Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,434)

Search Parameters:
Keywords = saline irrigation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1188 KB  
Article
Simulation Experiment on the Effect of Saline Reclaimed Water Recharge on Soil Water and Salt Migration in Xinjiang, China
by Jiangwen Qin, Tao Zhou, Jihong Zhang, Tao Zhao, Ankun Wang, Hongbang Liang, Wenhao Li and Meng Li
Water 2026, 18(2), 238; https://doi.org/10.3390/w18020238 - 16 Jan 2026
Abstract
This study investigates the effects of saline reclaimed water recharge on soil salt accumulation and water migration in Xinjiang, China, aiming to provide scientific guidance for the sustainable utilization of reclaimed water in arid regions. Indoor vertical infiltration simulation experiments were conducted using [...] Read more.
This study investigates the effects of saline reclaimed water recharge on soil salt accumulation and water migration in Xinjiang, China, aiming to provide scientific guidance for the sustainable utilization of reclaimed water in arid regions. Indoor vertical infiltration simulation experiments were conducted using reclaimed water with varying salinity levels (0, 1, 2, 3, and 4 g L−1) to evaluate their impacts on soil water–salt distribution and infiltration dynamics. Results showed that irrigation with saline reclaimed water increased soil pH and significantly enhanced both the infiltration rate and wetting front migration velocity, while causing only minor changes in the moisture content of the wetted zone. When the salinity was 2 g L−1, the observed improvement effect was the most significant. Specifically, the cumulative infiltration increased by 22.73% after 180 min, and the time required for the wetting peak to reach the specified depth was shortened by 21.74%. At this salinity level, the soil’s effective water storage capacity reached 168.19 mm, with an average moisture content increase of just 6.20%. Soil salinity increased with the salinity of the irrigation water, and salts accumulated at the wetting front as water moved downward, resulting in a characteristic distribution pattern of desalination in the upper layer and salt accumulation in the lower layer. Notably, reclaimed water recharge reduced soil salinity in the 0–30 cm layer, with salinity in the 0–25 cm layer decreasing below the crop salt tolerance threshold. When the salinity of the reclaimed water was ≤2 g L−1, the salt storage in the 0–30 cm layer was less than 7 kg ha−1, achieving a desalination rate exceeding 60%. Reclaimed water with a salinity of 2 g L−1 enhanced infiltration (wetting front depth increased by 27.78%) and desalination efficiency (>60%). These findings suggest it is well suited for urban greening and represents an optimal choice for the moderate reclamation of saline-alkali soils in arid environments. Overall, this study provide a reference for the water quality threshold and parameters of reclaimed water for urban greening, farmland irrigation, and saline land improvement. Full article
(This article belongs to the Special Issue Synergistic Management of Water, Fertilizer, and Salt in Arid Regions)
Show Figures

Figure 1

17 pages, 2735 KB  
Article
Modeling Soil Salinity Dynamics in Paddy Fields Under Long-Term Return Flow Irrigation in the Yinbei Irrigation District
by Hangyu Guo, Chao Shi, Alimu Abulaiti, Hongde Wang and Xiaoqin Sun
Agriculture 2026, 16(2), 222; https://doi.org/10.3390/agriculture16020222 - 15 Jan 2026
Abstract
The imbalance between water supply and demand in the arid and semi-arid regions of northwest China has become increasingly severe, highlighting the urgent need to develop and utilize unconventional water resources. Return flow, originating from canal leakage and field drainage, is widely distributed [...] Read more.
The imbalance between water supply and demand in the arid and semi-arid regions of northwest China has become increasingly severe, highlighting the urgent need to develop and utilize unconventional water resources. Return flow, originating from canal leakage and field drainage, is widely distributed in these regions. However, as it contains a certain amount of salts, long-term use of return flow can lead to soil salinization and degradation of soil structure. Therefore, the scientific utilization of return flow has become a key issue for achieving sustainable agricultural development and efficient water use in arid areas. This study was conducted in the Yinbei Irrigation District, Ningxia, northwest China. Water samples were collected from the main and branch drainage ditches and analyzed to evaluate the feasibility of using return flow irrigation in the area. In addition, based on two years of continuous field monitoring and HYDRUS model simulations, the long-term dynamics of soil salinity under moderate return flow irrigation over the next 20 years were predicted. The results show that the total salinity of the main return ditches consistently remained below the agricultural irrigation water quality standard of 2000 mg/L, with Na+ and SO42− as the predominant ions. Seasonal variations in return flow salinity were notable, with higher levels observed in spring compared to summer. Simulation results based on field trial data indicated that soil salinity displayed regular seasonal fluctuations. During the rice-growing season, strong leaching kept the salinity in the plough layer (0–40 cm) low. However, after irrigation ceased, evaporation in autumn and winter led to an increase in surface soil salinity, creating annual peaks. Long-term simulations showed that soil salinity throughout the entire profile (0–100 cm) followed a pattern of “slight increase—gradual decrease—dynamic stability.” Specifically, winter salinity peaks slightly increased during the first two years but then gradually declined, stabilizing after approximately 15 years. This indicates that long-term return-flow irrigation does not result in the accumulation of soil salinity in the plough layer. Full article
Show Figures

