A Novel Activated Carbon-Based Composite for Enhanced Mercury Removal
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Walnut Shells
2.2. Synthesis of Composite Activated Carbon (CAC)
2.3. Characterization of CAC
2.4. Batch Adsorption Experiments and Fitting Models
2.5. Effect of Competing Heavy Metals
2.6. Regeneration Experiments
3. Results
3.1. Activation Mechanism
3.2. Characterization of CAC Before and After Adsorption of Mercury
3.3. Investigation of Parameters
3.3.1. Effect of pH and Adsorbent Dosage
3.3.2. Effect of Initial Concentration and Contact Time
3.4. Adsorption Isotherms
3.5. Adsorption Kinetics
3.6. Adsorption Thermodynamics
3.7. Adsorption Mechanism
3.8. Impact of Other Heavy Metals in Solution
3.9. Regeneration Studies
3.10. Comparison with Other Adsorbents
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Information for Characterization Techniques
Appendix A.2. Information for Batch Adsorption Experiments and Fitting Model
References
- Moossa, B.; Qiblawey, H.; Nasser, M.S.; Al-Ghouti, M.A.; Benamor, A. Electronic Waste Considerations in the Middle East and North African (MENA) Region: A Review. Environ. Technol. Innov. 2023, 29, 102961. [Google Scholar] [CrossRef]
- Rodríguez, O.; Padilla, I.; Tayibi, H.; López-Delgado, A. Concerns on Liquid Mercury and Mercury-Containing Wastes: A Review of the Treatment Technologies for the Safe Storage. J. Environ. Manag. 2012, 101, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Feng, X.B.; Qiu, G.L.; Shang, L.H.; Li, Z.G. Mercury Pollution in Asia: A Review of the Contaminated Sites. J. Hazard. Mater. 2009, 168, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chen, B.; Wang, L.; Urbanovich, O.; Nagorskaya, L.; Li, X.; Tang, L. A Review on Phytoremediation of Mercury Contaminated Soils. J. Hazard. Mater. 2020, 400, 123138. [Google Scholar] [CrossRef]
- Wang, L.; Hou, D.; Cao, Y.; Ok, Y.S.; Tack, F.M.G.; Rinklebe, J.; O’Connor, D. Remediation of Mercury Contaminated Soil, Water, and Air: A Review of Emerging Materials and Innovative Technologies. Environ. Int. 2020, 134, 105281. [Google Scholar] [CrossRef]
- Wang, J.; Feng, X.; Anderson, C.W.N.; Xing, Y.; Shang, L. Remediation of Mercury Contaminated Sites—A Review. J. Hazard. Mater. 2012, 221–222, 1–18. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, A.; Arya, R.K. Removal of Mercury (II) from Aqueous Solution: A Review of Recent Work. Sep. Sci. Technol. 2015, 50, 1310–1320. [Google Scholar] [CrossRef]
- Albatrni, H.; Qiblawey, H.; El-Naas, M.H. Comparative Study between Adsorption and Membrane Technologies for the Removal of Mercury. Sep. Purif. Technol. 2021, 257, 117833. [Google Scholar] [CrossRef]
- Yu, J.G.; Yue, B.Y.; Wu, X.W.; Liu, Q.; Jiao, F.P.; Jiang, X.Y.; Chen, X.Q. Removal of Mercury by Adsorption: A Review. Environ. Sci. Pollut. Res. 2016, 23, 5056–5076. [Google Scholar] [CrossRef]
