Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (547)

Search Parameters:
Keywords = runoff conservation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 42979 KB  
Article
Soil Erosion Modeling of Kinmen (Quemoy) Island, Taiwan: Toward Land Conservation in a Strategic Location
by Yu-Chieh Huang, Kieu Anh Nguyen and Walter Chen
Sustainability 2025, 17(22), 10052; https://doi.org/10.3390/su172210052 - 11 Nov 2025
Abstract
Kinmen Island, historically known as Quemoy, holds significant historical and geopolitical importance due to its strategic location in the Taiwan Strait, just a few kilometers from the Chinese mainland. This study presents the first comprehensive assessment of soil erosion and deposition on Kinmen, [...] Read more.
Kinmen Island, historically known as Quemoy, holds significant historical and geopolitical importance due to its strategic location in the Taiwan Strait, just a few kilometers from the Chinese mainland. This study presents the first comprehensive assessment of soil erosion and deposition on Kinmen, providing a scientific foundation for future land conservation and sustainable development initiatives. It also addresses the underrepresentation of small-island environments in soil erosion modeling by adapting the Revised Universal Soil Loss Equation (RUSLE) and Unit-Stream-Power-based Erosion Deposition (USPED) models for coarse-textured soils under limited rainfall conditions, offering insights into the reliability and limitations of these models in such contexts. The rainfall–runoff erosivity factor (Rm) was derived from precipitation data at four stations, while soil samples from ten locations were analyzed for the Soil Erodibility Factor (Km). Topographic factors, including the Slope Length and Steepness (LS) and the Topographic Sediment Transport (LST) factors, were computed from a 20 m DEM (Digital Elevation Model), and the Cover-Management Factor (C) was obtained from land use classification. The RUSLE estimated a mean soil erosion rate of 2.17 Mg ha−1 year−1, while the USPED results varied with parameterization, ranging from 0.87 to 3.79 Mg ha−1 year−1 for erosion and 1.39 to 6.51 Mg ha−1 year−1 for deposition. The results were compared with studies from the neighboring Fujian Province and contextualized through two field expeditions. This pioneering research advances the understanding of erosion and deposition processes in a strategically located island environment and supports evidence-based policies for land conservation, contributing to SDG 15 (Life on Land) and SDG 13 (Climate Action). Full article
(This article belongs to the Special Issue Sustainable Environmental Analysis of Soil and Water)
Show Figures

Figure 1

27 pages, 1481 KB  
Review
Exploring the Relationship Between Farmland Management and Manure-Derived Antibiotic Resistance Genes and Their Prevention and Control Strategies
by Chengcheng Huang, Yuanye Zeng, Fengxia Yang, Qixin Wu and Yongzhen Ding
Antibiotics 2025, 14(11), 1117; https://doi.org/10.3390/antibiotics14111117 - 5 Nov 2025
Viewed by 216
Abstract
Background/Objectives: The application of manure introduces antibiotic resistance genes (ARGs) into farmland, posing a significant public health risk. While tillage and fertilization practices are known to influence soil ecosystems, a systematic synthesis of how tillage patterns specifically regulate the fate of manure-derived ARGs [...] Read more.
Background/Objectives: The application of manure introduces antibiotic resistance genes (ARGs) into farmland, posing a significant public health risk. While tillage and fertilization practices are known to influence soil ecosystems, a systematic synthesis of how tillage patterns specifically regulate the fate of manure-derived ARGs is lacking. Methods: This review bridges this critical knowledge gap by systematically analyzing the interactions between conventional/conservation tillage and the distribution, persistence, and transmission of these ARGs. Results: It is observed that conservation tillage (e.g., no tillage), while beneficial for soil health, can lead to ARG accumulation at the soil surface, potentially increasing runoff risks, whereas conventional tillage promotes vertical mixing and dilution. A key unique contribution of this review is the systematic comparison of conventional versus conservation tillage, revealing quantitative reductions in ARG abundance. under practices like no till or deep plowing. Conclusions: We further con-solidate and propose integrated management strategies, combining precision agriculture, optimized fertilization, and scientific soil management, to mitigate ARG pollution. This work provides a targeted framework for developing more effective intervention measures to ensure agricultural sustainability and safeguard human health. Full article
Show Figures

