Hydrogeochemical and GIS-Integrated Evaluation of Drainage Water for Sustainable Irrigation Management in Al-Jouf, Saudi Arabia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Water Sampling and Analysis
2.3. Quality Indicators for Irrigation Purposes
2.4. Spatial Analysis Using GIS
2.4.1. Inverse Distance Weighted Interpolation
2.4.2. IDW Interpolation Uncertainties
2.4.3. Selected Buffer Zone
2.5. Multivariate Statistical Techniques
2.6. Methodology Framework
3. Results and Discussion
3.1. Drainage Water Analysis
3.2. Multivariate Statistical Techniques
3.2.1. Correlation Analysis
3.2.2. Principal Component Analysis
3.2.3. Hydrogeochemical Facies
3.3. Assessment of Drainage Water Quality for Irrigation
3.4. Suggestions and Recommendations
- (1)
- (2)
- Adsorption Using Bio-Based Activated Carbon: Locally available agricultural residues such as olive pomace, date-palm fronds, and rice husks can be converted into activated carbon to remove organic contaminants, phenolic compounds, and color efficiently [47,48]. This valorization approach promotes circular-economy principles while simultaneously reducing agricultural waste generation.
- (3)
- Constructed Wetlands and Phytoremediation: The use of engineered wetlands planted with native halophytic species (e.g., Phragmites australis, Typha domingensis) offers an effective biological polishing stage, capable of removing nutrients, heavy metals, and residual organic matter through natural biogeochemical processes [49,50].
- (4)
- Solar-Assisted Desalination and Membrane Systems: In areas affected by high salinity, hybrid systems combining solar distillation and low-pressure nanofiltration can produce high-quality irrigation water with reduced energy consumption and minimal brine generation, consistent with renewable-energy and sustainability goals [51,52,53].
- (5)
- Dilution with Freshwater: Blending drainage water with freshwater can significantly lower salinity concentrations. Complementary practices, such as applying gypsum to enhance soil structure and cultivating salt-tolerant crop varieties, can further promote soil productivity and long-term agricultural sustainability [44]. Blending drainage water with freshwater at ratios of 1:1–1:3 is recommended to reduce EC and SAR to FAO-acceptable limits for irrigation. For sodic soils (SAR > 13 and KR > 1), gypsum application at 3–8 t ha−1 is advised to improve soil structure and enhance sodium displacement, with higher rates required in severe IWQI zones (>450). Crop selection should follow IWQI classifications, where severe restriction zones are limited to highly salt-tolerant crops (e.g., barley, sorghum, date palm), moderate zones can support moderately tolerant crops under controlled management, and slight to no restriction zones are suitable for most conventional crops.
- (6)
- Environmental Awareness and Capacity Building: It is proposed to implement community engagement and environmental-awareness programs aimed at strengthening sustainability literacy among farmers, students, and local authorities, thereby fostering responsible and informed practices in the reuse of treated drainage water.
4. Conclusions
5. Implications and Limitations
6. Future Works
- Temporal and Seasonal Monitoring: Assess fluctuations in ionic composition, salinity, and trace-metal concentrations throughout the agricultural cycle to understand water-quality dynamics better.
- Quantitative Source Apportionment of Salinity: Apply isotopic tracers and ion-ratio mixing models to quantitatively distinguish between lithogenic, anthropogenic, and irrigation return-flow contributions to salinity, thereby reducing uncertainty in causal interpretations.
- Pilot-Scale Demonstrations: Develop and evaluate hybrid treatment systems (e.g., wetland–adsorption–membrane configurations) under local climatic and operational conditions to determine technical feasibility and scalability.
- Modeling and Artificial Intelligence Applications: Employ predictive modeling and machine-learning approaches to optimize treatment performance and irrigation management.
- Economic and Life-Cycle Assessments: Quantify the cost-effectiveness, environmental benefits, and carbon-footprint reduction associated with proposed treatment technologies.
- Policy and Regulatory Frameworks: Establish governance structures and incentive mechanisms aligned with Saudi Vision 2030, focusing on water circularity, resource efficiency, and sustainable agricultural development through public–private collaboration.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alogayell, H.M.; El-Bana, E.M.M.; Abdelfattah, M. Groundwater quality and suitability assessment for irrigation using hydrogeochemical characteristics and pollution indices: A case study of North Al-Quwayiyah Governorate, Central Saudi Arabia. Water 2023, 15, 3321. [Google Scholar] [CrossRef]
- Alazba, A.A.; Mossad, A.; Geli, H.M.E.; El-Shafei, A.; Alrdyan, N.; Ezzeldin, M.; Radwan, F. Long Term Rain Patterns of Major Watersheds in Saudi Arabia. Water 2025, 17, 3086. [Google Scholar] [CrossRef]
- Hamed, Y.; Ayadi, Y.; Khalil, R.; Al-Omran, A.; Lebdi, F.; Dhaouadi, L. Wastewater resources, agricultural practices management strategies, soil salinity predictions and artificial recharge in the Middle East-Saudi Arabia: A review. J. Saudi Soc. Agric. Sci. 2024, 23, 569–584. [Google Scholar] [CrossRef]
- Alodah, A. Towards sustainable water resources management considering climate change in the case of Saudi Arabia. Sustainability 2023, 15, 14674. [Google Scholar] [CrossRef]
