Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = rotor blade geometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6646 KB  
Article
Optimal Design of Horizontal-Axis Tidal Turbine Rotor Based on the Orthogonal Test Method
by Xiaojun Zhang, Yan Liu, Cui Wang, Wankun Wang and Honggang Fan
Energies 2026, 19(3), 613; https://doi.org/10.3390/en19030613 (registering DOI) - 24 Jan 2026
Viewed by 105
Abstract
The horizontal-axis tidal turbine is a representative device for harnessing ocean tidal energy, and the structural optimization of its blades is crucial for enhancing the power capture efficiency. In this work, the twist and chord distributions of the blade are determined using an [...] Read more.
The horizontal-axis tidal turbine is a representative device for harnessing ocean tidal energy, and the structural optimization of its blades is crucial for enhancing the power capture efficiency. In this work, the twist and chord distributions of the blade are determined using an improved Blade Element Momentum (BEM) approach, in which tip and hub loss factors are employed to enhance the modeling accuracy, and these results are employed to construct a parametric model of the original rotor. Due to its simplified assumptions and inability to capture three-dimensional flow effects, computational fluid dynamics (CFD) simulations were carried out to evaluate the hydrodynamic performance and flow analysis of the designed rotor. Further, the orthogonal test method was used to optimize the hydraulic performance of the rotor. Three optimization parameters, namely hub diameter, airfoil type, and maximum airfoil thickness, were set with three levels. Based on the orthogonal design scheme, nine rotor configurations were generated, and their energy capture characteristics and flow fields were subsequently evaluated through numerical simulations. The analysis indicates that the choice of airfoil exerts the strongest impact on the rotor’s energy capture efficiency, while the influences of maximum airfoil thickness and hub diameter follow in descending order. Consequently, the optimized rotor adopts a NACA63-415 airfoil with a reduced maximum thickness of 0.9 T0 and an intermediate hub diameter of 15%R, achieving a power coefficient of 0.445 at the design tip-speed ratio of 4, corresponding to a 3.08% improvement compared with the original design. Flow field analysis demonstrates that the optimized geometry promotes a more uniform spanwise pressure distribution and effectively suppresses flow separation, thereby enhancing the overall hydrodynamic efficiency. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

22 pages, 5391 KB  
Article
Rotor–Stator Configuration in Gas-Inducing Reactors: Effects of Blade Number and Thickness on Gas Holdup
by Ehsan Zamani Abyaneh, Farhad Ein-Mozaffari and Ali Lohi
Processes 2026, 14(2), 354; https://doi.org/10.3390/pr14020354 - 19 Jan 2026
Viewed by 151
Abstract
Gas-inducing reactors (GIRs) are widely used in applications where external gas recycling is unsafe or operationally restricted, yet quantitative design guidelines for impeller–stator geometry remain scarce, despite its strong influence on gas dispersion and retention. This study investigates the effects of stator blade [...] Read more.
Gas-inducing reactors (GIRs) are widely used in applications where external gas recycling is unsafe or operationally restricted, yet quantitative design guidelines for impeller–stator geometry remain scarce, despite its strong influence on gas dispersion and retention. This study investigates the effects of stator blade number and blade thickness on gas holdup in a double-impeller GIR using a three-dimensional Euler–Euler CFD framework. Stator configurations with 12–48 blades and blade thicknesses of 1.5–45 mm were examined and validated against experimental data, with gas holdup predictions agreeing within 5–10%. The results show that the stator open-area fraction (ϕA) is the dominant geometric parameter governing the balance between radial dispersion and axial confinement. High-ϕA stators (fewer, thinner blades) enhance bulk recirculation and bubble residence time, increasing gas holdup by up to ~20% relative to dense stator designs, whereas low-ϕA stators suppress macro-circulation, promote axial gas transport, and reduce holdup despite higher local dissipation near the rotor–stator gap. A modified gas-holdup correlation incorporating ϕA is proposed, yielding strong agreement with CFD and experimental data (R2 = 0.96). Torque analysis further reveals competing effects between impeller gassing, which lowers hydraulic loading, and increased flow resistance at low ϕA, which elevates torque. Overall, the results provide quantitative guidance on how stator blade number and thickness influence gas holdup, enabling informed stator design and optimization in GIRs to improve gas dispersion through rational geometric selection rather than trial and error approaches. Full article
(This article belongs to the Special Issue Modeling and Optimization for Multi-scale Integration)
Show Figures

