The Impact of Rock Morphology on Gas Dispersion in Underground Hydrogen Storage
Abstract
1. Introduction
2. Background
2.1. Pore Structure Parameters
2.2. Pore Structure Modelling
2.3. Governing Equations
3. Methodology
4. Results and Discussion
4.1. Characterization of Pore Structure Parameters
4.2. Impacts of Pore Structure Parameters on Dispersion Coefficient
4.3. Impacts of Pore Structure Parameters on Dispersivity and n-Exponent
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Name | Average Interstitial Velocity (m/s) | Peclet Number | Dispersion Coefficient (m2/s) |
---|---|---|---|
Bandera Gray | 0.001 | 120 | 4.93 × 10−8 |
0.005 | 540 | 4.38 × 10−7 | |
0.010 | 1020 | 1.12 × 10−6 | |
0.015 | 1560 | 1.92 × 10−6 | |
0.020 | 2040 | 2.77 × 10−6 | |
Barea | 0.001 | 120 | 6.10 × 10−8 |
0.005 | 660 | 3.78 × 10−7 | |
0.010 | 1320 | 7.99 × 10−7 | |
0.015 | 1920 | 1.16 × 10−6 | |
0.020 | 2580 | 1.50 × 10−6 | |
Barea Upper Gray | 0.001 | 120 | 4.41 × 10−8 |
0.005 | 540 | 3.25 × 10−7 | |
0.010 | 1140 | 7.14 × 10−7 | |
0.015 | 1680 | 1.10 × 10−6 | |
0.020 | 2220 | 1.48 × 10−6 | |
Bentheimer | 0.001 | 180 | 3.29 × 10−8 |
0.005 | 900 | 2.62 × 10−7 | |
0.010 | 1800 | 7.05 × 10−7 | |
0.015 | 2700 | 1.13 × 10−6 | |
0.020 | 3600 | 1.44 × 10−6 | |
Castlegate | 0.001 | 180 | 5.40 × 10−8 |
0.005 | 900 | 5.50 × 10−7 | |
0.01 | 1800 | 1.41 × 10−6 | |
0.015 | 2700 | 2.24 × 10−6 | |
0.020 | 3600 | 3.04 × 10−6 | |
Kirby | 0.001 | 120 | 5.16 × 10−8 |
0.005 | 660 | 3.97 × 10−7 | |
0.010 | 1380 | 9.42 × 10−7 | |
0.015 | 2040 | 1.54 × 10−6 | |
0.020 | 2760 | 2.15 × 10−6 | |
Leopard | 0.001 | 180 | 6.77 × 10−8 |
0.005 | 840 | 5.14 × 10−7 | |
0.010 | 1740 | 1.21 × 10−6 | |
0.015 | 2580 | 1.87 × 10−6 | |
0.020 | 3480 | 2.47 × 10−6 |
Name | Average Interstitial Velocity (m/s) | Peclet Number | Dispersion Coefficient (m2/s) |
---|---|---|---|
C1 | 0.001 | 35 | 1.85 × 10−8 |
0.005 | 180 | 1.95 × 10−7 | |
0.010 | 360 | 4.83 × 10−7 | |
0.015 | 540 | 7.84 × 10−7 | |
0.020 | 720 | 1.10 × 10−6 | |
C2 | 0.001 | 60 | 2.91 × 10−8 |
0.005 | 360 | 1.81 × 10−7 | |
0.010 | 660 | 3.92 × 10−7 | |
0.015 | 1020 | 6.08 × 10−7 | |
0.020 | 1380 | 8.46 × 10−7 | |
C3 | 0.001 | 50 | 1.58 × 10−8 |
0.005 | 240 | 1.29 × 10−7 | |
0.010 | 480 | 3.08 × 10−7 | |
0.015 | 720 | 5.11 × 10−7 | |
0.020 | 1020 | 7.61 × 10−7 | |
C4 | 0.001 | 60 | 3.71 × 10−8 |
0.005 | 360 | 2.15 × 10−7 | |
0.010 | 720 | 4.78 × 10−7 | |
0.015 | 900 | 5.91 × 10−7 | |
0.020 | 1200 | 8.25 × 10−7 |
Name | Dispersivity (α) | n-Exponent |
---|---|---|
Bandera Gray | 0.0095 | 1.427 |
Barea | 0.0005 | 1.054 |
Barea Upper Gray | 0.0013 | 1.202 |
Bentheimer | 0.0011 | 1.286 |
Castlegate | 0.0057 | 1.414 |
Kirby | 0.0013 | 1.192 |
Leopard | 0.0015 | 1.225 |
Name | Dispersivity (α) | n-Exponent |
---|---|---|
C1 | 0.0107 | 1.355 |
C2 | 0.0006 | 1.079 |
C3 | 0.0029 | 1.289 |
C4 | 0.0005 | 1.033 |
References
- Coats, K.H.; Whitson, C.H.; Thomas, L.K. Modeling Conformance as Dispersion. SPE Reserv. Eval. Eng. 2009, 12, 33–47. [Google Scholar] [CrossRef]
- Sahimi, M. Flow and Transport in Porous Media and Fractured Rock; Wiley: Hoboken, NJ, USA, 2011; ISBN 9783527404858. [Google Scholar]
