Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (693)

Search Parameters:
Keywords = salt adsorption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1004 KiB  
Article
Removal of Octinoxate, a UV-filter Compound, from Aquatic Environment Using Polydimethylsiloxane Sponge
by Péter Szabó, Zoltán Németh, Ruben Szabó, István Lázár, Zsolt Pirger and Attila Gáspár
Water 2025, 17(15), 2306; https://doi.org/10.3390/w17152306 - 3 Aug 2025
Viewed by 65
Abstract
This work demonstrates the potential of polydimethylsiloxane sponges for removing organic UV filter compounds such as octinoxate from aqueous solutions. The sponges were fabricated using simple templates made of hydrophilic fused or pressed particles (sugar or NaCl salt) with an approximate particle size [...] Read more.
This work demonstrates the potential of polydimethylsiloxane sponges for removing organic UV filter compounds such as octinoxate from aqueous solutions. The sponges were fabricated using simple templates made of hydrophilic fused or pressed particles (sugar or NaCl salt) with an approximate particle size of 0.4 mm. Among the prepared sponges, those templated with sugar cubes or coarse salt exhibited the highest adsorption capacity, effectively adsorbing up to 0.6% of their own mass in octinoxate. The PDMS sponges were fully regenerable, allowing for the complete removal of octinoxate without any detectable changes in their adsorption properties or dry weight. Due to their simple fabrication, ease of handling, ability to float, and reusability, PDMS sponges present an environmentally friendly and low-maintenance alternative to conventional filtration systems for the removal of octinoxate and potentially other UV filter compounds from environmental surface waters and recreational water bodies. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

26 pages, 9458 KiB  
Article
Wettability Characteristics of Mixed Sedimentary Shale Reservoirs in Saline Lacustrine Basins and Their Impacts on Shale Oil Energy Replenishment: Insights from Alternating Imbibition Experiments
by Lei Bai, Shenglai Yang, Dianshi Xiao, Hongyu Wang, Jian Wang, Jin Liu and Zhuo Li
Energies 2025, 18(14), 3887; https://doi.org/10.3390/en18143887 - 21 Jul 2025
Viewed by 325
Abstract
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing [...] Read more.
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing properties and the identification of sweet spots. This paper analyzed mixed sedimentary shale samples from the Lucaogou Formation of the Jimsar Sag and the Fengcheng Formation of the Mahu Sag. Methods such as petrographic thin sections, X-ray diffraction, organic matter content analysis, and argon ion polishing scanning electron microscopy were used to examine the lithological and mineralogical characteristics, geochemical characteristics, and pore space characteristics of the mixed sedimentary shale reservoir. Alternating imbibition and nuclear magnetic resonance were employed to quantitatively characterize the wettability of the reservoir and to discuss the effects of compositional factors, lamina types, and pore structure on wettability. Research findings indicate that the total porosity, measured by the alternate imbibition method, reached 72% of the core porosity volume, confirming the effectiveness of alternate imbibition in filling open pores. The Lucaogou Formation exhibits moderate to strong oil-wet wettability, with oil-wet pores predominating and well-developed storage spaces; the Fengcheng Formation has a wide range of wettability, with a higher proportion of mixed-wet pores, strong heterogeneity, and weaker oil-wet properties compared to the Lucaogou Formation. TOC content has a two-segment relationship with wettability, where oil-wet properties increase with TOC content at low TOC levels, while at high TOC levels, the influence of minerals such as carbonates dominates; carbonate content shows an “L” type response to wettability, enhancing oil-wet properties at low levels (<20%), but reducing it due to the continuous weakening effect of minerals when excessive. Lamina types in the Fengcheng Formation significantly affect wettability differentiation, with carbonate-shale laminae dominating oil pores, siliceous laminae contributing to water pores, and carbonate–feldspathic laminae forming mixed pores; the Lucaogou Formation lacks significant laminae, and wettability is controlled by the synergistic effects of minerals, organic matter, and pore structure. Increased porosity strengthens oil-wet properties, with micropores promoting oil adsorption through their high specific surface area, while macropores dominate in terms of storage capacity. Wettability is the result of the synergistic effects of multiple factors, including TOC, minerals, lamina types, and pore structure. Based on the characteristic that oil-wet pores account for up to 74% in shale reservoirs (mixed-wet 12%, water-wet 14%), a wettability-targeted regulation strategy is implemented during actual shale development. Surfactants are used to modify oil-wet pores, while the natural state of water-wet and mixed-wet pores is maintained to avoid interference and preserve spontaneous imbibition advantages. The soaking period is thus compressed from 30 days to 3–5 days, thereby enhancing matrix displacement efficiency. Full article
(This article belongs to the Special Issue Sustainable Development of Unconventional Geo-Energy)
Show Figures