- Shahzadi, I.; Wu, Y.; Lin, H.; Huang, J.; Zhao, Z.; Chen, C.; Shi, X.; Deng, H. Yeast Biomass Ornamented Macro-Hierarchical Chitin Nanofiber Aerogel for Enhanced Adsorption of Cadmium (II) Ions. J. Hazard. Mater. 2023, 453, 131312. [Google Scholar] [CrossRef]
- Azha, S.F.; Sellaoui, L.; Shamsudin, M.S.; Ismail, S.; Bonilla-Petriciolet, A.; Ben Lamine, A.; Erto, A. Synthesis and Characterization of a Novel Amphoteric Adsorbent Coating for Anionic and Cationic Dyes Adsorption: Experimental Investigation and Statistical Physics Modelling. Chem. Eng. J. 2018, 351, 221–229. [Google Scholar] [CrossRef]
- Sun, Y.; Li, X.; Zheng, W. Facile Synthesis of Core-Shell Phase-Transited Lysozyme Coated Magnetic Nanoparticle as a Novel Adsorbent for Hg (II) Removal in Aqueous Solutions. J. Hazard. Mater. 2021, 403, 124012. [Google Scholar] [CrossRef]
- Al-Yaari, M.; Saleh, T.A. Mercury Removal from Water Using a Novel Composite of Polyacrylate-Modified Carbon. ACS Omega 2022, 7, 14820–14831. [Google Scholar] [CrossRef]
- Yin, M.; Bai, X.; Wu, D.; Li, F.; Jiang, K.; Ma, N.; Chen, Z.; Zhang, X.; Fang, L. Sulfur-Functional Group Tunning on Biochar through Sodium Thiosulfate Modified Molten Salt Process for Efficient Heavy Metal Adsorption. Chem. Eng. J. 2022, 433, 134441. [Google Scholar] [CrossRef]
- Sajjadi, S.A.; Mohammadzadeh, A.; Tran, H.N.; Anastopoulos, I.; Dotto, G.L.; Lopičić, Z.R.; Sivamani, S.; Rahmani-Sani, A.; Ivanets, A.; Hosseini-Bandegharaei, A. Efficient Mercury Removal from Wastewater by Pistachio Wood Wastes-Derived Activated Carbon Prepared by Chemical Activation Using a Novel Activating Agent. J. Environ. Manag. 2018, 223, 1001–1009. [Google Scholar] [CrossRef]
- World Activated Carbon; Freedonia: North Bethesda, MD, USA, 2016.
- Georgieva, V.G.; Gonsalvesh, L.; Tavlieva, M.P. Thermodynamics and Kinetics of the Removal of Nickel (II) Ions from Aqueous Solutions by Biochar Adsorbent Made from Agro-Waste Walnut Shells. J. Mol. Liq. 2020, 312, 112788. [Google Scholar] [CrossRef]
- Albatrni, H.; Qiblawey, H.; Al-Marri, M.J. Walnut Shell Based Adsorbents: A Review Study on Preparation, Mechanism, and Application. J. Water Process Eng. 2022, 45, 102527. [Google Scholar] [CrossRef]
- Ruiz-Fernández, M.; Alexandre-Franco, M.; Fernández-González, C.; Gómez-Serrano, V. Development of Activated Carbon from Vine Shoots by Physical and Chemical Activation Methods. Some Insight into Activation Mechanisms. Adsorption 2011, 17, 621–629. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, Y.; Xu, X.; Qu, J.; Qu, B. Adsorption of Hg (II) in an Aqueous Solution by Activated Carbon Prepared from Rice Husk Using KOH Activation. ACS Omega 2020, 5, 29231–29242. [Google Scholar] [CrossRef]
- Danish, M.; Hashim, R.; Rafatullah, M.; Sulaiman, O.; Ahmad, A. Govind Adsorption of Pb (II) Ions from Aqueous Solutions by Date Bead Carbon Activated with ZnCl2. Clean 2011, 39, 392–399. [Google Scholar] [CrossRef]