- Bear, J. Dynamics of Fluids in Porous Media. J. Fluid Mech. 1973, 61, 206–208. [Google Scholar] [CrossRef]
- Dentz, M.; Icardi, M.; Hidalgo, J.J. Mechanisms of Dispersion in a Porous Medium. J. Fluid Mech. 2018, 841, 851–882. [Google Scholar] [CrossRef]
- Puyguiraud, A.; Gouze, P.; Dentz, M. Pore-Scale Mixing and the Evolution of Hydrodynamic Dispersion in Porous Media. Phys. Rev. Lett. 2021, 126, 164501. [Google Scholar] [CrossRef]
- Wang, Z.; Chauhan, K.; Pereira, J.-M.; Gan, Y. Disorder Characterization of Porous Media and Its Effect on Fluid Displacement. Phys. Rev. Fluids 2019, 4, 034305. [Google Scholar] [CrossRef]
- Fick, A. On Liquid Diffusion. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1855, 10, 30–39. [Google Scholar] [CrossRef]
- Perkins, T.K.; Johnston, O.C. A Review of Diffusion and Dispersion in Porous Media. Soc. Pet. Eng. J. 1963, 3, 70–84. [Google Scholar] [CrossRef]
- Fried, J.J.; Combarnous, M.A. Dispersion in Porous Media. In Advances in Hydroscience; Elsevier: Amsterdam, The Netherlands, 1971; pp. 169–282. [Google Scholar]
- Nguyen, V.; Papavassiliou, D.V. Hydrodynamic Dispersion in Porous Media and the Significance of Lagrangian Time and Space Scales. Fluids 2020, 5, 79. [Google Scholar] [CrossRef]
- Kang, Q.; Zhang, D.; Chen, S.; He, X. Lattice Boltzmann Simulation of Chemical Dissolution in Porous Media. Phys. Rev. E 2002, 65, 036318. [Google Scholar] [CrossRef]
- Bijeljic, B.; Mostaghimi, P.; Blunt, M.J. Signature of Non-Fickian Solute Transport in Complex Heterogeneous Porous Media. Phys. Rev. Lett. 2011, 107, 204502. [Google Scholar] [CrossRef]
- De Paoli, M. Convective Mixing in Porous Media: A Review of Darcy, Pore-Scale and Hele-Shaw Studies. Eur. Phys. J. E 2023, 46, 129. [Google Scholar] [CrossRef] [PubMed]
- Joekar-Niasar, V.; Hassanizadeh, S.M. Analysis of Fundamentals of Two-Phase Flow in Porous Media Using Dynamic Pore-Network Models: A Review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1895–1976. [Google Scholar] [CrossRef]
- Joekar-Niasar, V.; Hassanizadeh, S.M.; Dahle, H.K. Non-Equilibrium Effects in Capillarity and Interfacial Area in Two-Phase Flow: Dynamic Pore-Network Modelling. J. Fluid Mech. 2010, 655, 38–71. [Google Scholar] [CrossRef]
- El-Zehairy, A.A.; Nezhad, M.M.; Joekar-Niasar, V.; Guymer, I.; Kourra, N.; Williams, M.A. Pore-Network Modelling of Non-Darcy Flow Through Heterogeneous Porous Media. Adv. Water Resour. 2019, 131, 103378. [Google Scholar] [CrossRef]
- Dentz, M.; de Barros, F.P.J. Dispersion Variance for Transport in Heterogeneous Porous Media. Water Resour. Res. 2013, 49, 3443–3461. [Google Scholar] [CrossRef]
- Talon, L.; Ollivier-Triquet, E.; Dentz, M.; Bauer, D. Transient Dispersion Regimes in Heterogeneous Porous Media: On the Impact of Spatial Heterogeneity in Permeability and Exchange Kinetics in Mobile–Immobile Transport. Adv. Water Resour. 2023, 174, 104425. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, W.; Xiao, H.; Wang, M. Non-Monotonic Effect of Compaction on Longitudinal Dispersion Coefficient of Porous Media. J. Fluid Mech. 2024, 988, R2. [Google Scholar] [CrossRef]