Figure 1

21 pages, 12257 KB  
Article
The Characterization of the Installation Effects on the Flow and Sound Field of Automotive Cooling Modules
by Tayyab Akhtar, Safouane Tebib, Stéphane Moreau and Manuel Henner
Int. J. Turbomach. Propuls. Power 2026, 11(1), 1; https://doi.org/10.3390/ijtpp11010001 - 19 Dec 2025
Viewed by 262
Abstract
This study investigates the aerodynamic and aeroacoustics behavior of automotive cooling modules in both conventional internal combustion engine (ICE) vehicles and electric vehicles (EVs), with a particular focus on installation effects. Numerical simulations based on the Lattice Boltzmann Method (LBM) are conducted to [...] Read more.
This study investigates the aerodynamic and aeroacoustics behavior of automotive cooling modules in both conventional internal combustion engine (ICE) vehicles and electric vehicles (EVs), with a particular focus on installation effects. Numerical simulations based on the Lattice Boltzmann Method (LBM) are conducted to analyze noise generation mechanisms and flow characteristics across four configurations. The study highlights the challenges of adapting classical cooling module components to EV setups, emphasizing the influence of heat exchanger (HE) placement and duct geometry on noise levels and flow dynamics. The results show that the presence of the HE smooths the upstream flow, improves rotor loading distribution and disrupts long, coherent vortical structures, thereby reducing tonal noise. However, the additional resistance introduced by the HE leads to increased rotor loading and enhanced leakage flow through the shroud-rotor gap. Despite these effects, the overall sound pressure level (OASPL) remains largely unchanged, maintaining a similar magnitude and dipolar directivity pattern as the configuration without the HE. In EV modules, the inclusion of ducts introduces significant flow disturbances and localized pressure fluctuations, leading to regions of high flow rate and rotor loading. These non-uniform flow conditions excite duct modes, resulting in troughs and humps in the acoustic spectrum and potentially causing resonance at the blade-passing frequency, which increases the amplitude in the lower frequency range. Analysis of the loading force components reveals that rotor loading is primarily driven by thrust forces, while duct loading is dominated by lateral forces. Across all configurations, fluctuations at the leading and trailing edges of the rotor are observed, originating from the blade tip and extending to approximately mid-span. These fluctuations are more pronounced in the EV module, identifying it as the dominant source of pressure disturbances. The numerical results are validated against experimental data obtained in the anechoic chamber at the University of Sherbrooke and show good agreement. The relative trends are accurately predicted at lower frequencies, with slight over-prediction, and closely match the experimental data at mid-frequencies. Full article
(This article belongs to the Special Issue Advances in Industrial Fan Technologies)
Show Figures

Figure 1

31 pages, 8254 KB  
Article
A Coandă-Surface-Assisted Ejector as a Turbine Tip Leakage Mitigator
by Gohar T. Khokhar and Cengiz Camci
Int. J. Turbomach. Propuls. Power 2025, 10(4), 51; https://doi.org/10.3390/ijtpp10040051 - 5 Dec 2025
Viewed by 449
Abstract
This paper presents an experimental and computational investigation of novel, ejector-based, Coandă-surface-assisted tip leakage mitigation schemes. The predicted changes in the key performance metrics are presented after explaining the aerodynamic concept development for the novel tip geometries. The performance metrics are the stage [...] Read more.
This paper presents an experimental and computational investigation of novel, ejector-based, Coandă-surface-assisted tip leakage mitigation schemes. The predicted changes in the key performance metrics are presented after explaining the aerodynamic concept development for the novel tip geometries. The performance metrics are the stage total-to-total isentropic efficiency, tip-gap mass flow rate, and a figure of merit based on rotor exit total pressure. The schemes are based on direct geometric modifications to the turbine blade tip, effectively promoting an effective redirection of tip leakage fluid via specific channels. The proposed ejector channels operate in conjunction with strategically located Coandă surfaces to alter the path of the leakage fluid, promoting an effective leakage fluid delivery into the blade’s wake. Multiple schemes are assessed, including single-ejector, single-ejector with “hybrid” squealer, double-channeled, and triple-channeled designs. The designs are evaluated computationally for the HP stage of the Axial Flow Turbine Research Facility AFTRF at Penn State University. Extensive experimental validation of the baseline flow computations for the HP stage is also presented. Upper-bound efficiency gains of 0.49% and mass flow reductions of 14.80% compared to an untreated flat tip for the large-scale turbine test rig AFTRF are reported. Evaluation of the current tip designs in a high-speed turbine cascade environment with a transonic exit flow has also been completed. The detailed results from the high-speed investigation and heat transfer impact are in the process of being published. Implementation in the high-speed environment of the same design concepts also returned non-negligible performance gains. Full article
Show Figures

