Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,739)

Search Parameters:
Keywords = safety and sustainability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 12670 KiB  
Article
Risk Assessment of Flood Disasters with Multi-Source Data and Its Spatial Differentiation Characteristics
by Wenxia Jing, Yinghua Song, Wei Lv and Junyi Yang
Sustainability 2025, 17(15), 7149; https://doi.org/10.3390/su17157149 - 7 Aug 2025
Abstract
The changing global climate and rapid urbanization make extreme rainstorm events frequent, and the flood disaster caused by rainstorm has become a prominent problem of urban public safety in China, which severely restricts the healthy and sustainable development of social economy. The weight [...] Read more.
The changing global climate and rapid urbanization make extreme rainstorm events frequent, and the flood disaster caused by rainstorm has become a prominent problem of urban public safety in China, which severely restricts the healthy and sustainable development of social economy. The weight calculation method of traditional risk assessment model is single and ignores the difference of multi-dimensional information space involved in risk analysis. This study constructs a flood risk assessment model by incorporating natural, social, and economic factors into an indicator system structured around four dimensions: hazard, exposure, vulnerability, and disaster prevention and mitigation capacity. A combination of the Analytic Hierarchy Process (AHP) and the entropy weight method is employed to optimize both subjective and objective weights. Taking the central urban area of Wuhan with a high flood risk as an example, based on the risk assessment values, spatial autocorrelation analysis, cluster analysis, outlier analysis, and hotspot analysis are applied to explore the spatial clustering characteristics of risks. The results show that the overall assessment level of flood hazard in central urban area of Wuhan is medium, the overall assessment level of exposure and vulnerability is low, and the overall disaster prevention and mitigation capability is medium. The overall flood risk levels in Wuchang and Jianghan are the highest, while some areas in Qingshan and Hanyang have the lowest levels. The spatial characteristics of each dimension evaluation index show obvious autocorrelation and spatial differentiation. These findings aim to provide valuable suggestions and references for reducing urban disaster risks and achieving sustainable urban development. Full article
(This article belongs to the Special Issue Sustainable Transport and Land Use for a Sustainable Future)
Show Figures

Figure 1

22 pages, 775 KiB  
Review
Bioactive Compounds, Technological Advances, and Sustainable Applications of Avocado (Persea americana Mill.): A Critical Review
by Amanda Priscila Silva Nascimento, Maria Elita Martins Duarte, Ana Paula Trindade Rocha and Ana Novo Barros
Foods 2025, 14(15), 2746; https://doi.org/10.3390/foods14152746 - 6 Aug 2025
Abstract
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in [...] Read more.
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in monounsaturated fatty acids, especially oleic acid, which can comprise over two-thirds of its lipid content. In addition, it provides significant levels of dietary fiber, fat-soluble vitamins such as A, D, E and K, carotenoids, tocopherols, and phytosterols like β-sitosterol. These constituents are consistently associated with antioxidant, anti-inflammatory, glycemic regulatory, and cardioprotective effects, supported by a growing body of experimental and clinical evidence. This review offers a comprehensive and critical synthesis of the chemical composition and functional properties of avocado, with particular emphasis on its lipid profile, phenolic compounds, and phytosterols. It also explores recent advances in environmentally sustainable extraction techniques, including ultrasound-assisted and microwave-assisted processes, as well as the application of natural deep eutectic solvents. These technologies have demonstrated improved efficiency in recovering bioactives while aligning with the principles of green chemistry. The use of avocado-derived ingredients in nanostructured delivery systems and their incorporation into functional foods, cosmetics, and health-promoting formulations is discussed in detail. Additionally, the potential of native cultivars and the application of precision nutrition strategies are identified as promising avenues for future innovation. Taken together, the findings underscore the avocado’s relevance as a high-value matrix for sustainable development. Future research should focus on optimizing extraction protocols, clarifying pharmacokinetic behavior, and ensuring long-term safety in diverse applications. Full article
(This article belongs to the Special Issue Feature Review on Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