Figure 1

19 pages, 3315 KB  
Article
Effects of Deep Ploughing Combined with Subsurface Drainage on Soil Water–Salt Dynamics and Physical Properties in Arid Regions
by Miao Wu, Yingjie Ma, Pengrui Ai, Zhenghu Ma and Changjiang Liu
Sustainability 2026, 18(2), 862; https://doi.org/10.3390/su18020862 - 14 Jan 2026
Viewed by 26
Abstract
A two-year (2024–2025) field experiment was conducted in southern Xinjiang to alleviate soil compaction and severe salinization in saline–alkali soils and to evaluate the combined effects of tillage depth and subsurface drain spacing on soil improvement. Six treatments were established with three deep [...] Read more.
A two-year (2024–2025) field experiment was conducted in southern Xinjiang to alleviate soil compaction and severe salinization in saline–alkali soils and to evaluate the combined effects of tillage depth and subsurface drain spacing on soil improvement. Six treatments were established with three deep tillage depths, 70 cm (W1), 50 cm (W2), and 30 cm (W3), and two subsurface drain spacings, 20 m (S1) and 40 m (S2). Treatment effects on soil water–salt dynamics, soil physical properties and structure, ionic composition, and subsurface drainage and salt removal were analyzed. This study provides mechanistic and practical evidence that coupling deep tillage with subsurface drainage creates a more effective leaching–drainage pathway than either measure alone and enables robust optimization of design parameters (drain spacing × tillage depth) for saline–alkali land improvement in arid regions. Deep tillage in combination with subsurface drainage significantly increased soil profile water content, total porosity, and cumulative subsurface drainage and salt export, all of which reached their maxima under S1W1; it also significantly reduced bulk density, total salinity, and the concentrations of Na+, K+, Mg2+, Ca2+, Cl, and SO42−, which reached their minima under S1W1. After two spring irrigation–leaching events (in 2024 and 2025), surface salt accumulation in the soil profile was markedly alleviated, and the mean salinity in the 0–20 cm layer decreased by 45.68% across treatments. The S1W1 treatment achieved the best desalinization performance in both leaching events, with reductions of 41.36% and 44.68%, respectively. Pearson correlation analysis indicated that the desalinization effect was significantly negatively correlated with porosity and significantly positively correlated with bulk density and ionic concentrations. Overall, coupling deep tillage with subsurface drainage effectively reduced soil salinity and harmful ions, improved soil structure, and enhanced drainage-mediated salt removal, with the 70 cm tillage depth combined with a 20 cm drain spacing delivering the best performance. Full article
Show Figures

Figure 1

27 pages, 1630 KB  
Article
Sectoral Patterns of Arsenic, Boron, and Salinity Indicators in Groundwater from the La Yarada Los Palos Coastal Aquifer, Peru
by Luis Johnson Paúl Mori Sosa, Dante Ulises Morales Cabrera, Walter Dimas Florez Ponce De León, Hernán Rolando Salinas Palza and Edith Eva Cruz Pérez
Sustainability 2026, 18(2), 830; https://doi.org/10.3390/su18020830 - 14 Jan 2026
Viewed by 43
Abstract
Groundwater is the main water source for irrigated agriculture, accounting for an increasing share of the domestic supply in the hyper-arid district of La Yarada Los Palos (Tacna, Peru); however, at the sector scale, concerns about arsenic, boron and salinity remain poorly quantified. [...] Read more.
Groundwater is the main water source for irrigated agriculture, accounting for an increasing share of the domestic supply in the hyper-arid district of La Yarada Los Palos (Tacna, Peru); however, at the sector scale, concerns about arsenic, boron and salinity remain poorly quantified. Arsenic and boron were selected as target contaminants because of their naturally elevated concentrations associated with coastal and volcanic hydrogeological settings, and their well-documented implications for human health and irrigation suitability. This study reports a 12-month monitoring program (September 2024–August 2025) in three irrigated sectors, in which wells were sampled monthly and analyzed by inductively coupled plasma–mass spectrometry (ICP-MS) for total arsenic, boron, lithium and sodium, along with electrical conductivity, pH, temperature and total dissolved solids. The sector–month total arsenic means ranged from 0.0089 to 0.0143 mg L−1, with 33 of 36 exceeding the 0.010 mg L−1 drinking water benchmark recommended by the World Health Organization (WHO). Total boron ranged from 1.11 to 2.76 mg L−1, meaning that all observations were above the 0.5 mg L−1 irrigation guideline for agricultural use proposed by the United Nations Food and Agriculture Organization (FAO). A marked salinity gradient was observed from the inland Sector 1-BH (median Na ≈ 77 mg L−1; EC ≈ 1.2 mS cm−1) to the coastal Sector 3-LC (median Na ≈ 251 mg L−1; EC ≈ 3.3 mS cm−1), with Sector 2-FS showing intermediate salinity but the highest median boron and lithium levels. Spearman rank correlations indicate that sodium, electrical conductivity and total dissolved solids define the main salinity axis, whereas arsenic is only moderately associated with boron and lithium and is not a simple function of bulk salinity. Taken together, these results show that groundwater from the monitored wells is not safe for drinking without treatment and is subject to at least moderate boron-related irrigation restrictions. The sector-resolved dataset provides a quantitative baseline for La Yarada Los Palos and a foundation for future work integrating expanded monitoring, health-risk metrics and management scenarios for arsenic, boron and salinity in hyper-arid coastal aquifers. Full article
Show Figures

