Influence of Ionic Strength and Temperature on the Adsorption of Reactive Black 5 Dye by Activated Carbon: Kinetics, Mechanisms and Thermodynamics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adsorbent Characterisation
2.2. Effect of Ionic Strength and Temperature on Adsorption Process
2.3. Kinetics of Adsorption
2.3.1. Pseudo-First-Order and Pseudo-Second-Order Kinetic Models
2.3.2. Intraparticle Diffusion Model
- Mass transfer of the adsorbate from the bulk solution to the adsorbent surface (film diffusion);
- Adsorbate adsorption at active sites on the adsorbent;
- Intraparticle diffusion of the adsorbate into the adsorbent’s pores, followed by adsorption at internal sites.
2.4. Adsorption Thermodynamics
3. Materials and Methods
3.1. Chemicals
3.2. Adsorbent Characterisation
3.3. Batch Mode Adsorption Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yaseen, D.A.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar] [CrossRef]
- Berradi, M.; Hsissou, R.; Khudhair, M.; Assouag, M.; Cherkaoui, O.; El Bachiri, A.; El Harfi, A. Textile finishing dyes and their impact on aquatic environs. Heliyon 2019, 5, e02711. [Google Scholar] [CrossRef] [PubMed]
- Moyo, S.; Makhanya, B.P.; Zwane, P.E. Use of bacterial isolates in the treatment of textile dye wastewater: A review. Heliyon 2022, 8, e09632. [Google Scholar] [CrossRef]
- Lellis, B.; Fávaro-Polonio, C.; Pamphile, J.; Polonio, J. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Singha, K.; Pandit, P.; Maity, S.; Sharma, S.R. Harmful environmental effects for textile chemical dyeing practice. In Green Chemistry for Sustainable Textiles; Ibrahim, N., Hussain, C.M., Eds.; Woodhead: Cambridge, UK, 2021; pp. 153–164. ISBN 9780323852043. [Google Scholar]
- Lykidou, S.; Gitsouli, E.; Daniilidis, V.; Vouvoudi, E.; Nikolaidis, N.F. Study on the Dyeing Properties of a Novel Reactive Dye with One Vinylsulfone Reactive Group, on Cotton Substrates, Before and After Its Ultrafiltration Treatment. Fibers Polym. 2023, 24, 3995–4004. [Google Scholar] [CrossRef]
- Aksu, Z. Application of biosorption for the removal of organic pollutants: A review. Process Biochem. 2005, 40, 997–1026. [Google Scholar] [CrossRef]
- Kawther, T.; Jasim, N. A comparison study between chemical coagulation and electro-coagulation processes for the treatment of wastewater containing reactive blue dye. Mater. Today 2021, 42, 1946–1950. [Google Scholar] [CrossRef]
- Jaafari, J.; Barzanouni, H.; Mazloomi, S.; Amir Abadi Farahani, N.; Sharafi, K.; Soleimani, P.; Haghighat, G.A. Effective adsorptive removal of reactive dyes by magnetic chitosan nanoparticles: Kinetic, isothermal studies and response surface methodology. Int. J. Biol. Macromol. 2020, 164, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Moradihamedani, P. Recent advances in dye removal from wastewater by membrane technology: A review. Polym. Bull. 2022, 79, 2603–2631. [Google Scholar] [CrossRef]