- Danish, M.; Hashim, R.; Ibrahim, M.N.M.; Sulaiman, O. Optimization Study for Preparation of Activated Carbon from Acacia Mangium Wood Using Phosphoric Acid. Wood Sci. Technol. 2014, 48, 1069–1083. [Google Scholar] [CrossRef]
- Zbair, M.; Ainassaari, K.; Drif, A.; Ojala, S.; Bottlinger, M.; Pirilä, M.; Keiski, R.L.; Bensitel, M.; Brahmi, R. Toward New Benchmark Adsorbents: Preparation and Characterization of Activated Carbon from Argan Nut Shell for Bisphenol A Removal. Environ. Sci. Pollut. Res. 2018, 25, 1869–1882. [Google Scholar] [CrossRef] [PubMed]
- Sevilla, M.; Díez, N.; Fuertes, A.B. More Sustainable Chemical Activation Strategies for the Production of Porous Carbons. ChemSusChem 2021, 14, 94–117. [Google Scholar] [CrossRef]
- Kiliç, M.; Apaydin-Varol, E.; Pütün, A.E. Preparation and Surface Characterization of Activated Carbons from Euphorbia Rigida by Chemical Activation with ZnCl2, K2CO3, NaOH and H3PO4. Appl. Surf. Sci. 2012, 261, 247–254. [Google Scholar] [CrossRef]
- Albatrni, H.; Qiblawey, H. Evaluation of Sodium Thiosulfate Activated Carbon for High-Performance Mercury Removal from Aqueous Solutions. Environ. Technol. Innov. 2024, 34, 103621. [Google Scholar] [CrossRef]
- Albatrni, H.; Abou Elezz, A.; Elkhatat, A.; Qiblawey, H.; Almomani, F. A Green Route to the Synthesis of Highly Porous Activated Carbon from Walnut Shells for Mercury Removal. J. Water Process Eng. 2024, 58, 104802. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. A Green Approach to High-Performance Supercapacitor Electrodes: The Chemical Activation of Hydrochar with Potassium Bicarbonate. ChemSusChem 2016, 9, 1880–1888. [Google Scholar] [CrossRef]
- Fuertes, A.B.; Ferrero, G.A.; Diez, N.; Sevilla, M. A Green Route to High-Surface Area Carbons by Chemical Activation of Biomass-Based Products with Sodium Thiosulfate. ACS Sustain. Chem. Eng. 2018, 6, 16323–16331. [Google Scholar] [CrossRef]
- Brantley, S.L.; Mellott, N.P. Surface Area and Porosity of Primary Silicate Minerals. Am. Mineral. 2000, 85, 1767–1783. [Google Scholar] [CrossRef]
- Alothman, Z.A. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef]
- Altinci, O.C.; Demir, M. Beyond Conventional Activating Methods, a Green Approach for the Synthesis of Biocarbon and Its Supercapacitor Electrode Performance. Energy Fuels 2020, 34, 7658–7665. [Google Scholar] [CrossRef]
- Dittmann, D.; Saal, L.; Zietzschmann, F.; Mai, M.; Altmann, K.; Al-Sabbagh, D.; Schumann, P.; Ruhl, A.S.; Jekel, M.; Braun, U. Characterization of Activated Carbons for Water Treatment Using TGA-FTIR for Analysis of Oxygen-Containing Functional Groups. Appl. Water Sci. 2022, 12, 203. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, S.; Yang, D.; Dodelet, J.-P.; Sacher, E. The Surface Analytical Characterization of Carbon Fibers Functionalized by H2SO4/HNO3 Treatment. Carbon N. Y. 2008, 46, 196–205. [Google Scholar] [CrossRef]