Figure 1

29 pages, 4176 KB  
Article
Distinct Pollution Profiles and Spatio-Temporal Dynamics in Adjacent Ramsar Lakes (Algeria): An Integrated Assessment and High-Resolution Mapping for Targeted Conservation
by Ines Houhamdi, Leila Bouaguel, Laid Bouchaala, Nedjoud Grara, Mouslim Bara, Agnieszka Szparaga and Moussa Houhamdi
Processes 2025, 13(11), 3466; https://doi.org/10.3390/pr13113466 - 28 Oct 2025
Viewed by 601
Abstract
This study provides the first integrated spatio-temporal assessment of water quality in Lakes Tonga and Oubeira, two adjacent Ramsar-designated wetlands within El Kala National Park (Algeria). The objective was to identify major pollution sources and inform targeted conservation strategies. Physico-chemical, microbiological, and heavy [...] Read more.
This study provides the first integrated spatio-temporal assessment of water quality in Lakes Tonga and Oubeira, two adjacent Ramsar-designated wetlands within El Kala National Park (Algeria). The objective was to identify major pollution sources and inform targeted conservation strategies. Physico-chemical, microbiological, and heavy metal analyses were performed on water samples collected monthly over one year (September 2022–August 2023) from two sites per lake. Applying robust statistical analyses (ANOVA, Kruskal–Wallis, PCA, boxplots) and high-resolution spatial mapping, we revealed significant spatio-temporal heterogeneity and distinct pollution profiles between the two lakes. Specifically, Lake Tonga exhibited higher concentrations of organic and bacterial pollutants, likely linked to agricultural runoff and domestic discharge, while Lake Oubeira was characterized by elevated heavy metal concentrations and higher mineralization. The calculated Water Quality Index (WQI) classified the water quality of both lakes predominantly as “Moderate”, with punctual “Poor” quality episodes. Numerous parameters consistently exceeded water quality standards, indicating substantial ecological and health risks. Spatial distribution maps clearly pinpointed pollution hotspots, guiding lake-specific management measures. These findings underscore the urgent need for differentiated, targeted management interventions and an integrated, multidisciplinary approach for the effective conservation of these valuable wetland ecosystems. Full article
Show Figures

Figure 1

20 pages, 2654 KB  
Article
Seasonal Freshwater Inflows in Cochin Backwater Estuary Inferred from Stable Isotopes and Machine Learning
by Prasanna K., Ravi Rangarajan, Fursan Thabit, Prosenjit Ghosh and Habeeb Rahman
Hydrology 2025, 12(11), 277; https://doi.org/10.3390/hydrology12110277 - 24 Oct 2025
Viewed by 315
Abstract
The Cochin Backwater region in Southern India is one of the most dynamic estuaries, strongly influenced by seasonal river runoff and seawater intrusion. This study explores the relationship between monsoonal rains, salinity, and stable isotopic composition (δ18O and δ13C) [...] Read more.
The Cochin Backwater region in Southern India is one of the most dynamic estuaries, strongly influenced by seasonal river runoff and seawater intrusion. This study explores the relationship between monsoonal rains, salinity, and stable isotopic composition (δ18O and δ13C) to estimate the contribution of freshwater fluxes at different seasonal intervals for the Cochin Backwater (CBW) estuary. Seasonal variations in oxygen isotopes and salinity revealed distinct trends indicative of freshwater–seawater mixing dynamics. The comparison of Local and Global Meteoric Water Lines highlighted the occurrence of enriched isotope values during the Premonsoon season, showing significant evaporation effects. Carbon (C) isotopic analysis in dissolved inorganic matter (δ13CDIC) at 17 stations during the Premonsoon season revealed spatially distinct carbon dynamics zones, influenced by various sources. These characteristic zones were categorized as Zone 1, dominated by seawater, exhibiting heavier δ13CDIC values; Zone 2, showing significant contributions of lighter terrestrial δ13C; and Zone 3, reflecting inputs from regional and local paddy fields with a distinct C3 isotopic signature (−25‰), modified by estuarine productivity. In addition, different advanced machine learning techniques were tested to improve analysis and prediction of seasonal variations in isotopic composition and salinity. Although the data were sufficiently robust for demonstrating the feasibility and advantages of ML in isotopic hydrology, further expansion of the dataset would be essential for improving the accuracy of models, especially for δ13C. The combination of these advanced machine learning models not only improved the predictive accuracy of seasonal freshwater fluxes but also provided a robust framework for understanding the estuarine ecosystem and could pave the way for better management and conservation strategies of the CBW estuarine system. Full article
(This article belongs to the Section Marine Environment and Hydrology Interactions)
Show Figures