- Raoof, A.; Hassanizadeh, S.M. Saturation-dependent Solute Dispersivity in Porous Media: Pore-scale Processes. Water Resour. Res. 2013, 49, 1943–1951. [Google Scholar] [CrossRef]
- Saeibehrouzi, A.; Holtzman, R.; Denissenko, P.; Abolfathi, S. Solute Transport in Unsaturated Porous Media with Spatially Correlated Disorder. Adv. Water. Resour. 2024, 191, 104773. [Google Scholar] [CrossRef]
- Mascini, A.; Boone, M.; Van Offenwert, S.; Wang, S.; Cnudde, V.; Bultreys, T. Fluid Invasion Dynamics in Porous Media with Complex Wettability and Connectivity. Geophys. Res. Lett. 2021, 48, e2021GL095185. [Google Scholar] [CrossRef]
- Holtzman, R. Effects of Pore-Scale Disorder on Fluid Displacement in Partially-Wettable Porous Media. Sci. Rep. 2016, 6, 36221. [Google Scholar] [CrossRef]
- Hunt, A.G.; Sahimi, M. Flow, Transport, and Reaction in Porous Media: Percolation Scaling, Critical-Path Analysis, and Effective Medium Approximation. Rev. Geophys. 2017, 55, 993–1078. [Google Scholar] [CrossRef]
- Puyguiraud, A.; Uszes, P.; Dentz, M. The Role of Coordination Number and Pore Size Distribution on Flow Organization in Porous Media 2020. In Proceedings of the 22nd EGU General Assembly, Online, 4–8 May 2020. [Google Scholar]
- Ghanbarian, B.; Esmaeilpour, M.; Ziff, R.M.; Sahimi, M. Effect of Pore-Scale Heterogeneity on Scale-Dependent Permeability: Pore-Network Simulation and Finite-Size Scaling Analysis. Water Resour. Res. 2021, 57, e2021WR030664. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Liang, B.; Sun, W.; Liu, J.; Lei, Y. Microscopic Flow of CO2 in Complex Pore Structures: A Recent 10-Year Review. Sustainability 2023, 15, 12959. [Google Scholar] [CrossRef]
- Vasheghani Farahani, M.; Mousavi Nezhad, M. On the Effect of Flow Regime and Pore Structure on the Flow Signatures in Porous Media. Phys. Fluids 2022, 34, 115139. [Google Scholar] [CrossRef]
- Su, Y.; Zha, M.; Jiang, L.; Ding, X.; Qu, J.; Jin, J.; Iglauer, S. Pore Structure and Fluid Distribution of Tight Sandstone by the Combined Use of SEM, MICP and X-Ray Micro-CT. J. Pet Sci. Eng. 2022, 208, 109241. [Google Scholar] [CrossRef]
- Rabbani, A.; Jamshidi, S.; Salehi, S. An Automated Simple Algorithm for Realistic Pore Network Extraction from Micro-Tomography Images. J. Pet. Sci. Eng. 2014, 123, 164–171. [Google Scholar] [CrossRef]
- Yi, Z.; Lin, M.; Jiang, W.; Zhang, Z.; Li, H.; Gao, J. Pore Network Extraction from Pore Space Images of Various Porous Media Systems. Water Resour. Res. 2017, 53, 3424–3445. [Google Scholar] [CrossRef]
- Gostick, J.; Khan, Z.; Tranter, T.; Kok, M.; Agnaou, M.; Sadeghi, M.; Jervis, R. PoreSpy: A Python Toolkit for Quantitative Analysis of Porous Media Images. J. Open. Source Softw. 2019, 4, 1296. [Google Scholar] [CrossRef]
- Gostick, J.; Aghighi, M.; Hinebaugh, J.; Tranter, T.; Hoeh, M.A.; Day, H.; Spellacy, B.; Sharqawy, M.H.; Bazylak, A.; Burns, A.; et al. OpenPNM: A Pore Network Modeling Package. Comput. Sci. Eng. 2016, 18, 60–74. [Google Scholar] [CrossRef]