Figure 1

20 pages, 733 KB  
Review
Treated Wastewater as an Irrigation Source in South Africa: A Review of Suitability, Environmental Impacts, and Potential Public Health Risks
by Itumeleng Kgobokanang Jacob Kekana, Pholosho Mmateko Kgopa and Kingsley Kwabena Ayisi
Water 2026, 18(2), 194; https://doi.org/10.3390/w18020194 - 12 Jan 2026
Viewed by 129
Abstract
Availability of irrigation water during growing seasons in the Republic of South Africa (RSA) remains a significant concern. Persistent droughts and unpredictable rainfall patterns attributed to climate change, coupled with an increasing population, have exacerbated irrigation water scarcity. Globally, treated wastewater has been [...] Read more.
Availability of irrigation water during growing seasons in the Republic of South Africa (RSA) remains a significant concern. Persistent droughts and unpredictable rainfall patterns attributed to climate change, coupled with an increasing population, have exacerbated irrigation water scarcity. Globally, treated wastewater has been utilised as an irrigation water source; however, despite global advances in the usage of treated wastewater, its suitability for irrigation in RSA remains a contentious issue. Considering this uncertainty, this review article aims to unravel the South African scenario on the suitability of treated wastewater for irrigation purposes and highlights the potential environmental impacts and public health risks. The review synthesised literature in the last two decades (2000–present) using Web of Science, ScienceDirect, ResearchGate, and Google Scholar databases. Findings reveal that treated wastewater can serve as a viable irrigation source in the country, enhancing various soil parameters, including nutritional pool, organic carbon, and fertility status. However, elevated levels of salts, heavy metals, and microplastics in treated wastewater resulting from insufficient treatment of wastewater processes may present significant challenges. These contaminants might induce saline conditions and increase heavy metals and microplastics in soil systems and water bodies, thereby posing a threat to public health and potentially causing ecological risks. Based on the reviewed literature, irrigation with treated wastewater should be implemented on a localised and pilot basis. This review aims to influence policy-making decisions regarding wastewater treatment plant structure and management. Stricter monitoring and compliance policies, revision of irrigation water standards to include emerging contaminants such as microplastics, and intensive investment in wastewater treatment plants in the country are recommended. With improved policies, management, and treatment efficiency, treated wastewater can be a dependable, sustainable, and practical irrigation water source in the country with minimal public health risks. Full article
(This article belongs to the Special Issue Sustainable Agricultural Water Management Under Climate Change)
Show Figures

Figure 1

19 pages, 1091 KB  
Article
Crop Resilience in Arid Soil Systems with Brackish Water Irrigation in Tunisia
by Marwa Zouari, Mohamed Hachicha and Ewald Schnug
Soil Syst. 2026, 10(1), 9; https://doi.org/10.3390/soilsystems10010009 - 6 Jan 2026
Viewed by 147
Abstract
In arid regions, irrigation is essential for sustaining crop production, but irrigation water often contains high levels of salts that may reduce yields. This study aimed to evaluate crop responses to irrigation water with salinity levels exceeding 4 g/L (≈6.25 dS/m). A large-scale [...] Read more.
In arid regions, irrigation is essential for sustaining crop production, but irrigation water often contains high levels of salts that may reduce yields. This study aimed to evaluate crop responses to irrigation water with salinity levels exceeding 4 g/L (≈6.25 dS/m). A large-scale field survey was conducted across several Tunisian governorates, covering a wide range of crops and production systems. Irrigation water salinity and corresponding crop yields were recorded and analyzed to determine tolerance patterns under real farming conditions. Results indicate that, even under high salinity conditions, several cropssuch as carrot (Daucus carota), barley (Hordeum vulgare), and tomato (Solanum lycpersicum), can maintain high yields, highlighting their potential for saline irrigation in arid regions. These findings provide valuable insights for irrigation management, crop selection, and the development of sustainable agricultural practices in arid environments. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
Show Figures