- Badr, E.-S.A.; Tawfik, R.T.; Alomran, M.S. An Assessment of Irrigation Water Quality with Respect to the Reuse of Treated Wastewater in Al-Ahsa Oasis, Saudi Arabia. Water 2023, 15, 2488. [Google Scholar] [CrossRef]
- Naidu, S.; Gupta, G.; Singh, R.; Tahama, K.; Erram, V.C. Hydrogeochemical processes regulating the groundwater quality and its suitability for drinking and irrigation purpose in parts of coastal Sindhudurg District, Maharashtra. J. Geol. Soc. India 2021, 97, 173–185. [Google Scholar] [CrossRef]
- Alrowais, R.; Abdel daiem, M.M.; Li, R.; Maklad, M.A.; Helmi, A.M.; Nasef, B.M.; Said, N. Groundwater Quality Assessment for Drinking and Irrigation Purposes at Al-Jouf Area in KSA Using Artificial Neural Network, GIS, and Multivariate Statistical Techniques. Water 2023, 15, 2982. [Google Scholar] [CrossRef]
- Snousy, M.G.; Wu, J.; Su, F.; Abdelhalim, A.; Ismail, E. Groundwater quality and its regulating geochemical processes in Assiut Province, Egypt. Expo. Health 2022, 14, 305–323. [Google Scholar] [CrossRef]
- Seraphin, P.; Gonçalvès, J.; Hamelin, B.; Stieglitz, T.; Deschamps, P. Influence of intensive agriculture and geological heterogeneity on the recharge of an arid aquifer system (Saq–Ram, Arabian Peninsula) inferred from GRACE data. Hydrol. Earth Syst. Sci. 2022, 26, 5757–5771. [Google Scholar] [CrossRef]
- Panneerselvam, B.; Ravichandran, N.; Kaliyappan, S.P.; Karuppannan, S.; Bidorn, B. Quality and health risk assessment of groundwater for drinking and irrigation purpose in semi-arid region of India using entropy water quality and statistical techniques. Water 2023, 15, 601. [Google Scholar] [CrossRef]
- Kouser, B.; Bala, A.; Verma, O.; Prashanth, M.; Khosla, A.; Pir, R.A. Hydrochemistry for the assessment of groundwater quality in the Kathua region, Jammu and Kashmir, India. Appl. Water Sci. 2022, 12, 143. [Google Scholar] [CrossRef]
- Verma, P.; Singh, P.K.; Sinha, R.R.; Tiwari, A.K. Assessment of groundwater quality status by using water quality index (WQI) and geographic information system (GIS) approaches: A case study of the Bokaro district, India. Appl. Water Sci. 2020, 10, 1–16. [Google Scholar] [CrossRef]
- Chidiac, S.; El Najjar, P.; Ouaini, N.; El Rayess, Y.; El Azzi, D. A comprehensive review of water quality indices (WQIs): History, models, attempts and perspectives. Rev. Environ. Sci. BioTechnol. 2023, 22, 349–395. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, H.E.; Alotibi, A.A.; Charni, M.; AlMarri, A.H.; Gomaa, F.A. Conceptual Evaluation of Factors Controlling Groundwater Chemistry in Ad-Dawadmi, Saudi Arabia, Using Visualization and Multiple Lines of Evidence. Water 2022, 14, 1857. [Google Scholar] [CrossRef]
- Kamruzzaman, M.M.; Alanazi, S.A.; Alruwaili, M.; Alshammari, N.; Siddiqi, M.H.; Huq, M.E. Water Resource Evaluation and Identifying Groundwater Potential Zones in Arid area using Remote Sensing and Geographic Information System. J. Comput. Sci. 2020, 16, 266–279. [Google Scholar] [CrossRef]
- Valencia, O.M.L.; Johansen, K.; Solorio, B.J.L.A.; Li, T.; Houborg, R.; Malbeteau, Y.; AlMashharawi, S.; Altaf, M.U.; Fallatah, E.M.; Dasari, H.P.; et al. Mapping groundwater abstractions from irrigated agriculture: Big data, inverse modeling and a satellite-model fusion approach. Hydrol. Earth Syst. Sci. Discuss. 2020, 2020, 1–41. [Google Scholar]
- Al-Omran, A.; Alshammari, F.; Eid, S.; Nadeem, M. Determination of date palm water requirements in Saudi Arabia. In Climate Change, Food Security and Natural Resource Management: Regional Case Studies from Three Continents; Springer: Berlin/Heidelberg, Germany, 2018; pp. 179–201. [Google Scholar]
- Esri; HERE; Garmin; UNEP-WCMC; USGS; NASA; ESA; METI; NRCAN; GEBCO; et al. National Geographic Society. 2025. Available online: https://www.arcgis.com/home/item.html?id=b9b1b422198944fbbd5250b3241691b6 (accessed on 3 December 2025).
- Fuoco, I.; Figoli, A.; Criscuoli, A.; Brozzo, G.; De Rosa, R.; Gabriele, B.; Apollaro, C. Geochemical modeling of chromium release in natural waters and treatment by RO/NF membrane processes. Chemosphere 2020, 254, 126696. [Google Scholar] [CrossRef]
- FAO Food and Agriculture Organization. Water Quality for Agriculture;Irrigation and Drainage Paper No. 29 Rev.1; FAO Food and Agriculture Organization: Rome, Italy, 1985. [Google Scholar]
- Mallick, J.; Singh, C.K.; AlMesfer, M.K.; Singh, V.P.; Alsubih, M. Groundwater quality studies in the kingdom of Saudi Arabia: Prevalent research and management dimensions. Water 2021, 13, 1266. [Google Scholar] [CrossRef]
- Al-humairi, B.A.J.; Rahal, N.S. Assessing drainage water quality for irrigation using the water quality index and DataFit software. Water Supply 2023, 23, 2349–2358. [Google Scholar] [CrossRef]
- Tahmasebi, P.; Mahmudy-Gharaie, M.H.; Ghassemzadeh, F.; Karimi Karouyeh, A. Assessment of groundwater suitability for irrigation in a gold mine surrounding area, NE Iran. Environ. Earth Sci. 2018, 77, 1–12. [Google Scholar] [CrossRef]
- Adimalla, N.; Li, P.; Qian, H. Evaluation of groundwater contamination for fluoride and nitrate in semi-arid region of Nirmal Province, South India: A special emphasis on human health risk assessment (HHRA). Hum. Ecol. Risk Assess. Int. J. 2018, 25, 1107–1124. [Google Scholar] [CrossRef]
- ESRI. Environmental Systems Research Institute, Redlands ArcGIS Desktop 10.8; ESRI: Redlands, CA, USA, 2021.