Figure 1

14 pages, 1342 KiB  
Article
Mitigating Deicer-Induced Salinity Through Activated Carbon and Salt-Tolerant Grass Integration: A Case of Pennisetum alopecuroides
by Jae-Hyun Park, Hyo-In Lim, Myung-Hun Lee, Yong-Han Yoon and Jin-Hee Ju
Environments 2025, 12(7), 250; https://doi.org/10.3390/environments12070250 - 20 Jul 2025
Viewed by 568
Abstract
The use of chloride-based deicing salts, particularly sodium chloride (NaCl) and calcium chloride (CaCl2), is a common practice in cold regions for maintaining road safety during winter. However, the accumulation of salt residues in adjacent soils poses serious environmental threats, including [...] Read more.
The use of chloride-based deicing salts, particularly sodium chloride (NaCl) and calcium chloride (CaCl2), is a common practice in cold regions for maintaining road safety during winter. However, the accumulation of salt residues in adjacent soils poses serious environmental threats, including reduced pH, increased electrical conductivity (EC), disrupted soil structure, and plant growth inhibition. This study aimed to evaluate the combined effect of activated carbon (AC) and Pennisetum alopecuroides, a salt-tolerant perennial grass, in alleviating salinity stress under deicer-treated soils. A factorial greenhouse experiment was conducted using three fixed factors: (i) presence or absence of Pennisetum alopecuroides, (ii) deicer type (NaCl or CaCl2), and (iii) activated carbon mixing ratio (0, 1, 2, 5, and 10%). Soil pH, EC, and ion concentrations (Na+, Cl, Ca2+) were measured, along with six plant growth indicators. The results showed that increasing AC concentrations significantly increased pH and reduced EC and ion accumulation, with the 5% AC treatment being optimal in both deicer systems. Plant physiological responses were improved in AC-amended soils, especially under CaCl2 treatment, indicating less ion toxicity and better root zone conditions. The interaction effects between AC, deicer type, and plant presence were statistically significant (p < 0.05), supporting a synergistic remediation mechanism involving both adsorption and biological uptake. Despite the limitations of short-term controlled conditions, this study offers a promising phytomanagement strategy using natural adsorbents and salt-tolerant plants for sustainable remediation of salt-affected soils in road-adjacent and urban environments. Full article
Show Figures

Figure 1

21 pages, 4544 KiB  
Article
A Novel Activated Carbon-Based Composite for Enhanced Mercury Removal
by Hania Albatrni and Hazim Qiblawey
Water 2025, 17(13), 2035; https://doi.org/10.3390/w17132035 - 7 Jul 2025
Viewed by 355
Abstract
In designing an optimized activated carbon-based adsorbent, several key factors are crucial for its practical application in the industrial sector, including high BET surface area, strong adsorption capacity, selectivity, mechanical and thermal stability, regeneration potential, environmental impact, and cost-effectiveness. This study explores the [...] Read more.
In designing an optimized activated carbon-based adsorbent, several key factors are crucial for its practical application in the industrial sector, including high BET surface area, strong adsorption capacity, selectivity, mechanical and thermal stability, regeneration potential, environmental impact, and cost-effectiveness. This study explores the innovative approach of combining two chemical activating agents, potassium carbonate and sodium thiosulfate, to produce activated carbon with enhanced properties for improved mercury removal. At an activation temperature of 800 °C, the resulting adsorbent achieved a BET surface area of 2132.7 m2/g and a total pore volume of 1.08 cm3/g. Testing its mercury removal efficiency, the maximum adsorption capacity was 289 mg/g at room temperature. The Langmuir isotherm provided an excellent fit to the experimental data, indicating a monolayer adsorption process. Kinetic modeling revealed that the adsorption followed a pseudo-second-order model, consistent with chemisorption. The primary removal mechanism was found to involve complexation of mercury with oxygen and sulfur-containing functional groups, along with pore-filling physical adsorption. The adsorbent also showed a strong affinity for mercury even in the presence of other competing heavy metals. Furthermore, regeneration studies demonstrated the adsorbent’s effectiveness over five cycles. This research introduces a novel, environmentally friendly, and cost-efficient adsorbent for mercury removal. Full article
Show Figures