Figure 1

22 pages, 9564 KB  
Article
Multi-Factor Driving Force Analysis of Soil Salinization in Desert–Oasis Regions Using Satellite Data
by Rui Gao, Yao Guan, Xinghong He, Jian Wang, Debao Fan, Yuan Ma, Fan Luo and Shiyuan Liu
Water 2026, 18(1), 133; https://doi.org/10.3390/w18010133 - 5 Jan 2026
Viewed by 240
Abstract
Understanding the spatiotemporal evolution of soil salinization is essential for elucidating its driving mechanisms and supporting sustainable land and water management in arid regions. In this study, the Alar Reclamation Area in Xinjiang, a typical desert–oasis transition zone, was selected to investigate the [...] Read more.
Understanding the spatiotemporal evolution of soil salinization is essential for elucidating its driving mechanisms and supporting sustainable land and water management in arid regions. In this study, the Alar Reclamation Area in Xinjiang, a typical desert–oasis transition zone, was selected to investigate the drivers of spatiotemporal variation in soil salinization. GRACE gravity satellite observations for the period 2002–2022 were used to estimate groundwater storage (GWS) fluctuations. Contemporaneous Landsat multispectral imagery was employed to derive the normalized difference vegetation index (NDVI) and a salinity index (SI), which were further integrated to construct the salinization detection index (SDI). Pearson correlation analysis, variance inflation factor analysis, and a stepwise regression framework were employed to identify the dominant factors controlling the occurrence and evolution of soil salinization. The results showed that severe salinization was concentrated along the Tarim River and in low-lying downstream zones, while salinity levels in the middle and upper parts of the reclamation area had generally declined or shifted to non-salinized conditions. SDI exhibited a strong negative correlation with NDVI (p ≤ 0.01) and a significant positive correlation with both irrigation quota and GWS (p ≤ 0.01). A pronounced collinearity was observed between GWS and irrigation quota. NDVI and GWS were identified as the principal drivers governing spatial–temporal variations in SDI. The resulting regression model (SDI = 0.946 − 0.959 × NDVI + 0.318 × GWS) established a robust quantitative relationship between SDI, NDVI and GWS, characterized by a high coefficient of determination (R2 = 0.998). These statistics indicated the absence of multicollinearity (variance inflation factor, VIF < 5) and autocorrelation (Durbin–Watson ≈ 1.876). These findings provide a theoretical basis for the management of saline–alkali lands in the upper Tarim River region and offer scientific support for regional ecological sustainability. Full article
(This article belongs to the Special Issue Synergistic Management of Water, Fertilizer, and Salt in Arid Regions)
Show Figures

Figure 1

20 pages, 899 KB  
Review
Connecting the Airways: Current Trends in United Airway Diseases
by Benedetta Bondi, Martina Buscema, Federico Di Marco, Carlo Conti, Andrea Caviglia, Lorenzo Fucci, Anna Maria Riccio, Marcello Mincarini, Martina Ottoni, Fulvio Braido, Rikki Frank Canevari and Diego Bagnasco
J. Pers. Med. 2026, 16(1), 21; https://doi.org/10.3390/jpm16010021 - 4 Jan 2026
Viewed by 256
Abstract
The concept of united airway disease (UAD) highlights the bidirectional relationship between inflammatory disorders of the upper airways—such as allergic rhinitis and chronic rhinosinusitis with or without nasal polyps (CRSwNP/CRSsNP)—and lower airway diseases, most notably asthma. This paradigm is supported by epidemiological, embryological, [...] Read more.
The concept of united airway disease (UAD) highlights the bidirectional relationship between inflammatory disorders of the upper airways—such as allergic rhinitis and chronic rhinosinusitis with or without nasal polyps (CRSwNP/CRSsNP)—and lower airway diseases, most notably asthma. This paradigm is supported by epidemiological, embryological, and immunological evidence demonstrating that airway inflammation represents a single, interconnected process rather than isolated compartmental pathology. Central to many UAD phenotypes is type 2 (T2) inflammation, driven by cytokines including IL-4, IL-5, and IL-13, and mediated by effector cells such as eosinophils and group 2 innate lymphoid cells (ILC2s). Epithelial barrier dysfunction often serves as the initiating trigger for this shared inflammatory cascade by production of TSLP, IL-25 and IL-33. Optimal diagnosis and management of UAD require an integrated, multidisciplinary framework. Clinical evaluation remains essential for patient characterization but must be complemented by pheno-endotypic assessment using imaging (CT), allergy testing, biomarker profiling (FeNO, blood eosinophils, IgE), and pulmonary function testing (spirometry, impulse oscillometry). Therapeutic strategies are layered, targeting both symptom control and inflammation across airway compartments. Standard approaches include intranasal and inhaled corticosteroids as well as saline irrigations, while severe T2-high disease increasingly benefits from biologic therapies (anti-IL-5/IL-5R, anti-IL-4R, anti-TSLP), which reduce dependence on systemic corticosteroids and surgical interventions such as endoscopic sinus surgery (ESS). Emerging precision-medicine models, particularly the “treatable traits” approach, further underscore the need to view the airway as a unified system. Collectively, these insights reinforce the clinical imperative of addressing upper and lower airway disease as a continuum, ensuring that inflammation in one district is neither overlooked nor treated in isolation. Full article
(This article belongs to the Special Issue United Airway Disease: Current Perspectives)
Show Figures