- Xu, X.; Schierz, A.; Xu, N.; Cao, X. Comparison of the Characteristics and Mechanisms of Hg(II) Sorption by Biochars and Activated Carbon. J. Colloid Interface Sci. 2016, 463, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Rani, L.; Srivastav, A.L.; Kaushal, J. Bioremediation: An Effective Approach of Mercury Removal from the Aqueous Solutions. Chemosphere 2021, 280, 130654. [Google Scholar] [CrossRef]
- Zhu, J.; Deng, B.; Yang, J.; Gang, D. Modifying Activated Carbon with Hybrid Ligands for Enhancing Aqueous Mercury Removal. Carbon N. Y. 2009, 47, 2014–2025. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Padmesh, T.V.N.; Palanivelu, K.; Velan, M. Biosorption of Nickel (II) Ions onto Sargassum Wightii: Application of Two-Parameter and Three-Parameter Isotherm Models. J. Hazard. Mater. 2006, 133, 304–308. [Google Scholar] [CrossRef]
- Treybal, R.E. Mass-Transfer Operations; McGraw-Hill: New York, NY, USA, 1980; ISBN 0070651760. [Google Scholar]
- Weber, T.W.; Chakravorti, R.K. Pore and Solid Diffusion Models for Fixed-bed Adsorbers. AIChE J. 1974, 20, 228–238. [Google Scholar] [CrossRef]
- Al-Hazmi, G.A.A.M.; Alayyafi, A.A.A.; El-Desouky, M.G.; El-Bindary, A.A. Chitosan-Nano CuO Composite for Removal of Mercury (II): Box-Behnken Design Optimization and Adsorption Mechanism. Int. J. Biol. Macromol. 2024, 261, 129769. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Javed, S.H.; Zahir, A.; Khan, A.; Afzal, S.; Mansha, M. Adsorption of Mordant Red 73 Dye on Acid Activated Bentonite: Kinetics and Thermodynamic Study. J. Mol. Liq. 2018, 254, 398–405. [Google Scholar] [CrossRef]
- Tan, K.L.; Hameed, B.H. Insight into the Adsorption Kinetics Models for the Removal of Contaminants from Aqueous Solutions. J. Taiwan Inst. Chem. Eng. 2017, 74, 25–48. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Rethinking of the Intraparticle Diffusion Adsorption Kinetics Model: Interpretation, Solving Methods and Applications. Chemosphere 2022, 309, 136732. [Google Scholar] [CrossRef] [PubMed]
- Milonjic, S. A Consideration of the Correct Calculation of Thermodynamic Parameters of Adsorption. J. Serbian Chem. Soc. 2007, 72, 1363–1367. [Google Scholar] [CrossRef]
- Mohan, D.; Gupta, V.K.; Srivastava, S.K.; Chander, S. Kinetics of Mercury Adsorption from Wastewater Using Activated Carbon Derived from Fertilizer Waste. Colloids Surf. A Physicochem. Eng. Asp. 2001, 177, 169–181. [Google Scholar] [CrossRef]
- Albatrni, H.; Qiblawey, H.; Almomani, F.; Adham, S.; Khraisheh, M. Polymeric Adsorbents for Oil Removal from Water. Chemosphere 2019, 233, 809–817. [Google Scholar] [CrossRef]
- Tohamy, H.-A.S.; El-Sakhawy, M.; Hassan, E.B.; Kamel, S. Microwave-Prepared Quantum Dots and Their Potential Applications as Adsorbents and Chemosensors. Materials 2023, 16, 6722. [Google Scholar] [CrossRef]
- Mistar, E.M.; Hasmita, I.; Alfatah, T.; Muslim, A.; Supardan, M.D. Adsorption of Mercury (II) Using Activated Carbon Produced from Bambusa Vulgaris Var. Striata in a Fixed-Bed Column. Sains Malays. 2019, 48, 719–725. [Google Scholar] [CrossRef]