- Taylor, G. Dispersion of Soluble Matter in Solvent Flowing Slowly Through a Tube. Proc. R Soc. Lond. A Math Phys. Sci. 1953, 219, 186–203. [Google Scholar] [CrossRef]
- Iraji, S.; De Almeida, T.R.; Munoz, E.R.; Basso, M.; Vidal, A.C. The Impact of Heterogeneity and Pore Network Characteristics on Single and Multi-Phase Fluid Propagation in Complex Porous Media: An X-Ray Computed Tomography Study. Pet. Sci. 2024, 21, 1719–1738. [Google Scholar] [CrossRef]
- Bradley, J.; Singh, K.; Wang, L. Intrapore Geometry and Flow Rate Controls on the Transition of Non-Fickian to Fickian Dispersion. Water. Resour. Res. 2023, 59, e2022WR032833. [Google Scholar] [CrossRef]
- Wildenschild, D.; Sheppard, A.P. X-Ray Imaging and Analysis Techniques for Quantifying Pore-Scale Structure and Processes in Subsurface Porous Medium Systems. Adv. Water. Resour. 2013, 51, 217–246. [Google Scholar] [CrossRef]
- Arand, F.; Hesser, J. Accurate and Efficient Maximal Ball Algorithm for Pore Network Extraction. Comput. Geosci. 2017, 101, 28–37. [Google Scholar] [CrossRef]
Sample Name | Porosity | Permeability (md) | Pore Radius (µm) | Throat Radius (µm) | Throat Length (µm) | Pore Coordination Number | ||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | STD | Mean | STD | Mean | STD | Mean | STD | |||
Sandstone | ||||||||||
Bandera Gray | 0.231 | 255.986 | 12.448 | 4.848 | 5.830 | 2.752 | 35.974 | 13.217 | 3.831 | 2.444 |
Barea | 0.203 | 490.428 | 14.269 | 6.969 | 7.203 | 3.829 | 42.350 | 18.568 | 3.642 | 2.439 |
Barea Upper Gray | 0.195 | 394.844 | 14.194 | 6.509 | 7.235 | 3.604 | 41.436 | 17.046 | 3.641 | 2.360 |
Bentheimer | 0.265 | 1916.844 | 17.367 | 10.531 | 9.739 | 5.746 | 58.012 | 29.752 | 3.727 | 2.714 |
Castlegate | 0.263 | 1485.284 | 15.567 | 8.712 | 8.017 | 4.869 | 51.058 | 25.890 | 3.869 | 2.888 |
Kirby | 0.205 | 441.430 | 14.084 | 5.585 | 6.968 | 3.173 | 39.467 | 15.064 | 3.736 | 2.206 |
Leopard | 0.194 | 1123.658 | 14.107 | 7.726 | 7.367 | 4.601 | 43.636 | 21.580 | 3.854 | 2.672 |
Carbonate | ||||||||||
C1 | 0.173 | 14.181 | 6.648 | 3.291 | 3.202 | 1.839 | 19.359 | 8.661 | 3.754 | 2.677 |
C2 | 0.252 | 75.489 | 5.474 | 2.576 | 2.339 | 1.383 | 16.832 | 7.485 | 4.586 | 3.566 |
C3 | 0.361 | 210.914 | 6.476 | 3.063 | 3.074 | 1.766 | 19.141 | 8.564 | 4.847 | 3.573 |
C4 | 0.245 | 117.385 | 6.615 | 3.561 | 3.281 | 2.197 | 20.048 | 10.676 | 4.486 | 3.505 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, T.; Farajzadeh, R.; Nguyen, Q.P. The Impact of Rock Morphology on Gas Dispersion in Underground Hydrogen Storage. Energies 2025, 18, 3693. https://doi.org/10.3390/en18143693
Pham T, Farajzadeh R, Nguyen QP. The Impact of Rock Morphology on Gas Dispersion in Underground Hydrogen Storage. Energies. 2025; 18(14):3693. https://doi.org/10.3390/en18143693
Chicago/Turabian StylePham, Tri, Rouhi Farajzadeh, and Quoc P. Nguyen. 2025. "The Impact of Rock Morphology on Gas Dispersion in Underground Hydrogen Storage" Energies 18, no. 14: 3693. https://doi.org/10.3390/en18143693
APA StylePham, T., Farajzadeh, R., & Nguyen, Q. P. (2025). The Impact of Rock Morphology on Gas Dispersion in Underground Hydrogen Storage. Energies, 18(14), 3693. https://doi.org/10.3390/en18143693