Graphical abstract

18 pages, 7161 KB  
Article
Assessment of the Impact of the Irrigation Regime and the Application of Fermented Organic Fertilizers on Soil Salinity Dynamics and Alfalfa Growth in Coastal Saline–Alkaline Land
by Qian Yang, Shanshan Shen, Qiu Jin and Jingnan Chen
Agronomy 2026, 16(1), 117; https://doi.org/10.3390/agronomy16010117 - 1 Jan 2026
Viewed by 418
Abstract
Alfalfa cultivation is an effective way to achieve soil improvement while utilizing saline soils. Irrigation and drainage, as physical measures to leach salts, can effectively reduce the soil salt content, while application of organic fertilizer fermented with an effective microorganism (EM) may further [...] Read more.
Alfalfa cultivation is an effective way to achieve soil improvement while utilizing saline soils. Irrigation and drainage, as physical measures to leach salts, can effectively reduce the soil salt content, while application of organic fertilizer fermented with an effective microorganism (EM) may further enhance the improvement effect of saline–alkaline soil by improving soil fertility and microbial community structure. However, there is still a lack of systematic assessment on the effects of applying these three measures on the saline soil–plant system. In this study, we used alfalfa as the plant material and set three water depths of 8 mm (IR1), 16 mm (IR2), and 24 mm (IR3) under the condition of irrigating every 10 days with remote-controlled timed and quantitative irrigation, which is the most acceptable to farmers in the era of smart agriculture. EM organic fertilizer dosage was designed as 0 kg/ha (CK), 1500 kg/ha (OF1), 3000 kg/ha (OF2), 4500 kg/ha (OF3), and 6000 kg/ha (OF4). The multiple-crop alfalfa yield, quality (crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF)), and soil electrical conductivity (EC) were observed. The results showed that after the application of EM organic fertilizer, the soil’s EC value of fertilized treatments was higher than that of CK, but this difference became smaller with the prolongation of alfalfa’s growing period, implying that EM organic fertilizer could absorb more soil salts by promoting alfalfa’s growth; the water depth was obviously negatively correlated with the soil’s EC value, demonstrating that the increase in the water depth had a stronger ability to reduce the soil salts. By the end of the experiment, the soil’s EC values were reduced by 21.4–43.7% for the treatments. The alfalfa yield was significantly increased by EM organic fertilizer application, and the three alfalfa yields were increased by 63.3–69.1%, 65.4–83.6%, and 52.6–56.2%, respectively, when fertilizer application was elevated from CK to OF4. The highest alfalfa yields were all found at IR2OF4, reaching 1164.7, 2637.3 and 2519.7 t/ha, corresponding to the first, second, and third alfalfa crops, respectively. The analysis of alfalfa quality indexes revealed that higher CP values were found in the IR2 treatments, and increasing fertilizer application from OF1–OF4 resulted in an increase in CP values by 2.4–9.1%, 1.5–7.4%, and 0.8–6.7% for the three alfalfa crops. Relatively low NDF and ADF values were observed for alfalfa under IR2 conditions; however, the application of EM organic fertilizer reduced the NDF and ADF values within a certain range. According to the results of the entropy weight evaluation model, IR3OF4, IR3OF2, and IR3OF3 were the top three treatments with the best overall benefits, respectively, with relative closeness values of 0.71, 0.70, and 0.68, in that order, which suggests that the appropriate water depth is 24 mm, while the appropriate EM organic fertilizer dosage is in the range of 3000–6000 kg/ha. There was a pattern observed in our study, in which the treatments with better overall benefits were better distributed at high water depths, which emphasizes the critical role of the irrigation volume in ameliorating saline soils. The conclusions of the study are intended to provide a practical basis for the comprehensive utilization and sustainable development of saline soils. Full article
(This article belongs to the Special Issue Impact of Irrigation or Drainage on Soil Environment and Crop Growth)
Show Figures