16 pages, 1674 KiB  
Article
Enhanced Anticancer Activity of Atractylodin-Loaded Poly(lactic-co-glycolic Acid) Nanoparticles Against Cholangiocarcinoma
by Tullayakorn Plengsuriyakarn, Luxsana Panrit and Kesara Na-Bangchang
Polymers 2025, 17(15), 2151; https://doi.org/10.3390/polym17152151 - 6 Aug 2025
Abstract
Cholangiocarcinoma (CCA) is highly prevalent in the Greater Mekong sub-region, especially northeastern Thailand, where infection with the liver fluke Opisthorchis viverrini is a major etiological factor. Limited therapeutic options and the absence of reliable early diagnosis tools impede effective disease control. Atractylodes lancea [...] Read more.
Cholangiocarcinoma (CCA) is highly prevalent in the Greater Mekong sub-region, especially northeastern Thailand, where infection with the liver fluke Opisthorchis viverrini is a major etiological factor. Limited therapeutic options and the absence of reliable early diagnosis tools impede effective disease control. Atractylodes lancea (Thunb.) DC.—long used in Thai and East Asian medicine, contains atractylodin (ATD), a potent bioactive compound with anticancer potential. Here, we developed ATD-loaded poly(lactic co-glycolic acid) nanoparticles (ATD PLGA NPs) and evaluated their antitumor efficacy against CCA. The formulated nanoparticles had a mean diameter of 229.8 nm, an encapsulation efficiency of 83%, and exhibited biphasic, sustained release, reaching a cumulative release of 92% within seven days. In vitro, ATD-PLGA NPs selectively reduced the viability of CL-6 and HuCCT-1 CCA cell lines, with selectivity indices (SI) of 3.53 and 2.61, respectively, outperforming free ATD and 5-fluorouracil (5-FU). They suppressed CL-6 cell migration and invasion by up to 90% within 12 h and induced apoptosis in 83% of cells through caspase-3/7 activation. Micronucleus assays showed lower mutagenic potential than the positive control. In vivo, ATD-PLGA NPs dose-dependently inhibited tumor growth and prolonged survival in CCA-xenografted nude mice; the high-dose regimen matched or exceeded the efficacy of 5-FU. Gene expression analysis revealed significant downregulation of pro-tumorigenic factors (VEGF, MMP-9, TGF-β, TNF-α, COX-2, PGE2, and IL-6) and upregulation of the anti-inflammatory cytokine IL-10. Collectively, these results indicate that ATD-PLGA NPs are a promising nanotherapeutic platform for targeted CCA treatment, offering improved anticancer potency, selectivity, and safety compared to conventional therapies. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

19 pages, 4563 KiB  
Article
Designing Imidazolium-Mediated Polymer Electrolytes for Lithium-Ion Batteries Using Machine-Learning Approaches: An Insight into Ionene Materials
by Ghazal Piroozi and Irshad Kammakakam
Polymers 2025, 17(15), 2148; https://doi.org/10.3390/polym17152148 - 6 Aug 2025
Abstract
Over the past few decades, lithium-ion batteries (LIBs) have gained significant attention due to their inherent potential for environmental sustainability and unparalleled energy storage efficiency. Meanwhile, polymer electrolytes have gained popularity in several fields due to their ability to adapt to various battery [...] Read more.
Over the past few decades, lithium-ion batteries (LIBs) have gained significant attention due to their inherent potential for environmental sustainability and unparalleled energy storage efficiency. Meanwhile, polymer electrolytes have gained popularity in several fields due to their ability to adapt to various battery geometries, enhanced safety features, greater thermal stability, and effectiveness in reducing dendrite growth on the anode. However, their relatively low ionic conductivity compared to liquid electrolytes has limited their application in high-performance devices. This limitation has led to recent studies revolving around the development of poly(ionic liquids) (PILs), particularly imidazolium-mediated polymer backbones as novel electrolyte materials, which can increase the conductivity with fine-tuning structural benefits, while maintaining the advantages of both solid and gel electrolytes. In this study, a curated dataset of 120 data points representing eight different polymers was used to predict ionic conductivity in imidazolium-based PILs as well as the emerging ionene substructures. For this purpose, four ML models: CatBoost, Random Forest, XGBoost, and LightGBM were employed by incorporating chemical structure and temperature as the models’ inputs. The best-performing model was further employed to estimate the conductivity of novel ionenes, offering insights into the potential of advanced polymer architectures for next-generation LIB electrolytes. This approach provides a cost-effective and intelligent pathway to accelerate the design of high-performance electrolyte materials. Full article
(This article belongs to the Special Issue Artificial Intelligence in Polymers)
Show Figures