Figure 1

19 pages, 6351 KB  
Article
Spatio-Temporal Variations in Soil Organic Carbon Stocks in Different Erosion Zones of Cultivated Land in Northeast China Under Future Climate Change Conditions
by Shuai Wang, Xinyu Zhang, Qianlai Zhuang, Zijiao Yang, Zicheng Wang, Chen Li and Xinxin Jin
Agronomy 2025, 15(11), 2459; https://doi.org/10.3390/agronomy15112459 - 22 Oct 2025
Viewed by 495
Abstract
Soil organic carbon (SOC) plays a critical role in the global carbon cycle and serves as a sensitive indicator of climate change impacts, with its dynamics significantly influencing regional ecological security and sustainable development. This study focuses on the Songnen Plain in Northeast [...] Read more.
Soil organic carbon (SOC) plays a critical role in the global carbon cycle and serves as a sensitive indicator of climate change impacts, with its dynamics significantly influencing regional ecological security and sustainable development. This study focuses on the Songnen Plain in Northeast China—a key black soil agricultural region increasingly affected by water erosion, primarily through surface runoff and rill formation on gently sloping cultivated land. We aim to investigate the spatiotemporal dynamics of SOC stocks across different cultivated land erosion zones under projected future climate change scenarios. To quantify current and future SOC stocks, we applied a boosted regression tree (BRT) model based on 130 topsoil samples (0–30 cm) and eight environmental variables representing topographic and climatic conditions. The model demonstrated strong predictive performance through 10-fold cross-validation, yielding high R2 and Lin’s concordance correlation coefficient (LCCC) values, as well as low mean absolute error (MAE) and root mean square error (RMSE). Key drivers of SOC stock spatial variation were identified as mean annual temperature, elevation, and slope aspect. Using a space-for-time substitution approach, we projected SOC stocks under the SSP245 and SSP585 climate scenarios for the 2050s and 2090s. Results indicate a decline of 177.66 Tg C (SSP245) and 186.44 Tg C (SSP585) by the 2050s relative to 2023 levels. By the 2090s, SOC losses under SSP245 and SSP585 are projected to reach 2.84% and 1.41%, respectively, highlighting divergent carbon dynamics under varying emission pathways. Spatially, SOC stocks were predominantly located in areas of slight (67%) and light (22%) water erosion, underscoring the linkage between erosion intensity and carbon distribution. This study underscores the importance of incorporating both climate and anthropogenic influences in SOC assessments. The resulting high-resolution SOC distribution map provides a scientific basis for targeted ecological restoration, black soil conservation, and sustainable land management in the Songnen Plain, thereby supporting regional climate resilience and China’s “dual carbon” goals. These insights also contribute to global efforts in enhancing soil carbon sequestration and achieving carbon neutrality goals. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