- Desai, C.; Jain, K.R.; Boopathy, R.; van Hullebusch, E.D.; Madamwar, D. Editorial: Eco-Sustainable Bioremediation of Textile Dye Wastewaters: Innovative Microbial Treatment Technologies and Mechanistic Insights of Textile Dye Biodegradation. Front. Microbiol. 2021, 12, 707083. [Google Scholar] [CrossRef]
- Ismail, G.A.; Sakai, H. Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal. Chemosphere 2022, 291, 132906. [Google Scholar] [CrossRef] [PubMed]
- Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manag. 2016, 182, 351–366. [Google Scholar] [CrossRef]
- Roy, M.; Saha, R. Dyes and Their Removal Technologies from Wastewater: A Critical Review. In Intelligent Environmental Data Monitoring for Pollution Management; Bhattacharyya, S., Mondal, N., Platos, J., Snášel, V., Krömer, P., Eds.; Elsevier: San Diego, CA, USA, 2021; pp. 127–160. ISBN 978-0-12-819671-7. [Google Scholar]
- Hassan, M.M.; Carr, C.M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 2018, 209, 201–219. [Google Scholar] [CrossRef]
- Pimentel, C.H.; Freire, M.S.; Gómez-Díaz, D.; González-Álvarez, J. Preparation of activated carbon from pine (Pinus radiata) sawdust by chemical activation with zinc chloride for wood dye adsorption. Biomass Conv. Bioref. 2023, 13, 16537–16555. [Google Scholar] [CrossRef]
- Kasbaji, M.; Mennani, M.; Grimi, N.; Oubenali, M.; Mbarki, M.; El Zakhem, H.; Moubarik, A. Adsorption of cationic and anionic dyes onto coffee grounds cellulose/sodium alginate double-network hydrogel beads: Isotherm analysis and recyclability performance. Int. J. Biol. Macromol. 2023, 239, 124288. [Google Scholar] [CrossRef] [PubMed]
- Husien, S.; Reem, E.; Alyaa, S.; Lobna, S.; Radwan, A. Review of activated carbon adsorbent material for textile dyes removal: Preparation, and modelling. Curr. Res. Green Sustain. Chem. 2022, 5, 100325. [Google Scholar] [CrossRef]
- Bonić, I.; Palac, A.; Sutlović, A.; Vojnović, B.; Cetina, M. Removal of Reactive Black 5 dye from aqueous media using powdered activated carbon–kinetics and mechanisms. Tekstilec 2020, 63, 151–161. [Google Scholar] [CrossRef]
- Vojnović, B.; Cetina, M.; Franjković, P.; Sutlović, A. Influence of initial pH value on the adsorption of Reactive Black 5 dye on powdered activated carbon: Kinetics, mechanisms, and thermodynamics. Molecules 2022, 27, 1349. [Google Scholar] [CrossRef]
- Burkinshaw, S.M. Physico-Chemical Aspects of Textile Coloration; Wiley Online Library: Hoboken, NJ, USA, 2015. [Google Scholar]
- Allègre, C.; Moulin, P.; Maisseu, M.; Chrabit, F. Treatment and reuse of reactive dyeing effluents. J. Membr. Sci. 2006, 269, 15–34. [Google Scholar] [CrossRef]
- Gaščić, A.; Sutlović, A.; Vojnović, B.; Cetina, M. Adsorption of reactive dye on activated carbon: Kinetic study and influence of initial dye concentration. In Proceedings of the 2nd International Conference, “The Holistic Approach to Environment”, Sisak, Croatia, 28 May 2021; pp. 131–138. [Google Scholar]