Figure 1

28 pages, 11518 KiB  
Article
Identifying Sustainable Offshore Wind Farm Sites in Greece Under Climate Change
by Vasiliki I. Chalastani, Elissavet Feloni, Carlos M. Duarte and Vasiliki K. Tsoukala
J. Mar. Sci. Eng. 2025, 13(8), 1508; https://doi.org/10.3390/jmse13081508 - 5 Aug 2025
Abstract
Wind power has gained attention as a vital renewable energy source capable of reducing emissions and serving as an effective alternative to fossil fuels. Floating wind farms could significantly enhance the energy capacities of Mediterranean countries. However, location selection for offshore wind farms [...] Read more.
Wind power has gained attention as a vital renewable energy source capable of reducing emissions and serving as an effective alternative to fossil fuels. Floating wind farms could significantly enhance the energy capacities of Mediterranean countries. However, location selection for offshore wind farms (OWFs) is a challenge for renewable energy policy and marine spatial planning (MSP). To address these issues, this study considers the marine space of Greece to propose a GIS-based multi-criteria decision-making (MCDM) framework employing the Analytic Hierarchy Process (AHP) to identify suitable sites for OWFs. The approach assesses 19 exclusion criteria encompassing legislative, environmental, safety, and technical constraints to determine the eligible areas. Subsequently, 10 evaluation criteria are weighted to determine the selected areas’ level of suitability. The study considers baseline conditions (1981–2010) and future climate scenarios based on RCP 4.5 and RCP 8.5 for two horizons (2011–2040 and 2041–2070), integrating projected wind velocities and sea level rise to evaluate potential shifts in suitable areas. Results indicate the central and southeastern Aegean Sea as the most suitable areas for OWF deployment. Climate projections indicate a modest increase in suitable areas. The findings serve as input for climate-resilient MSP seeking to promote sustainable energy development. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

13 pages, 3691 KiB  
Article
Analysis of Kinetic Effects of Nanofibrillated Cellulose on MMA Polymerization via Temperature Monitoring
by David Victoria-Valenzuela, Ana Beatriz Morales-Cepeda and Sergio Alejandro De La Garza-Tenorio
Processes 2025, 13(8), 2476; https://doi.org/10.3390/pr13082476 - 5 Aug 2025
Abstract
This study investigates the influence of cellulose nanofibrils (CNFs) on the polymerization kinetics of methyl methacrylate (MMA) during in situ suspension polymerization at 70 °C (343.15 K). Four CNF concentrations were evaluated and compared to a reference system without CNFs. Polymerizations were carried [...] Read more.
This study investigates the influence of cellulose nanofibrils (CNFs) on the polymerization kinetics of methyl methacrylate (MMA) during in situ suspension polymerization at 70 °C (343.15 K). Four CNF concentrations were evaluated and compared to a reference system without CNFs. Polymerizations were carried out in a thermostatted flask immersed in an ethylene glycol bath and covered to ensure thermal stability. The temperature profiles of both the reaction medium and the surrounding bath were continuously recorded, allowing for the calculation of heat flow, polymerization rate (Rp), and monomer conversion. The incorporation of CNFs led to a significant increase in Rp and faster MMA conversion. This effect was attributed to the presence of nanocellulose within the polymerizing medium, which restricted diffusion and contributed to the onset of the phenomenon of autoacceleration. Additionally, CNFs promoted a higher total heat release, underscoring the need for thermal control during scale-up. The resulting material qualifies as a biocomposite, as biobased nanofibrils became integrated into the polymer matrix. These findings demonstrate that CNFs act as effective kinetic promoters in MMA polymerizations and may serve as functional additives to enhance both reaction performance and sustainability. However, safety considerations remain critical when transferring this approach to industrial processes. Full article
(This article belongs to the Special Issue Biopolymer Processing, Utilization and Applications)
Show Figures