29 pages, 2370 KB  
Article
Design of Rainwater Harvesting Pond for Runoff Storage and Utilization in Semi-Arid Vertisols
by M. Manikandan, B. Bhakiyathu Saliha, Boini Narsimlu, J. V. N. S. Prasad, K. Baskar, V. Sanjivkumar, S. Manoharan, G. Guru, Gajjala Ravindra Chary, K. V. Rao, R. Rejani and Vinod Kumar Singh
Water 2025, 17(21), 3034; https://doi.org/10.3390/w17213034 - 22 Oct 2025
Viewed by 467
Abstract
Rainfall deficits and erratic dry spells pose major challenges in rainfed ecosystem. In-situ moisture conservation practices (MCP) like ridge–furrow methods, improve soil moisture but are inadequate during 2–3 week dry spells at critical crop stages (flowering and maturity), leading to yield loss. Supplemental [...] Read more.
Rainfall deficits and erratic dry spells pose major challenges in rainfed ecosystem. In-situ moisture conservation practices (MCP) like ridge–furrow methods, improve soil moisture but are inadequate during 2–3 week dry spells at critical crop stages (flowering and maturity), leading to yield loss. Supplemental irrigation (SI) using an ex-situ rainwater harvesting (RWH) pond can mitigate these effects, but optimizing the pond design is challenging due to limited runoff and storage losses. This study aims to design RWH pond for small farm holders with a 1.0 ha area and evaluate its efficient use for SI during intermittent dry spells and critical crop stages. The design volume was estimated using the SCS-CN method based on daily rainfall data (1974–2010) for the northeast monsoon. A pond with a capacity of 487.5 m3, constructed for a 1 ha micro-watershed, was used to observe the runoff for design validation. The harvested runoff can be used as SI for a cultivable area of 0.4 ha, based on the watershed-to-cultivable area ratio. Statistical analysis of observed and estimated runoff data from 2011 to 2023 revealed a strong correlation (r = 0.87), confirming the pond design. Harvested rainwater, applied through micro-irrigation (rain gun) at a depth of 50 mm during moisture stress periods, significantly improved cotton productivity. The combined use of harvested rainwater and MCP increased yield in the range of 3.8 to 25.3%, improved rainwater use efficiency (1.52 to 3.13 kg ha−1 mm−1), and had a higher benefit-cost ratio (1.15 to 2.43) over a 13-year period. This study concludes that integrating in-situ MCP with ex-situ RWH with micro-irrigation significantly improves rainfed crop productivity in vertisols. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

14 pages, 3889 KB  
Article
Runoff and Sediment Response to Rainfall Events in China’s North-South Transitional Zone: Insights from Runoff Plot Observations
by Zhijia Gu, Keke Ji, Gaohan Xu, Maidinamu Reheman, Detai Feng, Yi Shen, Qiang Yi, Jiayi Kang, Xinmiao Zhang and Sitong Pan
Atmosphere 2025, 16(10), 1207; https://doi.org/10.3390/atmos16101207 - 18 Oct 2025
Viewed by 306
Abstract
China’s North-South Transition Zone is a critical ecological transition region, marked by complex environments, climatic sensitivity, and transitional characteristics. To investigate the effects of individual rainfall events on runoff generation and sediment yield across different slopes and land uses within this zone, the [...] Read more.
China’s North-South Transition Zone is a critical ecological transition region, marked by complex environments, climatic sensitivity, and transitional characteristics. To investigate the effects of individual rainfall events on runoff generation and sediment yield across different slopes and land uses within this zone, the study collected data from slope runoff plots (20 m in length and 5 m in width, measured as horizontal projection) at three monitoring stations (Luoshan, Lushan, Shanzhou) between 2014 and 2023. Rainfall events were classified via K-means clustering. Regression and correlation analyses were applied to reveal the effects of rainfall characteristics, slope gradient and land use type (grass land, dry land, forest land, bare land and natural vegetation) on runoff and sediment. The results indicate that: (1) The most frequent rainstorms were Type C (short, low-intensity, low-volume, low-erosivity events). (2) The runoff depth of bare land is 3.6, 2.3, and 2 times that of forest land, dry land, and natural vegetation, respectively. Similarly, its sediment concentration is 134, 13, and 16 times higher, respectively. Grassland, however, showed markedly lower levels of both runoff and sediment. (3) Rainfall intensity was significantly correlated with runoff and sediment across slopes. Runoff depth depended mainly on rainfall amount. While Type A (prolonged, high-intensity) caused peak runoff, Type D (moderate but intense and erosive) yielded the highest sediment. (4) Sediment reduction efficiency (sediment reduction compared to bare land under identical conditions) consistently surpassed runoff reduction across all land types, with grassland showing the highest efficiency for both. For soil and water conservation, grass-planting was the most effective measure on 10° and 15° slopes, whereas both afforestation and grass-planting were optimal on the 25° slopes. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