Figure 1

29 pages, 3175 KB  
Review
A Comparative Review of Vertical Axis Wind Turbine Designs: Savonius Rotor vs. Darrieus Rotor
by Alina Fazylova, Kuanysh Alipbayev, Alisher Aden, Fariza Oraz, Teodor Iliev and Ivaylo Stoyanov
Inventions 2025, 10(6), 95; https://doi.org/10.3390/inventions10060095 - 27 Oct 2025
Cited by 2 | Viewed by 2976
Abstract
This paper reviews and analyzes three types of vertical-axis wind rotors: the classic Savonius, spiral Savonius, and Darrieus designs. Using numerical modeling methods, including computational fluid dynamics (CFD), their aerodynamic characteristics, power output, and efficiency under different operating conditions are examined. Key parameters [...] Read more.
This paper reviews and analyzes three types of vertical-axis wind rotors: the classic Savonius, spiral Savonius, and Darrieus designs. Using numerical modeling methods, including computational fluid dynamics (CFD), their aerodynamic characteristics, power output, and efficiency under different operating conditions are examined. Key parameters such as lift, drag, torque, and power coefficient are compared to identify the strengths and weaknesses of each rotor. Results highlight that the Darrieus rotor demonstrates the highest efficiency at higher wind speeds due to lift-based operation, while the spiral Savonius offers improved stability, smoother torque characteristics, and adaptability in turbulent or low-wind environments. The classic Savonius, though less efficient, remains simple, cost-effective, and suitable for small-scale urban applications where reliability is prioritized over high performance. In addition, the study outlines the importance of blade geometry, tip speed ratio, and advanced materials in enhancing rotor durability and efficiency. The integration of modern optimization approaches, such as CFD-based design improvements and machine learning techniques, is emphasized as a promising pathway for developing more reliable and sustainable vertical-axis wind turbines. Although the primary analysis relies on numerical simulations, the observed performance trends are consistent with findings reported in experimental studies, indicating that the results are practically meaningful for design screening, technology selection, and siting decisions. Unlike prior studies that analyze Savonius and Darrieus rotors in isolation or under heterogeneous setups, this work (i) establishes a harmonized, fully specified CFD configuration (common domain, BCs, turbulence/near-wall treatment, time-stepping) enabling like-for-like comparison; (ii) couples the transient aerodynamic loads p(θ,t) into a dynamic FEA + fatigue pipeline (rainflow + Miner with mean-stress correction), going beyond static loading proxies; (iii) quantifies a prototype-stage materials choice rationale (aluminum) with a validated migration path to orthotropic composites; and (iv) reports reproducible wake/torque metrics that are cross-checked against mature models (DMST/actuator-cylinder), providing design-ready envelopes for small/medium VAWTs. Overall, the work provides recommendations for selecting rotor types under different wind conditions and operational scenarios to maximize energy conversion performance and long-term reliability. Full article
Show Figures