Figure 1

24 pages, 4568 KiB  
Article
Greener Synthesis of Eco-Friendly Biodegradable Mesoporous Bioactive Glasses with and Without Thermal Treatment and Its Effects on Drug Delivery and In Vitro Bioactivity
by Dana Almasri and Yaser Dahman
Int. J. Mol. Sci. 2025, 26(13), 6524; https://doi.org/10.3390/ijms26136524 - 7 Jul 2025
Viewed by 328
Abstract
This study investigates the use of a salt template to synthesize mesoporous bioactive glass (MBG). Different salts were used as hard templates to create pores in the glass structure to investigate the possibility of using acid-soluble salt templates and to understand the properties [...] Read more.
This study investigates the use of a salt template to synthesize mesoporous bioactive glass (MBG). Different salts were used as hard templates to create pores in the glass structure to investigate the possibility of using acid-soluble salt templates and to understand the properties of glass synthesized without thermal treatment. The MBGs were synthesized in a TRIS buffer solution at a pH of 9.5 to allow hydrolysis of the metal oxide precursors. The glass was then washed with mild acid to remove the template. After the samples were washed, some were subjected to thermal treatment, while others were not to investigate the impact of thermal treatment on the structure of the MBG. The successful synthesis of MBG was confirmed by X-ray diffraction, Fourier-transfer infrared spectroscopy, scanning emission scanning microscope, and nitrogen adsorption–desorption analysis. This synthesized MBG had a large surface area, pore volume, pore size, and high drug loading efficiency. MBG synthesized without thermal treatment had slower degradation over the test period, but higher loading efficiency and slower drug release, making it appropriate for applications requiring long-term drug delivery while maintaining its bioactivity. Full article
Show Figures

Figure 1

28 pages, 5228 KiB  
Article
Selective Separation of SiO2 and SnO2 Particles in the Submicron Range: Investigating Salt and Surfactant Adsorption Parameter
by Claudia Heilmann, Lisa Ditscherlein, Martin Rudolph and Urs Alexander Peuker
Powders 2025, 4(3), 19; https://doi.org/10.3390/powders4030019 - 3 Jul 2025
Viewed by 347
Abstract
The separation of particles smaller than 1 µm either by composition or by size is still a challenge. For the separation of SiO2 and SnO2, the creation of a selective separation feature and the specific adsorption of salts and surfactants [...] Read more.
The separation of particles smaller than 1 µm either by composition or by size is still a challenge. For the separation of SiO2 and SnO2, the creation of a selective separation feature and the specific adsorption of salts and surfactants were investigated. The adsorption of various salts, e.g., AlCl3, ZnCl2, MnCl2 and MgCl2 were therefore analyzed, and the necessary concentration for the charge reversal of the material was determined. It was noticed that the investigated materials differ in their isoelectric point (IEP) and therefore in their adsorption behavior because only ZnCl2 and MgCl2 are suitable for a charge reversal of both metal oxides. The phase transfer of the pure material at different pH values with ZnCl2 or MgCl2 and sodium dodecyl sulfate (SDS) revealed that the adsorption behavior of the particle has an influence on the phase transfer. As a result, the phase transfer of SiO2 is pH dependent, whereas the phase transfer of SnO2 operates over a wider pH range. This allowed the separation of SiO2 and SnO2 to be controlled by the salt and surfactant concentration as well as pH. The separation of SiO2 and SnO2 was investigated for various parameters such as salt and surfactant concentration, particle concentration and composition of the mixture. Also, pH 8, where a selective phase transfer for SiO2 occurs, and pH 6, where the greatest difference between the materials exists, were also investigated. By comparing the parameters, it was found that the combination of ZnCl2/SDS and MgCl2/SDS enables a selective separation of the materials. Furthermore, it was also found that the concentration of SDS has a significant effect on the separation, as the formation of a bilayer structure is important for the separation, and therefore, higher SDS concentrations are required at higher particle concentrations to increase the separation efficiency. Full article
Show Figures