- Ip, A.W.M.; Barford, J.P.; McKay, G. Reactive Black dye adsorption/desorption onto different adsorbents: Effect of salt, surface chemistry, pore size and surface area. J. Colloid Interf. Sci. 2009, 337, 32–38. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Deliyanni, E.A.; Lazaridis, N.K. Magnetic modification of microporous carbon for dye adsorption. J. Colloid Interf. Sci. 2014, 430, 166–173. [Google Scholar] [CrossRef]
- Giannakoudakis, D.A.; Kyzas, G.Z.; Avranas, A.; Lazaridis, N.K. Multi-parametric adsorption effects of the reactive dye removal with commercial activated carbons. J. Mol. Liq. 2016, 213, 381–389. [Google Scholar] [CrossRef]
- Saroyan, H.S.; Giannakoudakis, D.A.; Sarafidis, C.S.; Lazaridis, N.K.; Deliyanni, E.A. Effective impregnation for the preparation of magnetic mesoporous carbon: Application to dye adsorption. J. Chem. Technol. Biotechnol. 2017, 92, 1899–1911. [Google Scholar] [CrossRef]
- Güzel, F.; Saygili, H.; Saygili, G.A.; Koyuncu, F. New low-cost nanoporous carbonaceous adsorbent developed from carob (Ceratonia siliqua) processing industry waste for the adsorption of anionic textile dye: Characterization, equilibrium and kinetic modeling. J. Mol. Liq. 2015, 206, 244–255. [Google Scholar] [CrossRef]
- Ip, A.W.M.; Barford, J.P.; McKay, G. A comparative study on the kinetics and mechanisms of removal of Reactive Black 5 by adsorption onto activated carbons and bone char. Chem. Eng. J. 2010, 157, 434–442. [Google Scholar] [CrossRef]
- Alberghina, G.; Bianchini, R.; Fichera, M.; Fisichella, S. Dimerization of Cibacron Blue F3GA and other dyes: Influence of salts and temperature. Dyes Pigment. 2000, 46, 129–137. [Google Scholar] [CrossRef]
- Lagergren, S. Zur Theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; Mckay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Ho, Y.S.; Mckay, G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 2000, 34, 735–742. [Google Scholar] [CrossRef]
- Dulman, V.; Cucu-Man, S.M. Sorption of some textile dyes by beech wood sawdust. J. Hazard. Mater. 2009, 162, 1457–1464. [Google Scholar] [CrossRef]
- Baccar, R.; Blánquez, P.; Bouzid, J.; Feki, M.; Sarrà, M. Equilibrium, thermodynamic and kinetic studies on adsorption of commercial dye by activated carbon derived from olive-waste cakes. Chem. Eng. J. 2010, 165, 457–464. [Google Scholar] [CrossRef]
- Travlou, N.A.; Kyzas, G.Z.; Lazaridis, N.K.; Deliyanni, E.A. Graphite oxide/chitosan composite for reactive dye removal. Chem. Eng. J. 2013, 217, 256–265. [Google Scholar] [CrossRef]
- Saha, P.; Chowdhury, S. Insight into adsorption thermodynamics. In Thermodynamics; Tadashi, M., Ed.; InTech: Shanghai, China, 2011; pp. 349–364. ISBN 978-953-307-544-0. [Google Scholar]
- Chatterjee, S.; Woo, S.H. The removal of nitrate from aqueous solutions by chitosan hydrogel beads. J. Hazard. Mater. 2009, 164, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- Alkan, M.; Demirbaş, Ö.; Çelikçapa, S.; Doğan, M. Sorption of acid red 57 from aqueous solution onto sepiolite. J. Hazard. Mater. 2004, B116, 135–145. [Google Scholar] [CrossRef]
- Kumar, A.; Prasad, B.; Mishra, I.M. Adsorptive removal of acrylonitrile by commercial grade activated carbon: Kinetics, equilibrium and thermodynamics. J. Hazard. Mater. 2008, 152, 589–600. [Google Scholar] [CrossRef]