- Bartier, P.M.; Keller, C.P. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput. Geosci. 1996, 22, 795–799. [Google Scholar] [CrossRef]
- Khouni, I.; Louhichi, G.; Ghrabi, A. Use of GIS based Inverse Distance Weighted interpolation to assess surface water quality: Case of Wadi El Bey, Tunisia. Environ. Technol. Innov. 2021, 24, 101892. [Google Scholar] [CrossRef]
- Yang, W.; Zhao, Y.; Wang, D.; Wu, H.; Lin, A.; He, L. Using principal components analysis and IDW interpolation to determine spatial and temporal changes of surface water quality of Xin’anjiang river in Huangshan, China. Int. J. Environ. Res. Public Health 2020, 17, 2942. [Google Scholar] [CrossRef] [PubMed]
- Heidkamp, L.C.; Christian, A.D. A case study evaluating water quality and reach-, buffer-, and watershed-scale explanatory variables of an urban coastal watershed. Urban Sci. 2022, 6, 17. [Google Scholar] [CrossRef]
- Burrough, P.A.; McDonnell, R.A.; Lloyd, C.D. Principles of Geographical Information Systems; Oxford University Press: Oxford, UK, 2015; ISBN 0198742843. [Google Scholar]
- ESRI. Esri Geostatistical Analyst User’s Guide; Environmental Systems Research Institute (ESRI): Redlands, CA, USA, 2016. [Google Scholar]
- Li, J.; Heap, A.D. A Review of Spatial Interpolation Methods for Environmental Scientists; Geoscience Australia: Canberra, Australia, 2008.
- Childs, C. Interpolating surfaces in ArcGIS spatial analyst. ArcUser July-Sept. 2004, 3235, 32–35. [Google Scholar]
- Murphy, R.R.; Curriero, F.C.; Ball, W.P. Comparison of spatial interpolation methods for water quality evaluation in the Chesapeake Bay. J. Environ. Eng. 2010, 136, 160–171. [Google Scholar] [CrossRef]
- Mammeri, A.; Tiri, A.; Belkhiri, L.; Salhi, H.; Brella, D.; Lakouas, E.; Tahraoui, H.; Amrane, A.; Mouni, L. Assessment of surface water quality using water quality index and discriminant analysis method. Water 2023, 15, 680. [Google Scholar] [CrossRef]
- El Maghraby, M.; Bamousa, A.O. Evaluation of groundwater quality for drinking and irrigation purposes using physicochemical parameters at Salilah area, Madinah Munawarah District, Saudi Arabia. J. Taibah Univ. Sci. 2021, 15, 695–709. [Google Scholar] [CrossRef]
- Albaggar, A.K.A. Investigation of some physical, chemical, and bacteriological parameters of water quality in some dams in Albaha region, Saudi Arabia. Saudi J. Biol. Sci. 2021, 28, 4605–4612. [Google Scholar] [CrossRef]
- Collave, C.X.M.; Bacilio, R.J.L.; Escobedo, A.E.G.; Espinoza, R.F.R.; Liza, Y.F.A.; Rona, J.M.I. Turbidity and color removal from irrigation water, with coagulants and activated carbon, controlled by an Arduino system. Case Stud. Chem. Environ. Eng. 2024, 10, 100978. [Google Scholar] [CrossRef]
- Al-Shemary, N.A.; Al-Otabi, K.D.; Al-Omran, A.M. Analytical Groundwater Quality Assessment for Drinking and Agriculture Purposes in Al-Jouf Region, Kingdom of Saudi Arabia. Int. J. Plant Soil Sci. 2022, 34, 1–17. [Google Scholar] [CrossRef]
- Mohamed, A.K.; Liu, D.; Song, K.; Mohamed, M.A.A.; Aldaw, E.; Elubid, B.A. Hydrochemical analysis and fuzzy logic method for evaluation of groundwater quality in the North Chengdu Plain, China. Int. J. Environ. Res. Public Health 2019, 16, 302. [Google Scholar] [CrossRef]
- Adimalla, N.; Dhakate, R.; Kasarla, A.; Taloor, A.K. Appraisal of groundwater quality for drinking and irrigation purposes in Central Telangana, India. Groundw. Sustain. Dev. 2020, 10, 100334. [Google Scholar] [CrossRef]