Figure 1

18 pages, 5419 KiB  
Article
Nanoporous Carbons from Hydrothermally Treated Alga: Role in Batch and Continuous Capacitive Deionization (CDI)
by Dipendu Saha, Ryan Schlosser, Lindsay Lapointe, Marisa L. Comroe, John Samohod, Elijah Whiting and David S. Young
Molecules 2025, 30(13), 2848; https://doi.org/10.3390/molecules30132848 - 3 Jul 2025
Viewed by 385
Abstract
This study presents a sustainable approach for synthesizing high-performance activated carbon from Spirulina Alga through hydrothermal carbonization followed by chemical activation using potassium hydroxide. The resulting activated carbon exhibited a high Brunauer–Emmett–Teller (BET) surface area of 1747 m2/g and a total [...] Read more.
This study presents a sustainable approach for synthesizing high-performance activated carbon from Spirulina Alga through hydrothermal carbonization followed by chemical activation using potassium hydroxide. The resulting activated carbon exhibited a high Brunauer–Emmett–Teller (BET) surface area of 1747 m2/g and a total pore volume of 1.147 cm3/g, with micropore volume accounting for 0.4 cm3/g. Characterization using Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS), X-ray Photoelectron Spectroscopy (XPS), and gas adsorption analyses confirmed the presence of hierarchical micro- and mesoporosity as well as favorable surface functional groups. The synthesized carbon was used to fabricate electrodes for membrane capacitive deionization (MCDI) along with cation and anion-selective membranes, which were then tested with saline water (500–5000 ppm) and synthetic hard water (898 ppm of total salts). The salt adsorption capacity (SAC) reached 25 (batch) to 40 (continuous) mg/g, while rapid adsorption rates with average salt adsorption rates (ASARs) values exceeding 10 (batch) to 30 (continuous) mg·g−1·min−1 during early stages were obtained. Batch MCDI experiments demonstrated a higher SAC compared to continuous operation, with non-monotonic trends in SAC observed as a function of feed concentration. Ion adsorption kinetics were influenced by ion valency, membrane selectivity, and pore structure. The specific energy consumption (SEC) was calculated as 8–21 kJ/mol for batch and 0.1–0.5 kJ/mol for continuous process. These performance metrics are on par with or surpass those reported in the recent literature for similar single-electrode CDI configurations. The results demonstrate the viability of using Alga-derived carbon as an efficient and eco-friendly electrode material for water desalination technologies. Full article
(This article belongs to the Special Issue Carbon-Based Materials for Sustainable Chemistry: 2nd Edition)
Show Figures