21 pages, 11986 KB  
Article
Advancing Water Resources Management Through Reservoir Release Optimization: A Study Case in Piracicaba River Basin in Brazil
by Raphael Ferreira Perez, João Rafael Bergamaschi Tercini, Dário Hachisu Hossoda, Veronica Lima Gonsalez Rabioglio and Joaquin Ignacio Bonnecarrère
Hydrology 2025, 12(10), 269; https://doi.org/10.3390/hydrology12100269 - 11 Oct 2025
Viewed by 554
Abstract
Given significant water scarcity events in the recent past, water resources management in the Piracicaba River Basin, São Paulo, Brazil, has intensified the adoption of complex measures to meet the population’s water supply demands. This study presents a methodology to optimize reservoir water [...] Read more.
Given significant water scarcity events in the recent past, water resources management in the Piracicaba River Basin, São Paulo, Brazil, has intensified the adoption of complex measures to meet the population’s water supply demands. This study presents a methodology to optimize reservoir water release while adhering to restrictive rules, aiming to also conserve water. A rainfall–runoff model was utilized alongside a hydrological routing model, incorporating meteorological forecasts for simulation over ten consecutive years. The results demonstrated significant water savings when comparing the optimization scenario with the actual reservoir operation during the same period. The applied methodology reduced water releases up to 66% in comparison to the observed scenario. Overall, the study introduces tools to improve reservoir operation with computational techniques, enriching local water resources management, water security, and decision-making processes, ensuring water security for the São Paulo Metropolitan Region, the most populous region in Brazil. Full article
Show Figures

Figure 1

23 pages, 7845 KB  
Article
Projected Runoff Changes and Their Effects on Water Levels in the Lake Qinghai Basin Under Climate Change Scenarios
by Pengfei Hou, Jun Du, Shike Qiu, Jingxu Wang, Chao Wang, Zheng Wang, Xiang Jia and Hucai Zhang
Hydrology 2025, 12(10), 259; https://doi.org/10.3390/hydrology12100259 - 2 Oct 2025
Viewed by 634
Abstract
Lake Qinghai, the largest closed-basin lake on the Qinghai–Tibet Plateau, plays a crucial role in maintaining regional ecological stability through its hydrological functions. In recent decades, the lake has exhibited a continuous rise in water level and lake area expansion, sparking growing interest [...] Read more.
Lake Qinghai, the largest closed-basin lake on the Qinghai–Tibet Plateau, plays a crucial role in maintaining regional ecological stability through its hydrological functions. In recent decades, the lake has exhibited a continuous rise in water level and lake area expansion, sparking growing interest in the mechanisms driving these changes and their future evolution. This study integrates the Soil and Water Assessment Tool (SWAT), simulations under future Shared Socioeconomic Pathways (SSPs) and statistical analysis methods, to assess runoff dynamics and lake level responses in the Lake Qinghai Basin over the next 30 years. The model was developed using a combination of meteorological, hydrological, topographic, land use, soil, and socio-economic datasets, and was calibrated with the sequential uncertainty fitting Ver-2 (SUFI-2) algorithm within the SWAT calibration and uncertainty procedure (SWAT–CUP) platform. Sensitivity and uncertainty analyses confirmed robust model performance, with monthly R2 values of 0.78 and 0.79. Correlation analysis revealed that runoff variability is more closely associated with precipitation than temperature in the basin. Under SSP 1-2.6, SSP 3-7.0, and SSP 5-8.5 scenarios, projected annual precipitation increases by 14.4%, 18.9%, and 11.1%, respectively, accompanied by temperature rises varying with emissions scenario. Model simulations indicate a significant increase in runoff in the Buha River Basin, peaking around 2047. These findings provide scientific insight into the hydrological response of plateau lakes to future climate change and offer a valuable reference for regional water resource management and ecological conservation strategies. Full article
(This article belongs to the Special Issue Runoff Modelling under Climate Change)
Show Figures