Figure 1

23 pages, 5345 KB  
Article
Vibration Analysis of Aviation Electric Propulsion Test Stand with Active Main Rotor
by Rafał Kliza, Mirosław Wendeker, Paweł Drozd and Ksenia Siadkowska
Sensors 2025, 25(21), 6547; https://doi.org/10.3390/s25216547 - 24 Oct 2025
Viewed by 718
Abstract
This paper focuses on the vibration analysis of a prototype helicopter rotor test stand, with particular attention to the dynamic response of its electric propulsion system. The stand is driven by an induction motor and equipped with composite rotor blades of various geometries, [...] Read more.
This paper focuses on the vibration analysis of a prototype helicopter rotor test stand, with particular attention to the dynamic response of its electric propulsion system. The stand is driven by an induction motor and equipped with composite rotor blades of various geometries, including blades with shape memory alloy (SMA)-based torsion actuators for angle of attack (AoA) adjustment. These variable geometries significantly influence the system’s dynamic behavior, where resonance phenomena may pose risks to structural integrity. The objective was to investigate how selected operational parameters specifically motor speed and AoA affect the vibration response of the propulsion system. Structural vibrations were measured using a tri-axial piezoelectric accelerometer system integrated with calibrated signal conditioning and high-resolution data acquisition modules. This setup enabled precise, time-synchronized recording of dynamic responses along all three axes. Fast Fourier Transform (FFT) and Power Spectral Density (PSD) methods were applied to identify dominant frequency components, including those associated with rotor harmonics and SMA activation. The highest vibration amplitudes were observed at an AoA of 16°, but all results remained within the vibration limits defined by MIL-STD-810H for rotorcraft drive systems. The study confirms the importance of sensor-based diagnostics in evaluating electromechanical propulsion systems operating under dynamic loading conditions. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

15 pages, 3841 KB  
Article
Performance Optimization of Vertical Axis Wind Turbines Through Passive Flow Control and Material Selection: A Dynamic Mesh Study
by Ioana-Octavia Bucur, Daniel-Eugeniu Crunțeanu and Mădălin-Constantin Dombrovschi
Appl. Sci. 2025, 15(20), 11251; https://doi.org/10.3390/app152011251 - 21 Oct 2025
Viewed by 763
Abstract
Vertical axis wind turbines (VAWTs) have significant potential for renewable energy generation, yet their operational efficiency is often limited by reduced aerodynamic performance and difficulties during start-up. This study investigates the effect of passive flow control and material selection on the performance of [...] Read more.
Vertical axis wind turbines (VAWTs) have significant potential for renewable energy generation, yet their operational efficiency is often limited by reduced aerodynamic performance and difficulties during start-up. This study investigates the effect of passive flow control and material selection on the performance of H-Darrieus VAWT blades, with the aim of identifying design solutions that enhance start-up dynamics and overall efficiency. Two-dimensional numerical simulations were conducted using the Dynamic Mesh method with six degrees of freedom (6DOF) in ANSYS 19.2 Fluent, enabling a time-resolved assessment of rotor behavior under constant wind velocities. Two blade configurations were analyzed: a baseline NACA0012 geometry and a modified profile with inclined cavities on the extrados. In addition, the influence of blade material was examined by comparing 3D-printed resin blades with lighter 3D-printed polycarbonate blades. The results demonstrate that cavity-modified blades provide superior performance compared to the baseline, showing faster acceleration, higher tip speed ratios, and improved power coefficients, particularly at higher wind velocities. Furthermore, polycarbonate blades achieved more efficient energy conversion than resin blades, highlighting the importance of material properties in turbine optimization. These findings confirm that combining passive flow control strategies with advanced lightweight materials can significantly improve the aerodynamic and dynamic performance of VAWTs, offering valuable insights for future experimental validation and prototype development. Full article
Show Figures