Figure 1

15 pages, 2035 KiB  
Article
Synthesis and Application of FeMg-Modified Hydrochar for Efficient Removal of Lead Ions from Aqueous Solution
by Jelena Petrović, Marija Koprivica, Marija Ercegović, Marija Simić, Jelena Dimitrijević, Mladen Bugarčić and Snežana Trifunović
Processes 2025, 13(7), 2060; https://doi.org/10.3390/pr13072060 - 29 Jun 2025
Viewed by 387
Abstract
This study explores the utilization of waste grape pomace-derived hydrochar as an efficient adsorbent for lead (Pb2+) removal from aqueous solutions. Hydrochar was produced via hydrothermal carbonization (HTC) at 220 °C, followed by doping with magnesium and iron salts, and subsequent [...] Read more.
This study explores the utilization of waste grape pomace-derived hydrochar as an efficient adsorbent for lead (Pb2+) removal from aqueous solutions. Hydrochar was produced via hydrothermal carbonization (HTC) at 220 °C, followed by doping with magnesium and iron salts, and subsequent pyrolysis at 300 °C to obtain Fe/Mg-pyro-hydrochar (FeMg-PHC). The material’s structural and morphological changes after Pb2+ adsorption were examined using FTIR. FTIR revealed chemisorption and ion exchange as key mechanisms, shown by decreased hydroxyl, carbonyl, and metal–oxygen peaks after Pb2+ adsorption. Adsorption tests under varying pH, contact time, and initial Pb2+ concentrations revealed optimal removal at pH 5. Kinetic modeling indicated that the process follows a pseudo-second-order model, suggesting chemisorption as the dominant mechanism. Isotherm analysis showed that the Sips model best describes the equilibrium, with a maximum theoretical adsorption capacity of 157.24 mg/g. Overall, the simple two-step synthesis—HTC followed by pyrolysis—combined with metal doping yields a highly effective and sustainable adsorbent for Pb2+ ion removal from wastewater. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 2508 KiB  
Article
Influence of Ionic Strength and Temperature on the Adsorption of Reactive Black 5 Dye by Activated Carbon: Kinetics, Mechanisms and Thermodynamics
by Mario Cetina, Petra Mihovilović, Ana Pešić and Branka Vojnović
Molecules 2025, 30(12), 2593; https://doi.org/10.3390/molecules30122593 - 14 Jun 2025
Viewed by 476
Abstract
The aim of this work was to investigate the influence of ionic strength and temperature on the adsorption of Reactive Black 5 dye on commercial powdered activated carbon. Adsorption experiments were performed at 45 °C with the addition of NaCl (c0 [...] Read more.
The aim of this work was to investigate the influence of ionic strength and temperature on the adsorption of Reactive Black 5 dye on commercial powdered activated carbon. Adsorption experiments were performed at 45 °C with the addition of NaCl (c0 = 0.01, 0.05, 0.10 and 1.00 M) and Na2SO4 (c0 = 0.01 M). The results were compared with those obtained for both salts (c0 = 0.01 M) at three additional temperatures: 25, 35 and 55 °C. For all adsorption experiments, kinetic and thermodynamic studies were performed. This research showed that the addition of NaCl, even in the concentration of only c0 = 0.01 M, significantly enhanced dye adsorption and that higher NaCl concentration resulted in higher adsorption capacity. In addition, slightly higher adsorption was observed when Na2SO4 was added to the dye solution at the same concentration as NaCl, as well as at a higher temperature, regardless of the salt added to the dye solution. It was also shown that adsorption is kinetically controlled, assuming a pseudo-second-order model, and that intraparticle diffusion is not the only process that influences the adsorption rate. Finally, calculated thermodynamic parameter values for both salts (c0 = 0.01 M) indicate that adsorption was a spontaneous endothermic process. Full article
Show Figures

Figure 1

17 pages, 3264 KiB  
Article
Potential of Textile Wastewater Decolorization Using Cation Exchange Membrane Electrolysis Coupled with Magnesium Salt Precipitation (CEM-MSP)
by Yujing Zhao, Nuo Cheng, Ruihan Jiang, Jian Jiao, Chen Chen, Jiahao Liang, Longfeng Hu, Hesong Wang and Jinlong Wang
Water 2025, 17(12), 1785; https://doi.org/10.3390/w17121785 - 14 Jun 2025
Viewed by 364
Abstract
To overcome the low efficiency, high cost and less environmentally friendly limitations in existing textile wastewater disposal technology, an innovative approach of cation exchange membrane electrolysis coupled with magnesium salt precipitation (CEM-MSP) was implemented. This method simultaneously achieved the high-efficiency adsorption decolorization of [...] Read more.
To overcome the low efficiency, high cost and less environmentally friendly limitations in existing textile wastewater disposal technology, an innovative approach of cation exchange membrane electrolysis coupled with magnesium salt precipitation (CEM-MSP) was implemented. This method simultaneously achieved the high-efficiency adsorption decolorization of dyes and the recovery of lye. The results indicated that cation exchange membrane electrolysis with MgSO4 added to the anode chamber (CEM-EA) exhibited excellent decolorization performance on DB86 dye and achieved low residual Mg2+ concentration. Furthermore, the adsorption mechanism of Mg(OH)2 on DB86 was systematically investigated. The adsorption process fitted with the first-order kinetic, where the adsorption of DB86 by Mg(OH)2 was dominated by electrostatic attraction. Detailed comparison of the four systems demonstrated that CEM-EA was superior to the single magnesium addition method (85.24%) or the stand-alone membrane electrolysis method (10.36%), with 99% decolorization efficiency. In comparison to the cation exchange membrane electrolysis with MgSO4 added to the cathode chamber (CEM-EC), the CEM-EA could diminish the Mg2+ concentration in the effluent to facilitate the lye recovery while guaranteeing the decolorization efficiency. In addition, the DB86 adsorption behavior during the formation of Mg(OH)2 in the cathode chamber was investigated. The Mg(OH)2 particles were relatively dense copper-blue agglomerates with a thin lamellar layer on the surface. Notably, only slight mass contamination was observed on the cation exchange membrane (CEM) surface after multiple cycles. Minor CEM contamination illustrated the stable treatment efficiency of the CEM-EA after several cycles. This study constructed a novel approach integrating membrane electrolysis with magnesium salt precipitation, delivering valuable technical solutions for textile wastewater disposal. Full article
Show Figures