Figure 1

20 pages, 2682 KB  
Article
Effects of Magnetized Saline Irrigation on Soil Aggregate Stability, Salinity, Nutrient Distribution, and Enzyme Activity: Based on the Interaction Between Salinity and Magnetic Field Strength
by Yu Fan, Pengrui Ai, Fengxiu Li, Tong Heng, Yan Xu, Zhifeng Wang, Zhenghu Ma and Yingjie Ma
Soil Syst. 2026, 10(1), 6; https://doi.org/10.3390/soilsystems10010006 - 30 Dec 2025
Viewed by 198
Abstract
Freshwater scarcity in arid regions is driving increased use of saline irrigation, yet salinity severely degrades soil structure and suppresses enzymatic function. To address this critical challenge for sustainable soil management, this study systematically evaluated magnetized saline water (MSW) across three salinity levels [...] Read more.
Freshwater scarcity in arid regions is driving increased use of saline irrigation, yet salinity severely degrades soil structure and suppresses enzymatic function. To address this critical challenge for sustainable soil management, this study systematically evaluated magnetized saline water (MSW) across three salinity levels (1, 3, and 6 g L−1) and four magnetic field strengths (0, 0.2, 0.4, and 0.6 T), confirming the magnetic field intensity (C) × salinity (S) interaction. The comprehensive analysis integrated data on aggregate stability, key ion concentrations (Ca2+, Mg2+, Cl), and major enzyme activities. Structural Equation Modeling (SEM) was utilized to quantify the underlying mechanisms, demonstrating that structural improvement is primarily driven by strong indirect pathways, mediated by optimized ion dynamics and increased enzyme-mediated organic matter turnover. The moderate-salinity (3 g L−1), moderate-magnetic-field (0.4 T) regime emerged as the optimal balanced strategy for overall soil health. These findings offer a scalable approach, guiding future field-scale research toward long-term agricultural sustainability. Full article
(This article belongs to the Special Issue Land Use and Management on Soil Properties and Processes: 2nd Edition)
Show Figures

Figure 1

18 pages, 2374 KB  
Article
Assessing Groundwater Sustainability in Siwa Oasis, Egypt: Evaluating Physico-Chemical and Hydrochemical Suitability for Human and Agricultural Use
by Mohamed H. H. Ali, Mohamad S. Abdelkarim, Khadija M. Attwa and Afify D. G. Al-Afify
Sustainability 2026, 18(1), 357; https://doi.org/10.3390/su18010357 - 30 Dec 2025
Viewed by 226
Abstract
Groundwater wells are essential for sustaining biodiversity in arid and hyper-arid regions. Wells are easily affected by external disturbances, particularly in hyper-arid regions like the Siwa Oasis, where the environmental variables influencing groundwater communities remain understudied. This study assessed the quality of several [...] Read more.
Groundwater wells are essential for sustaining biodiversity in arid and hyper-arid regions. Wells are easily affected by external disturbances, particularly in hyper-arid regions like the Siwa Oasis, where the environmental variables influencing groundwater communities remain understudied. This study assessed the quality of several groundwater wells and agricultural drains based on the physical, chemical and hydrochemical parameters. The results classified the wells and drains into three distinct groups: (1) highly mineralized, carbonated systems with high concentrations of potassium, calcium, sodium, magnesium, chloride, and sulfate, and an average electrical conductivity (EC) of 12.01 mS/cm; (2) low-mineralized wells with an average EC of 2.15 mS/cm; and (3) a moderate one averaging 7.77 mS/cm. The major ions were dominated by Na+ (59.3%) and Mg2+ (26.8%) for cations, and Cl (79.1%) and SO42− (13.4%) for anions in meq/L. Collectively, the evaluation based on total dissolved solids (TDS), sodium percentage (Na%), sodium adsorption ratio (SAR), and the US Salinity Laboratory (USSL) diagram revealed that about 80% of the analyzed wells are unsuitable for irrigation, with only three wells (W03, W12, and W16) deemed suitable for drinking. These findings confirmed a critical vulnerability of the oasis ecosystem. The uncontrolled and extensive use of finite, non-renewable aquifers for agricultural and other purposes is directly exacerbating water salinization and soil sodicity, posing a threat to the future sustainability of the oasis’s water resources. Full article
Show Figures