Figure 1

51 pages, 4099 KiB  
Review
Artificial Intelligence and Digital Twin Technologies for Intelligent Lithium-Ion Battery Management Systems: A Comprehensive Review of State Estimation, Lifecycle Optimization, and Cloud-Edge Integration
by Seyed Saeed Madani, Yasmin Shabeer, Michael Fowler, Satyam Panchal, Hicham Chaoui, Saad Mekhilef, Shi Xue Dou and Khay See
Batteries 2025, 11(8), 298; https://doi.org/10.3390/batteries11080298 - 5 Aug 2025
Abstract
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery [...] Read more.
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery Management Systems (BMS). This review paper explores how artificial intelligence (AI) and digital twin (DT) technologies can be integrated to enable the intelligent BMS of the future. It investigates how powerful data approaches such as deep learning, ensembles, and models that rely on physics improve the accuracy of predicting state of charge (SOC), state of health (SOH), and remaining useful life (RUL). Additionally, the paper reviews progress in AI features for cooling, fast charging, fault detection, and intelligible AI models. Working together, cloud and edge computing technology with DTs means better diagnostics, predictive support, and improved management for any use of EVs, stored energy, and recycling. The review underlines recent successes in AI-driven material research, renewable battery production, and plans for used systems, along with new problems in cybersecurity, combining data and mass rollout. We spotlight important research themes, existing problems, and future drawbacks following careful analysis of different up-to-date approaches and systems. Uniting physical modeling with AI-based analytics on cloud-edge-DT platforms supports the development of tough, intelligent, and ecologically responsible batteries that line up with future mobility and wider use of renewable energy. Full article
Show Figures

Figure 1

17 pages, 1489 KiB  
Article
Pro-Safety Education and Organizational Challenges in Building Sustainable Safety Culture in Polish Food Companies
by Patrycja Kabiesz
Sustainability 2025, 17(15), 7086; https://doi.org/10.3390/su17157086 - 5 Aug 2025
Viewed by 23
Abstract
The aim of this study was to verify whether comprehensive and inclusive pro-safety education contributes to building a strong safety culture in food companies. The study was conducted in 612 Polish companies, where special attention was paid to modern forms of education during [...] Read more.
The aim of this study was to verify whether comprehensive and inclusive pro-safety education contributes to building a strong safety culture in food companies. The study was conducted in 612 Polish companies, where special attention was paid to modern forms of education during pro-safety education, as well as the frequency and duration of this education. The results of the study showed that safety culture is poorly developed, even when it is consciously and formally implemented in the company. One of the identified problems was the discrepancy between the company’s declared commitment to pro-safety education and the actual behavior of employees. This indicates that formal company strategies may not be effectively embedded in the attitudes and actions of employees. The research emphasizes the importance of adapting pro-safety efforts to the organizational culture in order to ensure significant results and avoid superficial implementation. Full article
Show Figures

Figure 1

25 pages, 9050 KiB  
Article
Field Blast Tests and Finite Element Analysis of A36 Steel Sheets Subjected to High Explosives
by Anselmo S. Augusto, Girum Urgessa, José A. F. F. Rocco, Fausto B. Mendonça and Koshun Iha
Eng 2025, 6(8), 187; https://doi.org/10.3390/eng6080187 - 5 Aug 2025
Viewed by 55
Abstract
Blast mitigation of structures is an important research topic due to increasing intentional and accidental human-induced threats and hazards. This research area is essential to building capabilities in sustaining structural protection, site planning, protective design efficiency, occupant safety, and response and recovery plans. [...] Read more.
Blast mitigation of structures is an important research topic due to increasing intentional and accidental human-induced threats and hazards. This research area is essential to building capabilities in sustaining structural protection, site planning, protective design efficiency, occupant safety, and response and recovery plans. This paper investigates experimental tests and finite element analysis (FEM) of thin A36 steel sheets subjected to blast. Six field blast tests were performed at standoff distances of 300 mm and 500 mm. The explosive charges comprised 334 g of bare Composition B, and the steel sheets were 2 mm thick. The experimental results, derived from the analysis of high-speed camera recordings of the blast events, were compared with FEM simulations conducted using Abaqus®/Explicit version 6.10. Three constitutive material models were considered in these simulations. First, the FEM simulation results were compared with experimental results. It was shown that the FEM analysis provided reliable results and was proven to be robust and cost-effective. Second, an extensive set of 460 additional numerical simulations was carried out as a parametric study involving varying standoff distances and steel sheet thicknesses. The results and methodologies presented in this paper offer valuable and original insights for engineers and researchers aiming to predict damage to steel structures during real detonation events and to design blast-resistant structures. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