Figure 1

21 pages, 3933 KB  
Article
Mechanical Design and Experimental Study of a Small-Scale Wind Turbine Model
by Eduardo Muñoz-Palomeque, Segundo Esteban and Matilde Santos
Machines 2025, 13(10), 929; https://doi.org/10.3390/machines13100929 - 8 Oct 2025
Viewed by 2042
Abstract
The advancement of onshore and offshore wind turbines depends on the experimental validation of new technologies, novel component designs, and innovative concepts. However, full-scale models are typically very expensive, have limited functionality, and are difficult to adapt to diverse research needs. To address [...] Read more.
The advancement of onshore and offshore wind turbines depends on the experimental validation of new technologies, novel component designs, and innovative concepts. However, full-scale models are typically very expensive, have limited functionality, and are difficult to adapt to diverse research needs. To address this shortcoming, this article presents the design of a low-cost, modular 3D-printed small prototype of a wind turbine. It includes a multi-hollow platform for marine environments configuration and stabilization, the turbine tower, and three blades with active pitch control, not always included in wind turbine prototypes. The modular tower design allows for easy height extensions, while the rotor incorporates custom blades optimized for the prototype geometry and experimental setup. Tests were conducted to evaluate the system’s operational response and verify the proper functioning of the assembled components at various wind speeds and blade pitch angles. The results confirm that the rotor speed with the prototype’s onshore configuration is highly pitch-dependent, reaching a maximum efficiency of approximately 5°. The tower displacement, measured with an IMU, remained within a narrow range, oscillating around 2° and reaching up to 4° at higher wind speeds due to elastic deflections of the PLA structure. These results, consistent with the prototype scale, validate its usefulness in capturing essential aerodynamic and structural behaviors of the wind turbine. They also demonstrate its relevance as a new tool for experimental studies of wind turbines and open up new research, validation, and control possibilities not considered in previous developments by incorporating blade pitch control. Full article
Show Figures

Figure 1

18 pages, 4872 KB  
Article
Impact of Variability in Blade Manufacturing on Transonic Compressor Rotor Performance
by Qing Yang, Jun Chen, Wenbo Shao and Ruijie Zhao
J. Mar. Sci. Eng. 2025, 13(10), 1907; https://doi.org/10.3390/jmse13101907 - 3 Oct 2025
Viewed by 515
Abstract
As a core component of large marine engines, the compressor delivers robust and efficient power for propulsion. This study focuses on assessing and quantifying the uncertainty in the aerodynamic performance of a transonic rotor under various operating conditions, with the aim of investigating [...] Read more.
As a core component of large marine engines, the compressor delivers robust and efficient power for propulsion. This study focuses on assessing and quantifying the uncertainty in the aerodynamic performance of a transonic rotor under various operating conditions, with the aim of investigating the impact of blade manufacturing variability on performance. Monte Carlo simulation (MCS) and sensitivity analysis were initially employed to identify parameters that significantly influence airfoil performance. Subsequently, a non-intrusive polynomial chaos (NIPC) uncertainty quantification model was developed to compare the effects of tip clearance deviation and surface geometry deviation on rotor performance. The study then analyzes how the geometric deviation at the different spanwise sections affects aerodynamic performance. The results reveal that geometric deviations have a more profound influence on aerodynamic performance than blade tip clearance. The impact of geometric deviations on average pressure ratio and efficiency of the transonic compressor rotor intensifies as the air mass flow rate approaches the near-stall point, while it decreases near the choking point. Interestingly, fluctuations in pressure ratio exhibit the opposite trend. Regarding spatial distribution, deviations in the upper half of the blade span (near the tip) exert a more dramatic influence on mass flow rate and pressure ratio fluctuation. A conceivable reason is that the inlet airflow velocity increases along the radial direction of the blade, and manufacturing variations in the same magnitude produce more notable relative geometric deviations in the upper half of the blade span. Centered on the machining tolerance guidelines for transonic compressor rotors, this work recommends stricter profile tolerance requirements for the upper half of the blade span. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