Figure 1

26 pages, 7079 KB  
Article
Hydrological Response Analysis Using Remote Sensing and Cloud Computing: Insights from the Chalakudy River Basin, Kerala
by Gudihalli Munivenkatappa Rajesh, Sajeena Shaharudeen, Fahdah Falah Ben Hasher and Mohamed Zhran
Water 2025, 17(19), 2869; https://doi.org/10.3390/w17192869 - 1 Oct 2025
Viewed by 627
Abstract
Hydrological modeling is critical for assessing water availability and guiding sustainable resource management, particularly in monsoon-dependent, data-scarce basins such as the Chalakudy River Basin (CRB) in Kerala, India. This study integrated the Soil Conservation Service Curve Number (SCS-CN) method within the Google Earth [...] Read more.
Hydrological modeling is critical for assessing water availability and guiding sustainable resource management, particularly in monsoon-dependent, data-scarce basins such as the Chalakudy River Basin (CRB) in Kerala, India. This study integrated the Soil Conservation Service Curve Number (SCS-CN) method within the Google Earth Engine (GEE) platform, making novel use of multi-source, open access datasets (CHIRPS precipitation, MODIS land cover and evapotranspiration, and OpenLand soil data) to estimate spatially distributed long-term runoff (2001–2023). Model calibration against observed runoff showed strong performance (NSE = 0.86, KGE = 0.81, R2 = 0.83, RMSE = 29.37 mm and ME = 13.48 mm), validating the approach. Over 75% of annual runoff occurs during the southwest monsoon (June–September), with July alone contributing 220.7 mm. Seasonal assessments highlighted monsoonal excesses and dry-season deficits, while water balance correlated strongly with rainfall (r = 0.93) and runoff (r = 0.94) but negatively with evapotranspiration (r = –0.87). Time-series analysis indicated a slight rise in rainfall, a decline in evapotranspiration, and a marginal improvement in water balance, implying gradual enhancement of regional water availability. Spatial analysis revealed a west–east gradient in precipitation, evapotranspiration, and water balance, producing surpluses in lowlands and deficits in highlands. These findings underscore the potential of cloud-based hydrological modeling to capture spatiotemporal dynamics of hydrological variables and support climate-resilient water management in monsoon-driven and data-scarce river basins. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

17 pages, 2324 KB  
Article
Laboratory Experiments Unravel the Mechanisms of Snowmelt Erosion in Northeast China’s Black Soil: The Key Role of Supersaturation-Driven and Layered Moisture Migration
by Songshi Zhao, Haoming Fan and Maosen Lin
Sustainability 2025, 17(19), 8737; https://doi.org/10.3390/su17198737 - 29 Sep 2025
Viewed by 449
Abstract
Snowmelt runoff is a major soil erosion trigger in mid-to-high latitude and altitude regions. Through runoff plot observations and simulations in the northeastern black soil region, this study reveals the key regulatory mechanism of water migration on snowmelt erosion. Results demonstrate that the [...] Read more.
Snowmelt runoff is a major soil erosion trigger in mid-to-high latitude and altitude regions. Through runoff plot observations and simulations in the northeastern black soil region, this study reveals the key regulatory mechanism of water migration on snowmelt erosion. Results demonstrate that the interaction between thawed upper and frozen lower soil layers creates a significant hydraulic gradient during snowmelt. Impermeability of the frozen layer causes meltwater accumulation and moisture supersaturation (>47%, exceeding field capacity) in the upper layer. Freeze–thaw action accelerates vertical moisture migration and redistributes shallow moisture by increasing porosity. This process causes soils with high initial moisture to reach supersaturation faster, triggering earlier and more frequent erosion. Gray correlation analysis shows that soil moisture migration’s contribution to erosion intensity is layered: migration in shallow soil (0–10 cm) correlates most strongly with surface erosion; migration in deep soil (10–15 cm) exhibits a U-shaped contribution due to freeze–thaw front boundary effects. A regression model identified key controlling factors (VIP > 1.0): changes in bulk density, porosity, and permeability of deep soil significantly regulate erosion intensity. The nonlinear relationship between erosion intensity and moisture content (R2 = 0.82) confirms supersaturation dominance. Physical structure and mechanical properties of unfrozen layers regulate erosion dynamics via moisture migration. These findings clarify the key mechanism of moisture migration governing snowmelt erosion, providing a critical scientific foundation for developing targeted soil conservation strategies and advancing regional prediction models essential for sustainable land management under changing winter climates. Full article
Show Figures