- Hakami, R.A.; Yonus, M.A.A.; Alalmie, A.Y.; Ghramh, H.A.; Awwad, N.S. Quantification of Pesticide Residues and Heavy Metals in Selected Fruit and Soil Samples from the Aseer Region, Saudi Arabia. Pol. J. Environ. Stud. 2025, 200710, 1–14. [Google Scholar] [CrossRef]
- Geetha, S.; Dharmendira, K.M. Investigation of hydrochemical dynamics of groundwater in coastal blocks of Tiruvallur district, Tamilnadu. India. J. Chil. Chem. Soc. 2021, 66, 5352–5357. [Google Scholar] [CrossRef]
- El-Saiad, A.A.; Abd-Elhamid, H.F.; Salama, Z.I.; Zeleňáková, M.; Weiss, E.; El-Gohary, E.H. Improving the Hydraulic Effects Resulting from the Use of a Submerged Biofiter to Enhance Water Quality in Polluted Streams. Int. J. Environ. Res. Public Health 2021, 18, 12351. [Google Scholar] [CrossRef]
- Awad, E.S.; Imran, N.S.; Albayati, M.M.; Snegirev, V.; Sabirova, T.M.; Tretyakova, N.A.; Alsalhy, Q.F.; Al-Furaiji, M.H.; Salih, I.K.; Majdi, H.S. Groundwater hydrogeochemical and quality appraisal for agriculture irrigation in greenbelt area. Iraq. Environ. 2022, 9, 43. [Google Scholar] [CrossRef]
- Anderson, L.E.; Tchonlla, M.; Earle, M.; Swinamer, R.; Gagnon, G.A. Adapting direct filtration to increasing source water dissolved organic carbon using clarification and granular activated carbon. AWWA Water Sci. 2023, 5, e1352. [Google Scholar] [CrossRef]
- Mian, M.M.; Zhu, J.; Jiang, X.; Deng, S. Recent advances in activated carbon driven PFAS removal: Structure-adsorption relationship and new adsorption mechanisms. Front. Environ. Sci. Eng. 2025, 19, 78. [Google Scholar] [CrossRef]
- Quintas Salamba, M.; Melo, R.L.F.; da Silva Aires, F.I.; de Matos Filho, J.R.; Nascimento Dari, D.; Luz Lima, F.L.; Ferreira Alcântara Araujo, S.; da Costa Silva, L.; Fernandes da Silva, L.; Alexandre Chirindza, E. Porosity of Activated Carbon in Water Remediation: A Bibliometric Review and Overview of Research Perspectives. ACS EST Water 2025, 5, 2070–2086. [Google Scholar] [CrossRef]
- El-Shatoury, S.; El-Baz, A.; Abdel Daiem, M.; El-Monayeri, D. Enhancing wastewater treatment by commercial and native microbial Inocula with factorial design. Life Sci. J. 2014, 11, 736–742. [Google Scholar]
- Koul, B.; Sharma, K.; Shah, M.P. Phycoremediation: A sustainable alternative in wastewater treatment (WWT) regime. Environ. Technol. Innov. 2022, 25, 102040. [Google Scholar] [CrossRef]
- Tripathy, D.B.; Tripathy, V. Recent Advances on Geothermal Integrated Water Desalination Techniques and Its Comparison with Other Renewable Resources. ACS EST Water 2025, 5, 6179–6199. [Google Scholar] [CrossRef]
- Essa, M.A.; Ibrahim, M.M.; Mostafa, N.H. Experimental parametric passive solar desalination prototype analysis. J. Clean. Prod. 2021, 325, 129333. [Google Scholar] [CrossRef]
- Abida, O.; Ouali, H.A.L.; Belkaid, N.; Essalhi, M.; Obeid, E.; Ali, N. Performance Enhancement and Integrating Renewable Energy into Reverse Osmosis Seawater Desalination System in the Moroccan Coastal Region. Clean. Eng. Technol. 2025, 27, 101017. [Google Scholar] [CrossRef]











| Parameters | Weight (wi) [19] | Relative Weight (Wi) | Desirable Values FAO [20] |
|---|---|---|---|
| pH | 3 | 0.11 | 8.50 |
| Hardness (mg/L) | 3 | 0.11 | 712.00 |
| Ca2+ (mg/L) | 3 | 0.11 | 400.00 |
| Na+ (mg/L) | 2 | 0.11 | 920.00 |
| K+ (mg/L) | 2 | 0.07 | 2.00 |
| Mg2+ (mg/L) | 3 | 0.07 | 60.00 |