Figure 1

33 pages, 1059 KB  
Article
Physiological and Agronomic Responses of Adult Citrus Trees to Oxyfertigation Under Semi-Arid Drip-Irrigated Conditions
by Juan M. Robles, Francisco Miguel Hernández-Ballester, Josefa M. Navarro, Elisa I. Morote, Pablo Botía and Juan G. Pérez-Pérez
Agriculture 2026, 16(1), 75; https://doi.org/10.3390/agriculture16010075 - 29 Dec 2025
Viewed by 265
Abstract
Oxyfertigation with hydrogen peroxide (H2O2) has been successfully applied in several crops and production systems, but its use in mature citrus orchards under no-tillage conditions and semi-arid Mediterranean environments remains scarcely studied. This study aimed to evaluate the physiological [...] Read more.
Oxyfertigation with hydrogen peroxide (H2O2) has been successfully applied in several crops and production systems, but its use in mature citrus orchards under no-tillage conditions and semi-arid Mediterranean environments remains scarcely studied. This study aimed to evaluate the physiological responses of adult citrus trees and the agronomic performance of a mature citrus orchard subjected to chemical oxyfertigation based on the application of H2O2 in irrigation water as an oxygen source for the root zone. The experiment was conducted over four consecutive seasons (2018–2021) on adult ‘Ortanique’ hybrid mandarin trees grown in an orchard located in Torre Pacheco (Murcia, Spain). Two treatments were established: a ‘Control’ (0 mg L−1 of H2O2) and an ‘OXY’ treatment (50–100 mg L−1 of H2O2 applied throughout the growing season). Oxyfertigation significantly increased the dissolved oxygen in irrigation water and soil oxygen diffusion rate, with treatment and treatment × time effects showing greater oxygenation under conditions favoring transient root-zone hypoxia. Soil CO2 and H2O vapor fluxes exhibited marked seasonal dynamics but no consistent treatment effect, and soil salinity and macro- and micronutrient contents were not significantly altered. At the plant level, oxyfertigation episodically enhanced leaf gas exchange and transiently improved the water status, but did not produce a sustained increase in leaf-level water use efficiency. In contrast, OXY trees showed greater pruning biomass, more fruits (+18%), higher cumulative yield (+13%), and significantly higher crop water use efficiency (YWUE) while the mean fruit weight and most quality attributes were governed by interannual climatic variability. In summary, oxyfertigation acted as a complementary and safe agronomic practice that improved rhizosphere oxygenation and supported modest gains in fruit load and YWUE in mature citrus orchards. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

29 pages, 76370 KB  
Article
Hydrogeochemical and GIS-Integrated Evaluation of Drainage Water for Sustainable Irrigation Management in Al-Jouf, Saudi Arabia
by Raid Alrowais, Mahmoud M. Abdel-Daiem, Mohamed Ashraf Maklad, Wassef Ounaies and Noha Said
Water 2026, 18(1), 78; https://doi.org/10.3390/w18010078 - 27 Dec 2025
Viewed by 486
Abstract
This study evaluates the quality and irrigation suitability of drainage water in the Al-Jouf Region, Saudi Arabia, where water scarcity necessitates the reuse of nonconventional resources. Eighteen drainage water samples were analyzed for physicochemical parameters and irrigation indices, including electrical conductivity (EC), sodium [...] Read more.
This study evaluates the quality and irrigation suitability of drainage water in the Al-Jouf Region, Saudi Arabia, where water scarcity necessitates the reuse of nonconventional resources. Eighteen drainage water samples were analyzed for physicochemical parameters and irrigation indices, including electrical conductivity (EC), sodium percentage (Na+%), sodium adsorption ratio (SAR), magnesium hazard (MH), Kelly’s ratio (KR), permeability index (PS), and irrigation water quality index (IWQI). Multivariate statistical tools were applied to identify dominant hydrogeochemical processes. Inverse Distance Weighting (IDW) interpolation in ArcGIS Desktop 10.8 was employed to map significant physicochemical data and irrigation indicators. Results revealed that while EC values indicated low to moderate salinity (0.74–25.2 μS/cm), most samples showed high Na+%, SAR, and KR, classifying them as doubtful to unsuitable for irrigation. The IWQI ranged from 84.47 to 1617.87, indicating poor to inferior quality due to evaporation, fertilizer leaching, and sodium accumulation. Furthermore, the results highlight the importance of precise geographic modeling in determining whether drainage water is suitable for long-term agricultural use in arid regions such as Al-Jouf. Sustainable reuse of such drainage water requires freshwater blending, gypsum application, and the cultivation of salt-tolerant crops, aligning with Saudi Vision 2030 objectives for sustainable water management in arid regions. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