t/ min | qt/mg g−1 | ||||
---|---|---|---|---|---|
c (NaCl) | |||||
Data from [23] | 0.01 M | 0.05 M | 0.10 M | 1.00 M | |
15 | 63.5 | 100.3 | 149.9 | 167.9 | 214.3 |
30 | 83.6 | 126.9 | 166.0 | 185.2 | 233.4 |
45 | 95.7 | 134.5 | 179.8 | 193.9 | 237.4 |
60 | 100.7 | 138.4 | 183.5 | 200.7 | 240.4 |
120 | 132.1 | 156.5 | 203.1 | 219.4 | 247.5 |
960 | 190.9 | 215.4 | 243.4 | 248.0 | 249.9 |
t/ min | Ed/% | ||
---|---|---|---|
Data from [23] | NaCl | Na2SO4 | |
15 | 25.4 | 40.1 | 42.7 |
30 | 33.4 | 50.8 | 51.1 |
45 | 38.3 | 53.8 | 57.8 |
60 | 40.3 | 55.4 | 59.8 |
120 | 52.8 | 62.6 | 68.7 |
960 | 76.3 | 86.2 | 89.3 |
Salt | c0/ mol dm−3 | qe,exp./ mg g−1 | Pseudo-First-Order Model | Pseudo-Second-Order Model | |||||
---|---|---|---|---|---|---|---|---|---|
qe,calc./ mg g−1 | R2 | k1/ min−1 | qe,calc./ mg g−1 | R2 | k2/ g mg−1 min−1 | h/ mg g−1 min−1 | |||
NaCl | 0.01 | 215.4 | 113.8 | 0.8961 | 0.0058 | 222.2 | 0.9991 | 1.46 × 10−4 | 7.21 |
0.05 | 243.4 | 97.0 | 0.9644 | 0.0076 | 250.0 | 0.9998 | 2.25 × 10−4 | 14.09 | |
0.10 | 248.0 | 85.8 | 0.9841 | 0.0094 | 250.0 | 0.9999 | 3.18 × 10−4 | 19.88 | |
1.00 | 249.9 | 40.6 | 0.9748 | 0.0240 | 250.0 | 1.0000 | 1.78 × 10−3 | 111.1 | |
Na2SO4 | 0.01 | 223.2 | 119.3 | 0.9519 | 0.0073 | 227.3 | 0.9996 | 1.60 × 10−4 | 8.29 |
Salt | T/ K | ce/ mg dm−3 | c0 − ce/ mg dm−3 | Kc | ∆G°/ kJ mol−1 | ∆H°/ kJ mol−1 | ∆S°/ J mol−1 K−1 |
---|---|---|---|---|---|---|---|
NaCl | 298 | 164.3 | 335.7 | 2.0432 | −1.77 | 55.97 | 192.48 |
308 | 119.1 | 380.9 | 3.1982 | −2.98 | |||
318 | 69.2 | 430.8 | 6.2254 | −4.84 | |||
328 | 28.7 | 471.3 | 16.4216 | −7.64 | |||
Na2SO4 | 298 | 119.6 | 380.4 | 3.1806 | −2.87 | 51.90 | 182.51 |
308 | 85.4 | 414.6 | 4.8548 | −4.05 | |||
318 | 53.6 | 446.4 | 8.3284 | −5.61 | |||
328 | 21.2 | 478.8 | 22.5849 | −8.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cetina, M.; Mihovilović, P.; Pešić, A.; Vojnović, B. Influence of Ionic Strength and Temperature on the Adsorption of Reactive Black 5 Dye by Activated Carbon: Kinetics, Mechanisms and Thermodynamics. Molecules 2025, 30, 2593. https://doi.org/10.3390/molecules30122593
Cetina M, Mihovilović P, Pešić A, Vojnović B. Influence of Ionic Strength and Temperature on the Adsorption of Reactive Black 5 Dye by Activated Carbon: Kinetics, Mechanisms and Thermodynamics. Molecules. 2025; 30(12):2593. https://doi.org/10.3390/molecules30122593
Chicago/Turabian StyleCetina, Mario, Petra Mihovilović, Ana Pešić, and Branka Vojnović. 2025. "Influence of Ionic Strength and Temperature on the Adsorption of Reactive Black 5 Dye by Activated Carbon: Kinetics, Mechanisms and Thermodynamics" Molecules 30, no. 12: 2593. https://doi.org/10.3390/molecules30122593
APA StyleCetina, M., Mihovilović, P., Pešić, A., & Vojnović, B. (2025). Influence of Ionic Strength and Temperature on the Adsorption of Reactive Black 5 Dye by Activated Carbon: Kinetics, Mechanisms and Thermodynamics. Molecules, 30(12), 2593. https://doi.org/10.3390/molecules30122593