| Cl− (mg/L) | 4 | 0.14 | 1065.00 |
| SO42− (mg/L) | 3 | 0.11 | 1920.00 |
| NO3− (mg/L) | 5 | 0.18 | 45.00 |
| ∑ wi = 28 | ∑ Wi = 1 |
| Sample Number | pH | EC μS/cm | Turbidity NTU | Hardness mg/L CaCO3 | Ca2+ mg/L | Na+ mg/L | K+ mg/L | Mg2+ mg/L | Cl− mg/L | SO42− mg/L | NO2− mg/L | NO3− mg/L | TDS mg/L |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 7.79 ± 0.74 | 6.78 ± 0.54 | 92.40 ± 4.28 | 826.71 ± 55.63 | 132.81 ± 8.19 | 478.77 ± 39.38 | 69.05 ± 6.37 | 120.66 ± 5.57 | 2180.43 ± 193.68 | 2453.06 ± 110.69 | 3.70 ± 0.24 | 5.35 ± 0.32 | 3360.00 ± 264.26 |
| 2 | 8.00 ± 0.51 | 7.13 ± 0.55 | 75.30 ± 7.04 | 1204.99 ± 50.11 | 168.74 ± 8.96 | 735.88 ± 49.02 | 111.74 ± 9.87 | 191.01 ± 16.40 | 1366.36 ± 94.96 | 1177.02 ± 61.21 | 3.45 ± 0.23 | 5.02 ± 0.39 | 3550.00 ± 142.65 |
| 3 | 8.23 ± 0.58 | 0.74 ± 0.05 | 15.60 ± 0.78 | 249.53 ± 11.30 | 53.57 ± 3.50 | 39.62 ± 2.68 | 17.43 ± 0.95 | 28.20 ± 1.69 | 38.62 ± 3.38 | 143.82 ± 13.84 | 0.00 ± 0.00 | 0.01 ± 0.00 | 371.00 ± 29.86 |
| 4 | 8.02 ± 0.66 | 5.36 ± 0.40 | 79.60 ± 3.71 | 679.24 ± 29.06 | 121.93 ± 9.13 | 445.12 ± 26.67 | 61.49 ± 4.33 | 91.32 ± 6.60 | 10.32 ± 0.83 | 6.11 ± 0.35 | 3.82 ± 0.16 | 4.62 ± 0.29 | 2680.00 ± 266.61 |
| 5 | 7.89 ± 0.38 | 4.64 ± 0.35 | 72.80 ± 5.02 | 712.99 ± 62.56 | 168.93 ± 14.18 | 368.57 ± 24.95 | 24.47 ± 1.67 | 70.89 ± 6.26 | 462.05 ± 45.32 | 887.80 ± 67.16 | 0.00 ± 0.00 | 1.19 ± 0.07 | 2320.00 ± 92.82 |
| 6 | 7.69 ± 0.51 | 2.99 ± 0.19 | 43.30 ± 4.24 | 412.79 ± 29.63 | 77.32 ± 6.59 | 100.68 ± 7.84 | 15.63 ± 1.03 | 53.53 ± 3.05 | 367.63 ± 16.02 | 549.27 ± 39.01 | 0.00 ± 0.00 | 0.03 ± 0.00 | 1490.00 ± 106.34 |
| 7 | 7.49 ± 0.69 | 14.01 ± 0.58 | 105.00 ± 5.49 | 1766.06 ± 131.69 | 204.19 ± 9.62 | 1179.08 ± 113.23 | 83.90 ± 6.38 | 306.24 ± 29.33 | 3604.51 ± 248.97 | 2133.32 ± 147.71 | 3.52 ± 0.33 | 7.21 ± 0.36 | 7010.00 ± 591.42 |
| 8 | 7.82 ± 0.39 | 7.66 ± 0.55 | 90.00 ± 8.13 | 1139.16 ± 82.70 | 185.68 ± 9.03 | 996.64 ± 58.98 | 203.08 ± 13.48 | 164.62 ± 12.18 | 1301.99 ± 92.91 | 1587.90 ± 150.69 | 3.61 ± 0.33 | 14.85 ± 1.21 | 3820.00 ± 371.50 |
| 9 | 7.92 ± 0.67 | 9.82 ± 0.58 | 86.30 ± 8.47 | 930.44 ± 89.35 | 165.95 ± 9.30 | 1010.91 ± 61.38 | 181.33 ± 15.88 | 125.75 ± 12.24 | 1821.43 ± 115.43 | 2692.96 ± 123.78 | 3.45 ± 0.26 | 8.54 ± 0.36 | 4910.00 ± 220.94 |
| 10 | 7.92 ± 0.39 | 3.53 ± 0.33 | 34.70 ± 2.39 | 461.87 ± 32.74 | 93.33 ± 7.76 | 145.92 ± 8.51 | 43.02 ± 1.88 | 55.74 ± 3.46 | 283.49 ± 13.37 | 903.78 ± 60.12 | 0.00 ± 0.00 | 8.80 ± 0.66 | 1760.00 ± 164.44 |
| 11 | 7.96 ± 0.64 | 5.07 ± 0.36 | 18.50 ± 1.85 | 548.23 ± 35.74 | 95.49 ± 4.96 | 248.74 ± 18.67 | 37.76 ± 3.66 | 75.49 ± 3.10 | 564.11 ± 54.53 | 1057.59 ± 59.08 | 4.12 ± 0.19 | 28.60 ± 1.24 | 2530.00 ± 245.18 |
| 12 | 7.85 ± 0.41 | 4.43 ± 0.24 | 53.00 ± 2.93 | 567.41 ± 53.17 | 135.32 ± 6.81 | 146.40 ± 12.79 | 32.91 ± 1.37 | 55.88 ± 5.50 | 429.20 ± 22.71 | 1629.91 ± 86.21 | 0.00 ± 0.00 | 46.02 ± 2.44 | 2210.00 ± 201.85 |
| 13 | 7.85 ± 0.73 | 4.88 ± 0.25 | 35.90 ± 1.53 | 744.04 ± 72.31 | 158.75 ± 8.22 | 228.09 ± 15.92 | 35.34 ± 2.94 | 84.67 ± 5.29 | 544.18 ± 45.88 | 1393.26 ± 135.51 | 3.63 ± 0.18 | 27.70 ± 1.20 | 2440.00 ± 172.17 |
| 14 | 7.96 ± 0.49 | 4.88 ± 0.31 | 19.70 ± 1.78 | 421.43 ± 27.33 | 89.46 ± 4.89 | 126.18 ± 9.64 | 22.19 ± 1.37 | 48.24 ± 2.41 | 635.86 ± 28.17 | 1629.74 ± 153.18 | 3.81 ± 0.19 | 27.87 ± 2.29 | 2450.00 ± 181.76 |