- Nabais, J.V.; Carrott, P.J.M.; Carrott, M.M.L.R.; Belchior, M.; Boavida, D.; Diall, T.; Gulyurtlu, I. Mercury Removal from Aqueous Solution and Flue Gas by Adsorption on Activated Carbon Fibres. Appl. Surf. Sci. 2006, 252, 6046–6052. [Google Scholar] [CrossRef]
- Pan, Q.; Hong, Q.; Fan, Y.; Sun, X.; Huang, W.; Yan, N.; Qu, Z.; Xu, H. Efficient Selective Uptake of Mercury Ions Using Inverse Vulcanization-Synthesized Sulfur-Rich Adsorbents. Sep. Purif. Technol. 2024, 333, 125917. [Google Scholar] [CrossRef]
- Sun, X.; Hwang, J.Y.; Xie, S. Density Functional Study of Elemental Mercury Adsorption on Surfactants. Fuel 2011, 90, 1061–1068. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Shalavi, S.; Jafarzadeh, H. Ethylenediaminetetraacetic Acid in Endodontics. Eur. J. Dent. 2013, 07, S135–S142. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, Z.; Zhou, X.; Bai, R. Removal of Mercury (II) from Aqueous Solution with Three Commercial Raw Activated Carbons. Res. Chem. Intermed. 2017, 43, 2273–2297. [Google Scholar] [CrossRef]
- Zabihi, M.; Omidvar, M.; Motavalizadehkakhky, A.; Zhiani, R. Competitive Adsorption of Arsenic and Mercury on Nano-Magnetic Activated Carbons Derived from Hazelnut Shell. Korean J. Chem. Eng. 2022, 39, 367–376. [Google Scholar] [CrossRef]
- Mariana, M.; Mistar, E.M.; Aswita, D.; Zulkipli, A.S.; Alfatah, T. Nipa Palm Shell as a Sustainable Precursor for Synthesizing High-Performance Activated Carbon: Characterization and Application for Hg2+ Adsorption. Bioresour. Technol. Rep. 2023, 21, 101329. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, Y.; Xu, X.; Meng, X.; Qu, J.; Wang, Z.; Liu, C.; Qu, B. Preparation, Characterization and Application of Activated Carbon from Corn Cob by KOH Activation for Removal of Hg (II) from Aqueous Solution. Bioresour. Technol. 2020, 306, 123154. [Google Scholar] [CrossRef]
IR WS:K2CO3:Na2S2O3 | BET Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) | Yield (%) |
---|---|---|---|---|
1:1:1 | 1346.07 | 0.685 | 1.02 | 7.29 |
1:2:1 | 1445.6 | 0.813 | 1.12 | 3.37 |
1:1:2 | 2132.7 | 1.0835 | 1.02 | 9.94 |
1:2:2 | 895.35 | 0.495 | 1.11 | 2.13 |
CAC | |
---|---|
Moisture content | 22.8% |
Volatile matter | 12.7% |
Fixed carbon | 62.46% |
Ash content | 2.06% |
Isotherms | T (C°) | Parameters | R2 | χ2 | RSME | ||
---|---|---|---|---|---|---|---|
Langmuir | KL (L/mg) | qmax (mg/g) | RL | ||||
RT | 0.048 | 289 | 0.963 | 0.13–0.61 | 8.48 | 5.28 | |
35 | 0.068 | 215 | 0.925 | 0.16–0.66 | 11.08 | 2.68 | |
45 | 0.048 | 184.9 | 0.909 | 0.17–0.67 | 15.3 | 2.54 | |
55 | 0.031 | 202.9 | 0.97 | 0.23–0.76 | 4.93 | 1.46 | |
Freundlich | KF (mg/g) (mg/L)1/n | n | |||||
RT | 36.66 | 2.5 | 0.92 | 14.63 | 3.54 | ||
35 | 56.61 | 3.88 | 0.846 | 22.91 | 3.67 | ||
45 | 34.10 | 3.11 | 0.848 | 23.7 | 3.22 | ||
55 | 26.16 | 2.55 | 0.963 | 4.57 | 1.66 | ||
Temkin | B | A | |||||
RT | 64.58 | 0.436 | 0.943 | 9.79 | 2.98 | ||
35 | 41.16 | 0.952 | 0.895 | 17.3 | 3.31 | ||