Graphical abstract

22 pages, 4120 KiB  
Article
Sustainable Phosphate Recovery Using Novel Ca–Mg Bimetallic Modified Biogas Residue-Based Biochar
by Qi Wang, Guanghui Zhuo, Dongxin Xue, Guangcan Zhu and Chu-Ya Wang
Sustainability 2025, 17(11), 5049; https://doi.org/10.3390/su17115049 - 30 May 2025
Viewed by 472
Abstract
Elevated phosphorus levels in aquatic ecosystems have been identified as a critical driver of eutrophication processes, necessitating resource-recovery remediation strategies. Adsorption techniques show particular promise for nutrient recovery due to their selective binding capacities and operational feasibility. In this study, the Mg- and [...] Read more.
Elevated phosphorus levels in aquatic ecosystems have been identified as a critical driver of eutrophication processes, necessitating resource-recovery remediation strategies. Adsorption techniques show particular promise for nutrient recovery due to their selective binding capacities and operational feasibility. In this study, the Mg- and Ca-modified biogas residue-based biochar (Ca-Mg/BC) was successfully prepared via a “bimetallic loading-pyrolysis” modification strategy. The optimum temperature for the calcination of the material and the salt solution impregnation concentrations were determined experimentally through optimization of the synthesis conditions. Structural and chemical analyses of Ca–Mg/BC demonstrated that the material contains MgO and CaO. The specific surface area of Ca–Mg/BC was 8.49 times higher than that of the unmodified biochar (BC). The optimized Ca–Mg/BC achieved 95% phosphate removal rate (157.13 mg/g adsorption capacity). FTIR and XPS characterization results indicated the importance of Ca/Mg loading in phosphate capture. MgO and CaO were mainly loaded on the surface of the material and adsorbed phosphate through a chemical reaction. Crucially, the phosphate-laden biochar exhibited potential as a nutrient-enriched soil amendment, opening the material loop from wastewater treatment to agricultural applications. This sustainable strategy simultaneously addresses water pollution control and sustainable development, providing environmentally benign solutions compatible with industrial effluent treatment and sustainable agriculture practices. Full article
Show Figures