Figure 1

29 pages, 3932 KB  
Article
Dynamic Spatiotemporal Evolution of Ecological Environment in the Yellow River Basin in 2000–2024 and the Driving Mechanisms
by Yinan Wang, Lu Yuan, Yanli Zhou and Xiangchao Qin
Land 2025, 14(10), 1958; https://doi.org/10.3390/land14101958 - 28 Sep 2025
Viewed by 478
Abstract
The Yellow River Basin (YRB), a pivotal ecoregion in China, has long been plagued by a range of ecological problems, including water loss, soil erosion, and ecological degradation. Despite previous reports on the ecological environment of YRB, systematic studies on the multi-factor driving [...] Read more.
The Yellow River Basin (YRB), a pivotal ecoregion in China, has long been plagued by a range of ecological problems, including water loss, soil erosion, and ecological degradation. Despite previous reports on the ecological environment of YRB, systematic studies on the multi-factor driving mechanism and the coupling between the ecological and hydrological systems remain scarce. In this study, with multi-source remote-sensing imagery and measured hydrological data, the random forest (RF) model and the geographical detector (GD) technique were employed to quantify the dynamic spatiotemporal changes in the ecological environment of YRB in 2000–2024 and identify the driving factors. The variables analyzed in this study included gross primary productivity (GPP), fractional vegetation cover (FVC), land use and cover change (LUCC), meteorological statistics, as well as runoff and sediment data measured at hydrological stations in YRB. The main findings are as follows: first, the GPP and FVC increased significantly by 37.9% and 18.0%, respectively, in YRB in 2000–2024; second, LUCC was the strongest driver of spatiotemporal changes in the ecological environment of YRB; third, precipitation and runoff contributed positively to vegetation growth, whereas the sediment played a contrary role, and the response of ecological variables to the hydrological processes exhibited a time lag of 1–2 years. This study is expected to provide scientific insights into ecological conservation and water resources management in YRB, and offer a decision-making basis for the design of sustainability policies and eco-restoration initiatives. Full article
Show Figures

Figure 1

18 pages, 5089 KB  
Article
The Synergistic Effects of Climate Change and Human Activities on Wetland Expansion in Xinjiang
by Jiaorong Qian, Yaning Chen, Yonghui Wang, Yupeng Li, Zhi Li, Gonghuan Fang, Chuanxiu Liu, Yihan Wang and Zhixiong Wei
Land 2025, 14(9), 1889; https://doi.org/10.3390/land14091889 - 15 Sep 2025
Viewed by 570
Abstract
Wetlands function as crucial transitional zones between land and water ecosystems worldwide, contributing significantly to the stability of local ecosystems. However, there is limited research on landscape changes in Xinjiang’s arid interior regions and the factors driving these changes. This study uses data [...] Read more.
Wetlands function as crucial transitional zones between land and water ecosystems worldwide, contributing significantly to the stability of local ecosystems. However, there is limited research on landscape changes in Xinjiang’s arid interior regions and the factors driving these changes. This study uses data reanalysis techniques to examine the spatial and temporal evolution and landscape patterns of wetlands, as well as their driving forces, in Xinjiang between 1990 and 2023. The results show that over the past three decades, the wetland area in Xinjiang has grown from 18,427 km2 in 1990 to 21,532 km2 in 2023, with an annual increase of about 94 km2. The greatest growth in wetlands, particularly lakes, marshes, and rivers, has occurred around the periphery of the Tarim Basin and the Ili River Basin, while mountainous areas have seen slight reductions. The distribution pattern shows higher wetland coverage in southern Xinjiang and less coverage in the north, with the largest proportion of wetlands found in the south. Additionally, wetland expansion has led to improvements in the number, density, aggregation, and connectivity of wetland patches, while the complexity of their shapes has decreased. The overall habitat quality of wetlands has also improved over time. Attribution analysis highlights that the rise in runoff due to temperature increases over the past 30 years is a major driver of wetland expansion, with warming accounting for the largest share of expansion in lakes (36%) and in rivers (47.9%). Furthermore, the implementation of large-scale engineering measures, such as ecological water diversion, water-saving irrigation, and reservoir management, has contributed significantly to wetland expansion and ecological restoration. These results provide useful insights for the long-term conservation and management of wetland resources in the arid areas of Xinjiang. Full article
Show Figures