45 | 41.20 | 0.402 | 0.889 | 17.06 | 2.73 | ||
55 | 44.23 | 0.368 | 0.966 | 4.87 | 1.56 |
Kinetic Model | Experimental Data | Parameters | R2 | χ2 | RSME | ||
---|---|---|---|---|---|---|---|
Pseudo-first order | C0 (mg/L) | qe (mg/g) | qe (mg/g) | K1 (1/min) | |||
10 | 28.33 | 28.35 | 0.07 | 0.91 | 3.1 | 0.88 | |
50 | 115.66 | 122.57 | 0.02 | 0.93 | 12.1 | 3.2 | |
100 | 212 | 205 | 0.019 | 0.88 | 48.8 | 6.6 | |
Pseudo-second order | C0 (mg/L) | qe (mg/g) | qe (mg/g) | K2 (g/mg min) | |||
10 | 32.33 | 30.03 | 0.0037 | 0.88 | 4.5 | 1.03 | |
50 | 115.66 | 132.2 | 0.00022 | 0.96 | 6.2 | 2.44 | |
100 | 212 | 240.3 | 0.00012 | 0.97 | 37.3 | 5.7 | |
Elovich | C0 (mg/L) | qe (mg/g) | α (mg/g min) | β (g/mg) | |||
10 | 28.33 | 58.1 | 0.28 | 0.83 | 6.65 | 1.21 | |
50 | 115.66 | 7.3 | 0.036 | 0.96 | 5.9 | 2.23 | |
100 | 212 | 7.87 | 0.082 | 0.95 | 17.98 | 4.7 |
T(K) | Van’t Hoff Equation | KC | ΔG (kJ/mol) | ΔH° (kJ/mol) | ΔS° (J/mol K) | R2 |
---|---|---|---|---|---|---|
298 | Y = 2072.3x + 4.146 R2 = 0.91 | 63,016.7 | −27.38 | −17.23 | 34.38 | 0.91 |
308 | 52,314.05 | −27.82 | ||||
318 | 47,709.8 | −28.48 | ||||
328 | 31,894.4 | −28.28 |
Adsorbent | BET Surface Area (m2/g) | Mercury Concentration (mg/L) | Qmax (Langmuir) (mg/g) | Reference |
---|---|---|---|---|
AC from pistachio wood using NH4NO3 as activating agent | 1448 | 25 | 202 | [15] |
AC from palm tree shells activated with HNO3 | - | 25–400 | 76.3 | [13] |
AC from hazelnut shell activated with ZnCl2 | 750 | 25 | 80 | [56] |
Nipa palm shell-derived AC impregnated with NaOH | 1214 | 50 | 227.86 | [57] |
AC from corn cob activated with KOH | 1054.2 | 0.02–0.1 | 2.39 | [58] |
AC from rice husk activated with KOH | 887.32 | 8 | 55.86 | [20] |
AC from bambusa activated with NaOH | 1041.7 | 50–100 | 218.1 | [50] |
AC from walnut shells activated with K2CO3 | 1046.9 | 10–100 | 214.1 | [27] |
AC from walnut shells activated with K2CO3 | 458.01 | 10–100 | 164.4 | [26] |
AC from walnut shells activated with K2CO3 and Na2S2O3 | 2132.7 | 10–100 | 289 | This study |
Commercial AC from peach stone | 901 | 40–450 | 59.5 | [55] |
Commercial coal AC | 442 | 40–450 | 48.9 | [55] |
Commercial AC from coconut husk | 920 | 40–450 | 44.9 | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albatrni, H.; Qiblawey, H. A Novel Activated Carbon-Based Composite for Enhanced Mercury Removal. Water 2025, 17, 2035. https://doi.org/10.3390/w17132035
Albatrni H, Qiblawey H. A Novel Activated Carbon-Based Composite for Enhanced Mercury Removal. Water. 2025; 17(13):2035. https://doi.org/10.3390/w17132035
Chicago/Turabian StyleAlbatrni, Hania, and Hazim Qiblawey. 2025. "A Novel Activated Carbon-Based Composite for Enhanced Mercury Removal" Water 17, no. 13: 2035. https://doi.org/10.3390/w17132035
APA StyleAlbatrni, H., & Qiblawey, H. (2025). A Novel Activated Carbon-Based Composite for Enhanced Mercury Removal. Water, 17(13), 2035. https://doi.org/10.3390/w17132035