Figure 1

34 pages, 6650 KiB  
Article
Salinity of Irrigated and Non-Irrigated Chernozems and Kastanozems: A Case Study of Causes and Consequences in the Pavlodar Region, Kazakhstan
by Dauren Rakhmanov, Bořivoj Šarapatka, Marek Bednář, Jan Černohorský and Kamilla Alibekova
Soil Syst. 2025, 9(2), 57; https://doi.org/10.3390/soilsystems9020057 - 28 May 2025
Viewed by 498
Abstract
This study investigated soil salinization processes in the Pavlodar region of Kazakhstan by comparing key soil parameters—namely, electrical conductivity (EC), pH, exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR) under irrigated and non-irrigated conditions across different agro-climatic zones and soil types (Haplic [...] Read more.
This study investigated soil salinization processes in the Pavlodar region of Kazakhstan by comparing key soil parameters—namely, electrical conductivity (EC), pH, exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR) under irrigated and non-irrigated conditions across different agro-climatic zones and soil types (Haplic Chernozems, Haplic Kastanozems). The focus was on understanding the effects of irrigation and natural factors on soil salinization. Statistical analysis, including descriptive statistics and significance testing, was employed to evaluate differences between soil types, locations, and management practices. The research revealed secondary salinization (EC > 2 dS/m, ESP > 15%) in the topsoil of irrigated Haplic Kastanozems soils in the central Aksu district. This degradation was markedly higher than in non-irrigated plots or irrigated Haplic Chernozems in the northern Irtysh district, highlighting the high vulnerability of Haplic Kastanozems soils under current irrigation management given Aksu’s climatic conditions, which are characterized by high evaporative demand (driven by summer temperatures) and specific precipitation patterns that contribute to soil moisture deficits without irrigation. While ESP indicated sodicity, SAR values remained low. Natural factors, including potentially saline parent materials and likely shallow groundwater dynamics influenced by irrigation, appear to contribute to the observed patterns. The findings underscore the need for implementing optimized irrigation and drainage management, particularly in the Aksu district, potentially including water-saving techniques (e.g., drip irrigation) and selection of salt/sodicity-tolerant crops. A comprehensive approach integrating improved water management, agronomic practices, and potentially soil amendments is crucial for mitigating soil degradation and ensuring sustainable agriculture in the Pavlodar region. Further investigation including groundwater monitoring is recommended. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
Show Figures

Figure 1

17 pages, 4589 KiB  
Article
Prepared of Titanate as Pb (II) Adsorbent from SCR Waste Catalyst by Sub-Molten Salt Method: A Sustainable Strategy for Hazardous Waste Recycling and Heavy Metal Remediation
by Ling Zeng, Weiquan Yuan, Mingming Yu, Heyue Niu, Yusupujiang Mubula, Kun Xu and Zhehan Zhu
Sustainability 2025, 17(11), 4823; https://doi.org/10.3390/su17114823 - 23 May 2025
Viewed by 463
Abstract
To address the disposal challenges of waste SCR catalysts and the urgent need for sustainable solutions in heavy metal pollution control, this study proposes a green resource utilization strategy based on the sub-molten salt method to convert waste SCR catalysts into highly efficient [...] Read more.
To address the disposal challenges of waste SCR catalysts and the urgent need for sustainable solutions in heavy metal pollution control, this study proposes a green resource utilization strategy based on the sub-molten salt method to convert waste SCR catalysts into highly efficient lead ion adsorbents. Titanate-based adsorbent materials with a loose porous structure were successfully prepared by optimizing the process parameters (reaction temperature of 160 °C, NaOH concentration of 70%, and reaction time of 2 h). The experiments showed that the adsorption efficiency was as high as 99.65% and the maximum adsorption capacity was 76.08 mg/g under ambient conditions (adsorbent dosage of 1.2 g/L, initial Pb(II) concentration of 100 mg/L, contact time of 60 min, and pH = 4). Kinetic analysis showed that the quasi-second-order kinetic model (R2 = 0.9985) could better describe the adsorption process, indicating chemisorption as the dominant mechanism. Characterization analysis confirmed that subsequent to the adsorption process, Pb3(CO3)2(OH)2 formed on the surface of the adsorbent material is the adsorption product of Pb(II) and C-O through ion exchange and surface complexation. This study transforms waste SCR catalysts into sustainable titanate adsorbents through a low-energy green process, providing an eco-efficient solution for heavy metal wastewater treatment while aligning with circular economy principles and sustainable industrial practices. Full article
Show Figures