| 15 | 8.10 ± 0.74 | 25.20 ± 1.15 | 45.20 ± 2.44 | 911.34 ± 85.89 | 113.27 ± 6.62 | 2603.54 ± 145.60 | 404.82 ± 27.53 | 153.21 ± 8.75 | 4270.02 ± 421.12 | 5557.79 ± 321.23 | 3.58 ± 0.31 | 23.30 ± 1.27 | 12,600.00 ± 805.89 |
| 16 | 7.99 ± 0.68 | 4.21 ± 0.41 | 118.00 ± 8.52 | 238.85 ± 15.17 | 35.81 ± 2.88 | 125.87 ± 9.75 | 50.47 ± 2.41 | 36.42 ± 3.38 | 433.62 ± 34.30 | 1090.72 ± 88.74 | 0.00 ± 0.00 | 1.62 ± 0.07 | 2120.00 ± 138.28 |
| 17 | 8.04 ± 0.47 | 3.77 ± 0.31 | 121.00 ± 10.31 | 449.75 ± 31.91 | 52.74 ± 3.85 | 199.82 ± 16.80 | 104.15 ± 7.34 | 77.54 ± 5.25 | 306.68 ± 20.20 | 1089.00 ± 54.24 | 0.00 ± 0.00 | 1.68 ± 0.09 | 1880.00 ± 76.15 |
| 18 | 8.00 ± 0.58 | 5.09 ± 0.48 | 91.80 ± 4.66 | 582.83 ± 35.94 | 77.39 ± 3.74 | 362.78 ± 25.43 | 78.89 ± 7.69 | 94.97 ± 7.20 | 259.91 ± 22.70 | 414.47 ± 27.93 | 0.00 ± 0.00 | 13.82 ± 0.80 | 2540.00 ± 143.85 |
| Mean | 7.92 ± 0.54 | 6.68 ± 5.33 | 66.56 ± 33.80 | 713.76± 405.6 | 118.37 ± 46.90 | 530.14 ± 632.50 | 87.65 ± 94.90 | 101.91 ± 70.50 | 1048.91 ± 1152.10 | 1466.53± 1246.30 | 2.04 ± 1.95 | 12.57 ± 12.80 | 3335.61 ± 2734.90 |
| Minimum | 7.49 ± 0.69 | 0.74 ± 0.05 | 15.60 ± 0.78 | 238.85 ± 15.17 | 35.81 ± 2.88 | 39.62 ± 2.68 | 15.63 ± 1.03 | 28.20 ± 1.69 | 10.32 ± 0.83 | 6.11 ± 0.35 | 0.00 ± 0.00 | 0.01 ± 0.00 | 371.00 ± 29.86 |
| Maximum | 8.23 ± 0.58 | 25.20 ± 1.15 | 121.00 ± 10.31 | 1766.06 ± 131.69 | 204.19 ± 9.62 | 2603.54 ± 145.60 | 404.82 ± 27.53 | 306.24 ± 29.33 | 4270.02 ± 421.12 | 5557.79 ± 321.23 | 4.12 ± 0.19 | 46.02 ± 2.44 | 12,600.00 ± 805.89 |
| Sample Number | F− mg/L | B3− mg/L | Al3+ mg/L | Ti4+ mg/L | V3+ mg/L | Sr2+ mg/L | S2− mg/L | Rb+ mg/L | Ga3+ mg/L | Br− mg/L |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2.31 ± 0.14 | 0.24 ± 0.02 | 1.17 ± 0.09 | 0.00 ± 0.00 | 0.52 ± 0.03 | 1.94 ± 0.12 | 279.78 ± 12.79 | 5.78 ± 0.40 | 1.61 ± 0.07 | ND |
| 2 | 1.21 ± 0.09 | 0.66 ± 0.05 | 1.23 ± 0.10 | 0.00 ± 0.00 | 1.96 ± 0.17 | 3.17 ± 0.24 | 354.91 ± 16.91 | 5.59 ± 0.27 | 1.71 ± 0.11 | ND |
| 3 | 1.03 ± 0.06 | 0.00 ± 0.00 | 1.09 ± 0.08 | 0.00 ± 0.00 | 0.16 ± 0.01 | 0.43 ± 0.04 | 57.19 ± 5.49 | 5.98 ± 0.41 | 1.57 ± 0.08 | 0.06 ± 0.01 |
| 4 | 0.82 ± 0.06 | 0.01 ± 0.00 | 1.21 ± 0.10 | 0.13 ± 0.01 | 0.62 ± 0.03 | 1.40 ± 0.11 | 275.84 ± 15.65 | 5.28 ± 0.49 | 1.51 ± 0.13 | 0.77 ± 0.04 |
| 5 | 1.06 ± 0.06 | 0.05 ± 0.00 | 1.10 ± 0.10 | 0.00 ± 0.00 | 0.29 ± 0.01 | 1.95 ± 0.16 | 281.84 ± 19.21 | 5.47 ± 0.37 | 1.58 ± 0.11 | 0.42 ± 0.02 |
| 6 | 1.03 ± 0.09 | 0.00 ± 0.00 | 1.49 ± 0.10 | 0.00 ± 0.00 | 0.57 ± 0.04 | 1.36 ± 0.09 | 101.52 ± 9.63 | 6.03 ± 0.44 | 1.53 ± 0.14 | 0.33 ± 0.03 |
| 7 | 1.50 ± 0.08 | 2.82 ± 0.23 | 1.53 ± 0.13 | 0.00 ± 0.00 | 2.16 ± 0.17 | 3.92 ± 0.25 | 411.33 ± 38.75 | 5.99 ± 0.33 | 1.57 ± 0.15 | 3.52 ± 0.30 |
| 8 | 1.28 ± 0.12 | 1.85 ± 0.13 | 1.22 ± 0.07 | 0.00 ± 0.00 | 1.12 ± 0.09 | 2.15 ± 0.20 | 497.60 ± 43.06 | 6.06 ± 0.51 | 1.72 ± 0.12 | 0.88 ± 0.04 |
| 9 | 1.08 ± 0.09 | 0.91 ± 0.05 | 1.27 ± 0.09 | 0.00 ± 0.00 | 1.14 ± 0.08 | 1.66 ± 0.14 | 522.92 ± 32.14 | 6.15 ± 0.43 | 1.44 ± 0.14 | 0.38 ± 0.02 |
| 10 | 1.14 ± 0.09 | 0.42 ± 0.04 | 1.01 ± 0.10 | 0.00 ± 0.00 | 0.60 ± 0.04 | 0.68 ± 0.06 | 174.99 ± 7.74 | 5.33 ± 0.31 | 1.60 ± 0.09 | 0.94 ± 0.06 |
| 11 | 2.47 ± 0.19 | 0.66 ± 0.06 | 1.14 ± 0.08 | 1.64 ± 0.08 | 0.36 ± 0.02 | 0.33 ± 0.03 | 199.02 ± 13.08 | 5.45 ± 0.24 | 1.58 ± 0.13 | ND |
| 12 | 1.39 ± 0.14 | 0.34 ± 0.02 | 1.28 ± 0.12 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.62 ± 0.04 | 204.09 ± 10.21 | 5.61 ± 0.49 | 1.51 ± 0.11 | 0.38 ± 0.02 |