17 pages, 909 KiB  
Review
Potential of Natural Esters as Immersion Coolant in Electric Vehicles
by Raj Shah, Cindy Huang, Gobinda Karmakar, Sevim Z. Erhan, Majher I. Sarker and Brajendra K. Sharma
Energies 2025, 18(15), 4145; https://doi.org/10.3390/en18154145 - 5 Aug 2025
Viewed by 63
Abstract
As the popularity of electric vehicles (EVs) continues to increase, the need for effective and efficient driveline lubricants and dielectric coolants has become crucial. Commercially used mineral oils or synthetic ester-based coolants, despite performing satisfactorily, are not environmentally friendly. The fatty esters of [...] Read more.
As the popularity of electric vehicles (EVs) continues to increase, the need for effective and efficient driveline lubricants and dielectric coolants has become crucial. Commercially used mineral oils or synthetic ester-based coolants, despite performing satisfactorily, are not environmentally friendly. The fatty esters of vegetable oils, after overcoming their shortcomings (like poor oxidative stability, higher viscosity, and pour point) through chemical modification, have recently been used as potential dielectric coolants in transformers. The benefits of natural esters, including a higher flash point, breakdown voltage, dielectric character, thermal conductivity, and most importantly, readily biodegradable nature, have made them a suitable and sustainable substitute for traditional coolants in electric transformers. Based on their excellent performance in transformers, research on their application as dielectric immersion coolants in modern EVs has been emerging in recent years. This review primarily highlights the beneficial aspects of natural esters performing dual functions—cooling as well as lubricating, which is necessary for “wet” e-motors in EVs—through a comparative study with the commercially used mineral and synthetic coolants. The adoption of natural fatty esters of vegetable oils as an immersion cooling fluid is a significant sustainable step for the battery thermal management system (BTMS) of modern EVs considering environmental safety protocols. Continued research and development are necessary to overcome the ongoing challenges and optimize esters for widespread use in the rapidly expanding electric vehicle market. Full article
Show Figures

Figure 1

18 pages, 810 KiB  
Article
The Impact of Technology, Economic Development, Environmental Quality, Safety, and Exchange Rate on the Tourism Performance in European Countries
by Zeki Keşanlı, Feriha Dikmen Deliceırmak and Mehdi Seraj
Sustainability 2025, 17(15), 7074; https://doi.org/10.3390/su17157074 - 4 Aug 2025
Viewed by 120
Abstract
The study investigates the contribution of technology (TECH), quantified by Internet penetration, in influencing tourism performance (TP) among the top ten touristic nations in Europe: France, Spain, Italy, Turkey, the United Kingdom, Germany, Greece, Austria, Portugal, and the Netherlands. Using panel data from [...] Read more.
The study investigates the contribution of technology (TECH), quantified by Internet penetration, in influencing tourism performance (TP) among the top ten touristic nations in Europe: France, Spain, Italy, Turkey, the United Kingdom, Germany, Greece, Austria, Portugal, and the Netherlands. Using panel data from 2000–2022, the study includes additional structural controls like environment quality, gross domestic production (GDP) per capita, exchange rate (ER), and safety index (SI). The Method of Moments Quantile Regression (MMQR) is employed to capture heterogeneous effects at different levels of TP, and Driscoll–Kraay standard error (DKSE) correction is employed to make the analysis robust against autocorrelation as well as cross-sectional dependence. Spectral–Granger causality tests are also conducted to check short- and long-run dynamics in the relationships. Empirical results are that TECH and SI are important in TP at all quantiles, but with stronger effects for lower-performing countries. Environmental quality (EQ) and GDP per capita (GDPPC) exert increasing impacts at upper quantiles, suggesting their importance in sustaining high-level tourism economies. ER effects are limited and primarily short-term. The findings highlight the need for integrated digital, environmental, and economic policies to achieve sustainable tourism development. The paper contributes to tourism research by providing a comprehensive, frequency-sensitive, and distributional analysis of macroeconomic determinants of tourism in highly developed European tourist destinations. Full article
Show Figures

