 | 17 |
Middle | 2.5 | 0.13 | 0.78 | 3.41 | 13 |
Lower | 4.7 | 0.6 | 0.2 | 5.5 | 8 |
Submember | Fillings (%) | Pore (%) | ||||||
---|---|---|---|---|---|---|---|---|
Heterobase | Quartz Overgrowth | Filling Quartz | Cemented Carbonates | Illite | Residual Primary Pore | Dissolved Pore | Fracture | |
Upper | 3.3 | 2.5 | 1.9 | 2.0 | 1.5 | 0 | 3.1 | 0.5 |
Middle | 2.7 | 2.9 | 2.9 | 0.9 | 1.7 | 0.2 | 3.8 | 1.2 |
Lower | 2.7 | 2.9 | 4.1 | 0.9 | 0.7 | 0.6 | 4.8 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, B.; Luo, X.; Qiu, Z.; Xie, C.; Qing, Y.; Lv, Z.; Liao, Z.; Liu, Y.; Li, F. The Pore Evolution and Pattern of Sweet-Spot Reservoir Development of the Ultra-Tight Sandstone in the Second Member of the Xujiahe Formation in the Eastern Slope of the Western Sichuan Depression. Minerals 2025, 15, 681. https://doi.org/10.3390/min15070681
Cheng B, Luo X, Qiu Z, Xie C, Qing Y, Lv Z, Liao Z, Liu Y, Li F. The Pore Evolution and Pattern of Sweet-Spot Reservoir Development of the Ultra-Tight Sandstone in the Second Member of the Xujiahe Formation in the Eastern Slope of the Western Sichuan Depression. Minerals. 2025; 15(7):681. https://doi.org/10.3390/min15070681
Chicago/Turabian StyleCheng, Bingjie, Xin Luo, Zhiqiang Qiu, Cheng Xie, Yuanhua Qing, Zhengxiang Lv, Zheyuan Liao, Yanjun Liu, and Feng Li. 2025. "The Pore Evolution and Pattern of Sweet-Spot Reservoir Development of the Ultra-Tight Sandstone in the Second Member of the Xujiahe Formation in the Eastern Slope of the Western Sichuan Depression" Minerals 15, no. 7: 681. https://doi.org/10.3390/min15070681
APA StyleCheng, B., Luo, X., Qiu, Z., Xie, C., Qing, Y., Lv, Z., Liao, Z., Liu, Y., & Li, F. (2025). The Pore Evolution and Pattern of Sweet-Spot Reservoir Development of the Ultra-Tight Sandstone in the Second Member of the Xujiahe Formation in the Eastern Slope of the Western Sichuan Depression. Minerals, 15(7), 681. https://doi.org/10.3390/min15070681