| 13 | 1.54 ± 0.14 | 0.51 ± 0.05 | 1.14 ± 0.10 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.86 ± 0.04 | 254.94 ± 10.56 | 5.73 ± 0.46 | 1.53 ± 0.13 | 0.53 ± 0.05 |
| 14 | 1.62 ± 0.15 | 0.02 ± 0.00 | 1.29 ± 0.08 | 0.06 ± 0.00 | 0.14 ± 0.01 | 0.14 ± 0.01 | 145.83 ± 10.75 | 5.50 ± 0.25 | 1.53 ± 0.12 | 0.55 ± 0.03 |
| 15 | 0.98 ± 0.06 | 0.12 ± 0.01 | 1.42 ± 0.08 | 0.00 ± 0.00 | 1.07 ± 0.09 | 0.86 ± 0.08 | 989.87 ± 51.00 | 5.83 ± 0.52 | 1.46 ± 0.08 | 2.35 ± 0.11 |
| 16 | 1.08 ± 0.05 | 0.00 ± 0.00 | 1.13 ± 0.09 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 115.83 ± 9.84 | 5.90 ± 0.41 | 1.57 ± 0.13 | 0.40 ± 0.02 |
| 17 | 1.55 ± 0.12 | 0.22 ± 0.01 | 1.28 ± 0.06 | 0.00 ± 0.00 | 0.22 ± 0.02 | 0.48 ± 0.03 | 214.51 ± 9.97 | 5.92 ± 0.38 | 1.66 ± 0.14 | 0.48 ± 0.03 |
| 18 | 1.38 ± 0.07 | 0.17 ± 0.01 | 1.40 ± 0.13 | 0.00 ± 0.00 | 0.71 ± 0.03 | 1.77 ± 0.12 | 243.04 ± 11.17 | 5.54 ± 0.36 | 1.66 ± 0.12 | 0.80 ± 0.05 |
| Mean | 1.36 ± 0.43 | 0.50 ± 0.71 | 1.25 ± 0.16 | 0.10 ± 0.37 | 0.65 ± 0.61 | 1.32 ± 1.04 | 295.84± 226.5 | 5.73 ± 0.28 | 1.57 ± 0.08 | 0.85 ± 0.78 |
| Minimum | 0.82 ± 0.06 | 0.00 ± 0.00 | 1.01 ± 0.10 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 57.19 ± 5.49 | 5.28 ± 0.49 | 1.44 ± 0.14 | 0.06 ± 0.01 |
| Maximum | 2.47 ± 0.19 | 2.82 ± 0.23 | 1.53 ± 0.13 | 1.64 ± 0.08 | 2.16 ± 0.17 | 3.92 ± 0.25 | 989.87 ± 51.00 | 6.15 ± 0.43 | 1.72 ± 0.12 | 3.52 ± 0.30 |
| Parameter | pH | EC | Turbidity | Hardness | Ca2+ | Na+ | K+ | Mg2+ | Cl− | SO42− | NO2− | NO3− | TDS |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| pH | 1.00 | −0.10 | −0.25 | −0.57 | −0.56 | −0.03 | 0.18 | −0.52 | −0.32 | −0.06 | −0.17 | −0.03 | −0.10 |
| EC | −0.10 | 1.00 | 0.11 | 0.59 | 0.37 | 0.97 | 0.87 | 0.63 | 0.92 | 0.90 | 0.48 | 0.18 | 1.00 |
| Turbidity | −0.25 | 0.11 | 1.00 | 0.35 | 0.15 | 0.14 | 0.18 | 0.41 | 0.19 | 0.02 | −0.09 | −0.45 | 0.11 |
| Hardness | −0.57 | 0.59 | 0.35 | 1.00 | 0.86 | 0.61 | 0.41 | 0.97 | 0.72 | 0.41 | 0.58 | −0.01 | 0.59 |
| Ca2+ | −0.56 | 0.37 | 0.15 | 0.86 | 1.00 | 0.42 | 0.23 | 0.72 | 0.48 | 0.29 | 0.55 | 0.16 | 0.37 |
| Na+ | −0.03 | 0.97 | 0.14 | 0.61 | 0.42 | 1.00 | 0.93 | 0.64 | 0.89 | 0.86 | 0.47 | 0.09 | 0.97 |
| K+ | 0.18 | 0.87 | 0.18 | 0.41 | 0.23 | 0.93 | 1.00 | 0.45 | 0.74 | 0.83 | 0.37 | 0.09 | 0.87 |
| Mg2+ | −0.52 | 0.63 | 0.41 | 0.97 | 0.72 | 0.64 | 0.45 | 1.00 | 0.77 | 0.42 | 0.54 | −0.08 | 0.63 |
| Cl− | −0.32 | 0.92 | 0.19 | 0.72 | 0.48 | 0.89 | 0.74 | 0.77 | 1.00 | 0.87 | 0.52 | 0.07 | 0.92 |
| SO42− | −0.06 | 0.90 | 0.02 | 0.41 | 0.29 | 0.86 | 0.83 | 0.42 | 0.87 | 1.00 | 0.43 | 0.31 | 0.90 |
| NO2− | −0.17 | 0.48 | −0.09 | 0.58 | 0.55 | 0.47 | 0.37 | 0.54 | 0.52 | 0.43 | 1.00 | 0.26 | 0.48 |
| NO3− | −0.03 | 0.18 | −0.45 | −0.01 | 0.16 | 0.09 | 0.09 | −0.08 | 0.07 | 0.31 | 0.26 | 1.00 | 0.18 |
| TDS | −0.10 | 1.00 | 0.11 | 0.59 | 0.37 | 0.97 | 0.87 | 0.63 | 0.92 | 0.90 | 0.48 | 0.18 | 1.00 |
| Parameters | PC1 | PC2 | Communality |
|---|---|---|---|
| pH | −0.42 | 0.73 | 0.71 |
| EC | 0.94 | 0.22 | 0.92 |
| Turbidity | 0.33 | −0.11 | 0.12 |
| Hardness | 0.85 | 0.24 | 0.78 |
| Ca2+ | 0.82 | 0.31 | 0.76 |
| Na+ | 0.95 | 0.19 | 0.94 |
| K+ | 0.89 | 0.21 | 0.84 |
| Mg2+ | 0.87 | 0.27 | 0.83 |
| Cl− | 0.93 | 0.25 | 0.91 |
| SO42− | 0.90 | 0.18 | 0.85 |
| NO2− | 0.51 | 0.45 | 0.46 |
| NO3− | 0.19 | 0.82 | 0.70 |
| TDS | 0.94 | 0.23 | 0.92 |
| Eigenvalue | 7.58 | 2.46 | |