Figure 1

58 pages, 8116 KiB  
Review
Electrochemical Detection of Heavy Metals Using Graphene-Based Sensors: Advances, Meta-Analysis, Toxicity, and Sustainable Development Challenges
by Muhammad Saqib, Anna N. Solomonenko, Nirmal K. Hazra, Shojaa A. Aljasar, Elena I. Korotkova, Elena V. Dorozhko, Mrinal Vashisth and Pradip K. Kar
Biosensors 2025, 15(8), 505; https://doi.org/10.3390/bios15080505 - 4 Aug 2025
Viewed by 301
Abstract
Contamination of food with heavy metals is an important factor leading to serious health concerns. Rapid identification of these heavy metals is of utmost priority. There are several methods to identify traces of heavy metals in food. Conventional methods for the detection of [...] Read more.
Contamination of food with heavy metals is an important factor leading to serious health concerns. Rapid identification of these heavy metals is of utmost priority. There are several methods to identify traces of heavy metals in food. Conventional methods for the detection of heavy metal residues have their limitations in terms of cost, analysis time, and complexity. In the last decade, voltammetric analysis has emerged as the most prominent electrochemical determination method for heavy metals. Voltammetry is a reliable, cost-effective, and rapid determination method. This review provides a detailed primer on recent advances in the development and application of graphene-based electrochemical sensors for heavy metal monitoring over the last decade. We critically examine aspects of graphene modification (fabrication process, stability, cost, reproducibility) and analytical properties (sensitivity, selectivity, rapid detection, lower detection, and matrix effects) of these sensors. Furthermore, to our knowledge, meta-analyses were performed for the first time for all investigated parameters, categorized based on graphene materials and heavy metal types. We also examined the pass–fail criteria according to the WHO drinking water guidelines. In addition, the effects of heavy metal toxicity on human health and the environment are discussed. Finally, the contribution of heavy metal contamination to the seventeen Sustainable Development Goals (SDGs) stated by the United Nations in 2015 is discussed in detail. The results confirm the significant impact of heavy metal contamination across twelve SDGs. This review critically examines the existing knowledge in this field and highlights significant research gaps and future opportunities. It is intended as a resource for researchers working on graphene-based electrochemical sensors for the detection of heavy metals in food safety, with the ultimate goal of improving consumer health protection. Full article
Show Figures

Graphical abstract

22 pages, 5826 KiB  
Article
Re-Habiting the Rooftops in Ciutat Vella (Barcelona): Co-Designed Low-Cost Solutions for a Social, Technical and Environmental Improvement
by Marta Domènech-Rodríguez, Oriol París-Viviana and Còssima Cornadó
Urban Sci. 2025, 9(8), 304; https://doi.org/10.3390/urbansci9080304 - 4 Aug 2025
Viewed by 109
Abstract
This research addresses urban inequality by focusing on the rehabilitation of communal rooftops in Ciutat Vella, Barcelona, the city’s historic district, where residential vulnerability is concentrated in a particularly dense heritage urban environment with a shortage of outdoor spaces. Using participatory methodologies, this [...] Read more.
This research addresses urban inequality by focusing on the rehabilitation of communal rooftops in Ciutat Vella, Barcelona, the city’s historic district, where residential vulnerability is concentrated in a particularly dense heritage urban environment with a shortage of outdoor spaces. Using participatory methodologies, this research develops low-cost, removable, and recyclable prototypes aimed at improving social interaction, technical performance, and environmental conditions. The focus is on vulnerable populations, particularly the elderly. The approach integrates a bottom–up process and scalable solutions presented as a Toolkit of micro-projects. These micro-projects are designed to improve issues related to health, safety, durability, accessibility, energy savings, and acoustics. In addition, several possible material solutions for micro-projects are examined in terms of sustainability and cost. These plug-in interventions are designed for adaptability and replication throughout similar urban contexts and can significantly improve the quality of life for people, especially the elderly, in dense historic environments. Full article
Show Figures