Figure 1

31 pages, 16858 KB  
Article
Modeling the Hydrological Regime of Litani River Basin in Lebanon for the Period 2009–2019 and Assessment of Climate Change Impacts Under RCP Scenarios
by Georgio Kallas, Salim Kattar and Guillermo Palacios-Rodríguez
Forests 2025, 16(9), 1461; https://doi.org/10.3390/f16091461 - 13 Sep 2025
Viewed by 737
Abstract
This study investigates the combined impact of climate change and land use changes on water resources and soil conditions in the Litani River Basin (LRB) in Lebanon. The Mediterranean region, including the LRB, is highly vulnerable to climate change. This study utilizes the [...] Read more.
This study investigates the combined impact of climate change and land use changes on water resources and soil conditions in the Litani River Basin (LRB) in Lebanon. The Mediterranean region, including the LRB, is highly vulnerable to climate change. This study utilizes the WiMMed (Water Integrated Management for Mediterranean Watersheds) model to assess hydrological variables such as infiltration, runoff, and soil moisture for the years 2009, 2014, and 2019. It considers 2019 climate conditions to project the 2040 scenarios for Representative Concentration Pathways (RCPs) 2.6 and 8.5, incorporating the unique characteristics of the Mediterranean watershed. Results indicate a concerning trend of declining infiltration, runoff, and soil moisture, particularly under the more severe RCP 8.5 scenario, with the most significant reductions occurring during summer. Land use changes, such as deforestation and urban expansion, are identified as key contributors to reduced infiltration and increased runoff. This study highlights the critical role of soil moisture in crop productivity and ecosystem health, showing how land cover changes and climate change intensify these effects. Soil moisture is highly sensitive to precipitation variations, with a 20% reduction in precipitation and a 5 °C temperature increase leading to substantial decreases in soil moisture. These findings highlight the urgent need for sustainable land management practices and climate mitigation strategies in the Litani River Basin (LRB) and similar Mediterranean watersheds. Protecting forests, implementing soil conservation measures, and promoting responsible urban development are crucial steps to maintain water resources and soil quality. Furthermore, this research offers valuable insights for policymakers, farmers, and environmentalists to prepare for potential droughts or flooding events, contributing to the preservation of this vital ecosystem. The data from this study, along with the recommended actions, can play a crucial role in fostering resilience at the national level, addressing the challenges posed by climate change. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

12 pages, 3945 KB  
Article
Land-Use Impacts on Soil Nutrients, Particle Composition, and Ecological Functions in the Green Heart of the Chang-Zhu-Tan Urban Agglomeration, China
by Qi Zhong, Zhao Shi, Cong Lin, Hao Zou, Pan Zhang, Ming Cheng, Tianyong Wan, Wei and Cong Zhang
Atmosphere 2025, 16(9), 1063; https://doi.org/10.3390/atmos16091063 - 10 Sep 2025
Viewed by 585
Abstract
Urban green hearts provide essential ecosystem services, including carbon sequestration, water purification, and hydrological regulation. The Green Heart Area of the Chang-Zhu-Tan Urban Agglomeration in Hunan Province, China, is the largest globally, and plays a critical role in regional water management. These functions [...] Read more.
Urban green hearts provide essential ecosystem services, including carbon sequestration, water purification, and hydrological regulation. The Green Heart Area of the Chang-Zhu-Tan Urban Agglomeration in Hunan Province, China, is the largest globally, and plays a critical role in regional water management. These functions are increasingly threatened by intensive land-use, while soil, as the foundational ecosystem component, mediates water retention, nutrient cycling, and erosion resistance. This study examined the effects of four land-use types—cropland, plantation, arbor woodland, and other woodland—on soil particle composition and key nutrients (organic carbon, total nitrogen, and total phosphorus). Statistical comparisons among land-use types were performed. Results indicated that silt was the dominant soil fraction across all land-uses (64–72%). Arbor woodland exhibited significantly higher sand content (29%) compared to cropland (19%; p < 0.05), suggesting improved water permeability and erosion resistance. Cropland showed elevated nutrient levels, with TN (1450.32 mg·kg−1) and TP (718.86 mg·kg−1) exceeding both national averages and those in arbor woodland. Coupled with acidic soil conditions (pH 5.23) and lower stoichiometric ratios (C/N: 10.82; C/P: 35.67; N/P: 3.29), these traits indicate an increased risk of nutrient leaching in croplands. In contrast, arbor woodland displayed more balanced C:N:P ratios (C/N: 12.21; C/P: 48.05; N/P: 3.84), supporting greater nutrient retention and aggregate stability. These findings underscore the significant influence of land-use type on soil ecological functions, including water infiltration, runoff reduction, and climate adaptability. The study highlights the importance of adopting conservation-oriented practices such as reduced tillage and targeted phosphorus management in croplands, alongside reforestation with native species, to improve soil structure and promote long-term ecological sustainability. Full article
Show Figures

Figure 1

Back to TopTop