19 pages, 3170 KB  
Article
Spatial Optimization and Allocation of the Dry Drainage System in the Hetao Irrigation District Based on SahysMod
by Wencong Zhang, Huanhuan Li, Zhimou Cui, Yahui Wang and Fengchun Wang
Agriculture 2026, 16(1), 51; https://doi.org/10.3390/agriculture16010051 - 25 Dec 2025
Viewed by 237
Abstract
In the Hetao Irrigation District of China, land consolidation to expand cultivated areas has disrupted the regional water–salt balance, increasing soil salinization risks. This study investigates the spatial optimization of cultivated land and salt-accumulating wasteland, using the SahysMod model to simulate soil water–salt [...] Read more.
In the Hetao Irrigation District of China, land consolidation to expand cultivated areas has disrupted the regional water–salt balance, increasing soil salinization risks. This study investigates the spatial optimization of cultivated land and salt-accumulating wasteland, using the SahysMod model to simulate soil water–salt dynamics and develop multi-scenario plans. The objective is to identify optimal strategies for regulating the dry drainage system and controlling salt accumulation by optimizing three key parameters: cultivated land-to-wasteland area ratio, elevation difference between cultivated land and wasteland, and spatial layout schemes. The results show that the SahysMod model accurately simulates soil water–salt interactions. Under the current scenario, the root zone ECe of cultivated land is projected to reach 6.16 dS·m−1 by 2030, surpassing the salt tolerance threshold for sunflowers and threatening crop yield. The optimized scenario, which reduces the cultivated land-to-wasteland ratio from 14.41 to 12.97, increases wasteland area to 22.01 hm2 and raises the elevation difference from 20 cm to 40 cm, significantly improving salt accumulation efficiency. By 2030, the ECe in the root zone decreases to 5.37 dS·m−1, bringing soil conditions within the tolerance range for major crops in the region. Between 2021 and 2025, salt accumulation in cultivated land decreases dramatically from 19.08% to 5.60% under the optimized scenario, demonstrating effective early-stage salt control. However, from 2026 to 2030, the annual salt accumulation rate stabilizes at 24.88% (optimized) versus 25.20% (current), with a difference of only 0.32%. This finding reveals that while spatial optimization effectively mitigates short-term salt buildup, it has limited efficacy in preventing long-term salt accumulation. Spatial simulations suggest that a northern concentrated and southern patchwork wasteland layout enhances salt-accumulating capacity. These results demonstrate that spatial optimization of cultivated land and wasteland configuration alone is insufficient to fundamentally resolve soil salinization. Therefore, comprehensive measures, including drainage system improvements, soil amendments, and refined irrigation management, are necessary for sustainable salt management in arid irrigation regions. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

25 pages, 6029 KB  
Article
Physiological and Biochemical Responses of Juvenile Achachairu Trees (Garcinia humilis (Vahl) C.D. Adams) to Elevated Soil Salinity Induced by Saline Irrigation
by Federico W. Sanchez, Jonathan H. Crane, Haimanote K. Bayabil, Ali Sarkhosh, Muhammad A. Shahid and Bruce Schaffer
Horticulturae 2026, 12(1), 20; https://doi.org/10.3390/horticulturae12010020 - 25 Dec 2025
Viewed by 263
Abstract
Soil salinity affects large areas of the world and results in horticultural and biodiversity losses in tropical regions. Garcinia humilis (Vahl) C.D. Adams, fam. Clusiaceae, commonly known as achachairu, is a neotropical evergreen fruit tree native to the Amazonian forests in Bolivia. Its [...] Read more.
Soil salinity affects large areas of the world and results in horticultural and biodiversity losses in tropical regions. Garcinia humilis (Vahl) C.D. Adams, fam. Clusiaceae, commonly known as achachairu, is a neotropical evergreen fruit tree native to the Amazonian forests in Bolivia. Its tolerance and responses to soil salinity exclusive of other stressors and within a range of salinity levels have not been reported. This study assessed the physiological, biochemical, and morphological responses of G. humilis to different levels of elevated soil salinity induced by saline irrigation. Physiological variables measured included net CO2 assimilation (An), stomatal conductance of H2O (gs), intercellular CO2 concentration, leaf chlorophyll index (LCI), and the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm). Leaf and root nutrient analyses were performed to assess nutrient imbalances and the accumulation of toxic ions. Antioxidant responses, including superoxide dismutase, catalase, peroxidase, guaiacol peroxidase, ascorbate peroxidase, ascorbic acid, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione, and glutathione reductase; reactive oxygen species (ROS) such as hydrogen peroxide and superoxide radical; and lipid peroxidation as indicated by malonaldehyde were also measured. The results indicate that G. humilis tolerates elevated soil salinity induced by saline irrigation with an electrical conductivity of at least 6 dS m−1, which results in stress responses without fatal consequences. Soil salinity induced by saline irrigation of 6 dS m−1 reduced An and gs by approximately 50% during a 30-day period, but there was no evidence of physiological damage based on the LCI or Fv/Fm. The levels of Na+ and Cl did not reach toxic levels, and the plants were able to prevent damaging imbalances of plant nutrients, indicating an ion-avoidance strategy. Increased antioxidant response to soil salinity induced by saline irrigation possibly prevented ROS and lipid peroxidation damage. G. humilis appears to be moderately tolerant of soil salinity induced by saline irrigation of at least 30 days at 6 dS m−1. Full article
(This article belongs to the Collection Biosaline Agriculture)
Show Figures

Figure 1

Back to TopTop