Figure 1

16 pages, 2498 KiB  
Article
Synthesis, Characteristics, and Field Applications of High-Temperature and Salt-Resistant Polymer Gel Tackifier
by Guowei Zhou, Xin Zhang, Weijun Yan and Zhengsong Qiu
Gels 2025, 11(6), 378; https://doi.org/10.3390/gels11060378 - 22 May 2025
Viewed by 402
Abstract
To address the technical challenge of high polymer gel viscosity reducers losing viscosity at elevated temperatures and difficulty in controlling fluid loss, a polymer-based nano calcium carbonate composite high-temperature tackifier named GW-VIS was prepared using acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), N-vinylpyrrolidone (NVP), and [...] Read more.
To address the technical challenge of high polymer gel viscosity reducers losing viscosity at elevated temperatures and difficulty in controlling fluid loss, a polymer-based nano calcium carbonate composite high-temperature tackifier named GW-VIS was prepared using acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), N-vinylpyrrolidone (NVP), and nano calcium carbonate as raw materials through water suspension polymerization. This polymer gel can absorb water well at room temperature and has a small solubility. After a long period of high-temperature treatment, most of it can dissolve in water, increasing the viscosity of the suspension. The structure of the samples was characterized by infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy, and their performance was evaluated. Rheological tests indicated that the 0.5% water suspension had a consistency coefficient (k = 761) significantly higher than the requirement for clay-free drilling fluids (k > 200). In thermal resistance experiments, the material maintained stable viscosity at 180 °C (reduction rate of 0%), and only decreased by 14.8% at 200 °C. Salt tolerance tests found that the viscosity reduction after hot rolling at 200 °C was only 17.31% when the NaCl concentration reached saturation. Field trials in three wells in the Liaohe oilfield verified that the clay-free drilling fluid supported formation operations successfully. The study shows that the polymer gel has the potential to maintain rheological stability at high temperatures by forming a network structure through polymer chain adsorption and entanglement, with a maximum temperature resistance of up to 200 °C, providing an efficient drilling fluid for deep oil and gas well development. It is feasible to select nano calcium carbonate to participate in the research of high-temperature resistant polymer materials. Meanwhile, the combined effect of monomers with large steric hindrance and inorganic materials can enhance the product’s temperature resistance and resistance to NaCl pollution. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
Show Figures

Figure 1

17 pages, 3217 KiB  
Article
Robust Adsorption of Pb(II) and Cd(II) by GLDA-Intercalated ZnAl-LDH: Structural Engineering, Mechanistic Insights, and Environmental Applications
by Kai Zheng, Zhengkai Guang, Zihan Wang, Yangu Liu, Xiaoling Cheng and Yuan Liu
Coatings 2025, 15(5), 613; https://doi.org/10.3390/coatings15050613 - 21 May 2025
Viewed by 628
Abstract
The rapid pace of industrialization has led to widespread heavy metal contamination in water and soil, highlighting the need for efficient remediation strategies. Among various approaches, adsorption has proven to be an effective method for treating contaminated environments. Layered double hydroxide (LDH) is [...] Read more.
The rapid pace of industrialization has led to widespread heavy metal contamination in water and soil, highlighting the need for efficient remediation strategies. Among various approaches, adsorption has proven to be an effective method for treating contaminated environments. Layered double hydroxide (LDH) is frequently used in such applications. However, its adsorption efficiency remains limited. In this study, glutamic acid diacetate tetrasodium salt (GLDA) was incorporated into ZnAl LDH via a straightforward co-precipitation and ion exchange method, yielding a modified material, GLDA-LDH, which was subsequently applied for the adsorption of Pb(II) and Cd(II). Adsorption behavior was investigated through kinetic and isothermal models, with results indicating that the process followed pseudo-second-order kinetics and fit well with the Langmuir isotherm, suggesting chemisorption onto monolayer surface. The maximum adsorption capacities reached 219.2 mg/g for Pb(II) and 121.9 mg/g for Cd(II). Furthermore, GLDA-LDH exhibited a strong retention capability for metal ions with minimal desorption and remained effective in the presence of hard water and contaminated soils. XPS analysis revealed distinct interaction mechanisms; surface oxygen and carboxyl groups played a key role in Pb(II) adsorption, whereas nitrogen coordination was involved in Cd(II) uptake. These results point to the potential of GLDA-LDH as a reliable material for addressing heavy metal pollution and provide insights into the design of enhanced LDH-based adsorbents. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Graphical abstract

Back to TopTop