Figure 1

11 pages, 219 KiB  
Article
TKI Use and Treatment-Free Remission in Chronic Myeloid Leukemia: Evidence from a Regional Cohort Study in the Canary Islands
by Santiago Sánchez-Sosa, Ruth Stuckey, Adrián Segura Díaz, José David González San Miguel, Ylenia Morales Ruiz, Sunil Lakhawani Lakhawani, Jose María Raya Sánchez, Melania Moreno Vega, María Tapia Torres, Pilar López-Coronado, María de las Nieves Saez Perdomo, Marta Fernández, Cornelia Stoica, Cristina Bilbao Sieyro and María Teresa Gómez Casares
Hematol. Rep. 2025, 17(4), 39; https://doi.org/10.3390/hematolrep17040039 - 4 Aug 2025
Viewed by 136
Abstract
Background/Objectives: The advent of tyrosine kinase inhibitors (TKIs) revolutionized the management of chronic myeloid leukemia (CML), achieving survival rates near those of the general population. Despite this success, prolonged therapy presents challenges, including physical, emotional, and financial burdens. Treatment-free remission (TFR), defined [...] Read more.
Background/Objectives: The advent of tyrosine kinase inhibitors (TKIs) revolutionized the management of chronic myeloid leukemia (CML), achieving survival rates near those of the general population. Despite this success, prolonged therapy presents challenges, including physical, emotional, and financial burdens. Treatment-free remission (TFR), defined as sustained deep molecular response (DMR) after discontinuing TKIs, has emerged as a viable clinical goal. This study evaluates real-world data from the Canary Islands Registry of CML (RCLMC) to explore outcomes, predictors, and the feasibility of TFR. Methods: This retrospective observational study included 393 patients diagnosed with CML-CP between 2007 and 2023. Molecular response was monitored according to international guidelines. Survival probabilities were estimated using the Kaplan–Meier method. Logistic regression analysis was performed to identify predictors of molecular relapses after TKI discontinuation. Results: Of the 383 patients who received TKI treatment, 58.3% achieved molecular response grade 2 (MR2) (BCR-ABL1 ≤ 1%), 95.05% achieved MR2, and 50.5% reached MR4 within the first year. Of the 107 patients attempting TFR, 73.2% maintained remission at 36 months. Relapses occurred in 24 patients, all regaining molecular response upon reintroduction of TKIs. No cases of disease progression were observed. Conclusions: Our findings support the feasibility and safety of TFR in a real-world clinical setting for well-selected patients, with outcomes consistent with international studies. The study underscores the importance of molecular monitoring and patient-specific strategies to optimize outcomes. Full article
14 pages, 1567 KiB  
Article
Determining the Benzo[a]pyrene Degradation, Tolerance, and Adsorption Mechanisms of Kefir-Derived Bacterium Bacillus mojavensis TC-5
by Zhixian Duo, Haohao Li, Zeyu Wang, Zhiwei Zhang, Zhuonan Yang, Aofei Jin, Minwei Zhang, Rui Zhang and Yanan Qin
Foods 2025, 14(15), 2727; https://doi.org/10.3390/foods14152727 - 4 Aug 2025
Viewed by 109
Abstract
Microbial detoxification, as an environmentally friendly strategy, has been widely applied for benzo[a]pyrene (BaP) degradation. Within this approach, food-derived microbial strains offer unique advantages in safety, specificity, and sustainability for detoxifying food-borne BaP. In this study, we aimed to explore the potential of [...] Read more.
Microbial detoxification, as an environmentally friendly strategy, has been widely applied for benzo[a]pyrene (BaP) degradation. Within this approach, food-derived microbial strains offer unique advantages in safety, specificity, and sustainability for detoxifying food-borne BaP. In this study, we aimed to explore the potential of such strains in BaP degradation. Bacillus mojavensis TC-5, a strain that degrades BaP, was isolated from kefir grains. Surprisingly, 12 genes encoding dehydrogenases, synthases, and oxygenases, including betB, fabHB, qdoI, cdoA, and bioI, which are related to BaP degradation, were up-regulated by 2.01-fold to 4.52-fold in TC-5. Two potential degradation pathways were deduced. In pathway I, dioxygenase, betaine aldehyde dehydrogenase, and beta-ketoacyl-ACP synthase III FabHB act sequentially on BaP to form 4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl via the phthalic acid pathway. In the presence of the cytochrome P450 enzyme, BaP progressively mediates ring cleavage via the anthracene pathway, eventually forming 3-methyl-5-propylnonane in pathway II. Notably, TC-5 achieved an impressive BaP removal efficiency of up to 63.94%, with a degradation efficiency of 32.89%. These results suggest that TC-5 has significant potential for application in addressing food-borne BaP contamination. Moreover, our findings expand the application possibilities of Xinjiang fermented milk products and add to the available green strategies for BaP degradation in food systems. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

Back to TopTop