| % of Variance | 55.10 | 17.89 | |
| Cumulative % of Variance | 55.10 | 72.99 |
| Sample | Na+ % | SAR | KR | MH | PS (mg/L) | IWQI |
|---|---|---|---|---|---|---|
| 1 | 68.37 ± 4.68 | 42.53 ± 3.19 | 1.89 ± 0.14 | 47.60 ± 3.99 | 3406.96 ± 177.40 | 342.74 ± 20.17 |
| 2 | 70.20 ± 4.02 | 54.87 ± 2.37 | 2.05 ± 0.20 | 53.10 ± 3.87 | 1954.87 ± 79.96 | 498.51 ± 25.29 |
| 3 | 41.10 ± 3.40 | 6.20 ± 0.53 | 0.48 ± 0.04 | 34.49 ± 1.63 | 110.54 ± 8.91 | 84.47 ± 4.63 |
| 4 | 70.38 ± 3.35 | 43.11 ± 2.29 | 2.09 ± 0.12 | 42.82 ± 1.80 | 13.38 ± 0.72 | 264.99 ± 17.26 |
| 5 | 62.10 ± 2.99 | 33.66 ± 2.58 | 1.54 ± 0.07 | 29.56 ± 1.25 | 905.95 ± 89.87 | 139.74 ± 10.63 |
| 6 | 47.06 ± 2.79 | 12.45 ± 0.62 | 0.77 ± 0.06 | 40.91 ± 4.01 | 642.27 ± 29.44 | 92.14 ± 5.05 |
| 7 | 71.22 ± 5.31 | 73.81 ± 7.07 | 2.31 ± 0.22 | 60.00 ± 5.30 | 4671.17 ± 273.11 | 468.09 ± 41.87 |
| 8 | 77.40 ± 6.38 | 75.31 ± 4.07 | 2.85 ± 0.14 | 46.99 ± 1.96 | 2095.94 ± 127.26 | 826.60 ± 38.35 |
| 9 | 80.34 ± 3.24 | 83.71 ± 4.12 | 3.47 ± 0.21 | 43.11 ± 2.52 | 3167.91 ± 224.10 | 749.19 ± 56.30 |
| 10 | 55.90 ± 2.42 | 16.90 ± 1.00 | 0.98 ± 0.06 | 37.39 ± 2.81 | 735.38 ± 48.71 | 196.51 ± 9.51 |
| 11 | 62.63 ± 2.74 | 26.90 ± 2.47 | 1.45 ± 0.06 | 44.15 ± 3.39 | 1092.90 ± 60.63 | 195.92 ± 17.80 |
| 12 | 48.40 ± 2.11 | 14.97 ± 1.37 | 0.77 ± 0.04 | 29.23 ± 2.08 | 1244.15 ± 49.96 | 183.82 ± 17.03 |
| 13 | 51.97 ± 2.88 | 20.67 ± 1.23 | 0.94 ± 0.04 | 34.78 ± 2.84 | 1240.81 ± 120.63 | 194.51 ± 10.82 |
| 14 | 51.86 ± 3.15 | 15.21 ± 1.22 | 0.92 ± 0.07 | 35.03 ± 2.81 | 1450.73 ± 96.32 | 136.31 ± 5.58 |
| 15 | 91.86 ± 5.02 | 225.55 ± 12.40 | 9.77 ± 0.92 | 57.49 ± 4.35 | 7048.92 ± 283.32 | 1617.87 ± 158.36 |
| 16 | 70.94 ± 4.96 | 20.94 ± 1.39 | 1.74 ± 0.10 | 50.42 ± 2.88 | 978.98 ± 81.13 | 214.89 ± 19.66 |
| 17 | 70.00 ± 4.24 | 24.76 ± 1.74 | 1.53 ± 0.12 | 59.52 ± 2.95 | 851.18 ± 44.06 | 416.52 ± 22.88 |
| 18 | 71.93 ± 5.29 | 39.08 ± 3.24 | 2.10 ± 0.14 | 55.10 ± 2.35 | 467.15 ± 33.45 | 333.75 ± 16.94 |
| Mean | 64.65 ± 13.5 | 46.15 ± 38.20 | 2.09 ± 2.05 | 44.54 ± 9.50 | 1782.18 ± 1742.30 | 386.48 ± 355.50 |
| Minimum | 41.10 ± 3.40 | 6.20 ± 0.53 | 2.09 ± 0.12 | 29.56 ± 1.25 | 13.38 ± 0.72 | 84.47 ± 4.63 |
| Maximum | 91.86 ± 5.02 | 225.55 ± 12.40 | 9.77 ± 0.92 | 60.00 ± 5.30 | 7048.92 ± 283.32 | 1617.87 ± 158.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Alrowais, R.; Abdel-Daiem, M.M.; Maklad, M.A.; Ounaies, W.; Said, N. Hydrogeochemical and GIS-Integrated Evaluation of Drainage Water for Sustainable Irrigation Management in Al-Jouf, Saudi Arabia. Water 2026, 18, 78. https://doi.org/10.3390/w18010078
Alrowais R, Abdel-Daiem MM, Maklad MA, Ounaies W, Said N. Hydrogeochemical and GIS-Integrated Evaluation of Drainage Water for Sustainable Irrigation Management in Al-Jouf, Saudi Arabia. Water. 2026; 18(1):78. https://doi.org/10.3390/w18010078
Chicago/Turabian StyleAlrowais, Raid, Mahmoud M. Abdel-Daiem, Mohamed Ashraf Maklad, Wassef Ounaies, and Noha Said. 2026. "Hydrogeochemical and GIS-Integrated Evaluation of Drainage Water for Sustainable Irrigation Management in Al-Jouf, Saudi Arabia" Water 18, no. 1: 78. https://doi.org/10.3390/w18010078
APA StyleAlrowais, R., Abdel-Daiem, M. M., Maklad, M. A., Ounaies, W., & Said, N. (2026). Hydrogeochemical and GIS-Integrated Evaluation of Drainage Water for Sustainable Irrigation Management in Al-Jouf, Saudi Arabia. Water, 18(1), 78. https://doi.org/10.3390/w18010078