33 pages, 11560 KB  
Article
Design and Kinematic Analysis of a Metamorphic Mechanism-Based Robot for Climbing Wind Turbine Blades
by Xiaohua Shi, Cuicui Yang, Mingyang Shao and Hao Lu
Machines 2025, 13(9), 808; https://doi.org/10.3390/machines13090808 - 3 Sep 2025
Cited by 1 | Viewed by 929
Abstract
Wind turbine blades feature complex geometries and operate under harsh conditions, including high curvature gradients, nonlinear deformations, elevated humidity, and particulate contamination. This study presents the design and kinematic analysis of a novel climbing robot based on a 10R folding metamorphic mechanism. The [...] Read more.
Wind turbine blades feature complex geometries and operate under harsh conditions, including high curvature gradients, nonlinear deformations, elevated humidity, and particulate contamination. This study presents the design and kinematic analysis of a novel climbing robot based on a 10R folding metamorphic mechanism. The robot employs a hybrid wheel-leg drive and adaptively reconfigures between rectangular and hexagonal topologies to ensure precise adhesion and efficient locomotion along blade leading edges and windward surfaces. A high-order kinematic model, derived from a modified Grubler–Kutzbach criterion augmented by rotor theory, captures the mechanism’s intricate motion characteristics. We analyze the degrees of freedom (DOF) and motion branch transitions for three representative singular configurations, elucidating their evolution and constraint conditions. A scaled-down prototype, integrating servo actuators, vacuum adhesion, and multi-modal sensing on an MDOF control platform, was fabricated and tested. Experimental results demonstrate a configuration switching time of 6.3 s, a single joint response time of 0.4 s, and a maximum crawling speed of 125 mm/s, thereby validating stable adhesion and surface tracking performance. This work provides both theoretical insights and practical validation for the intelligent maintenance of wind turbine blades. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

18 pages, 5980 KB  
Article
Effect of Solidity on the Leakage Flow and Related Noise in Axial-Flow Fans with Rotating Shroud Operating at Fixed Performance
by Tayyab Akhtar, Edward Canepa, Andrea Cattanei, Matteo Dellacasagrande and Alessandro Nilberto
Int. J. Turbomach. Propuls. Power 2025, 10(3), 27; https://doi.org/10.3390/ijtpp10030027 - 2 Sep 2025
Viewed by 989
Abstract
This work presents an experimental study of the effect of blade count on the flow field and the radiated noise in a low-speed axial fan with a rotating shroud. A two-component Laser Doppler Velocimetry (LDV) system and Particle Image Velocimetry (PIV) instrumentation have [...] Read more.
This work presents an experimental study of the effect of blade count on the flow field and the radiated noise in a low-speed axial fan with a rotating shroud. A two-component Laser Doppler Velocimetry (LDV) system and Particle Image Velocimetry (PIV) instrumentation have been employed to investigate the flow in the gap region and in front of the rotor blades. Additionally, the fan has been installed in a hemi-anechoic chamber and far-field acoustic measurements have been taken with a microphone mounted on-axis upstream of the rotor to show changes in the spectral features of the radiated noise. The tested rotor is a variable-geometry one that has allowed for studying rotor configurations with different numbers of blades of the same chord and shape, i.e., of the same geometry but different solidity. Rotor pressure rise and flow rate are average quantities that have a relevant effect on the leakage flow. Keeping them fixed while varying solidity allows us to highlight the local effects of circumferential pressure non-uniformity caused by differing blade loading. The results show that, at low solidity, the flow leaving the gap is mainly directed radially outward and follows a longer path before being ingested by the rotor, thus losing strength due to mixing with the main flow. As solidity increases, the flow becomes less radial and is more rapidly ingested by the rotor. In all cases, the sound pressure level spectrum shows marked subharmonic humps and peaks originating from the interaction between the leakage flow and rotor. The departure of such peaks from the blade passing frequency increases with the solidity, while the associated energy increases up to seven blades and then decreases. Full article
Show Figures

Graphical abstract

24 pages, 1729 KB  
Article
Performance Optimization of Shrouded Rotors: Fixed vs. Variable Pitch in Hover and Forward Flight
by Abdallah Dayhoum, Alejandro Ramirez-Serrano and Robert J. Martinuzzi
Appl. Sci. 2025, 15(17), 9594; https://doi.org/10.3390/app15179594 - 31 Aug 2025
Viewed by 975
Abstract
This paper presents a comprehensive study on the aerodynamic design, analytical modeling, and computational validation of shrouded rotor systems, encompassing both fixed-pitch and variable-pitch configurations in hover and forward flight. An analytical framework based on Blade Element Momentum Theory is developed and validated [...] Read more.
This paper presents a comprehensive study on the aerodynamic design, analytical modeling, and computational validation of shrouded rotor systems, encompassing both fixed-pitch and variable-pitch configurations in hover and forward flight. An analytical framework based on Blade Element Momentum Theory is developed and validated against Computational Fluid Dynamics simulations employing the Multiple Reference Frame method in ANSYS Fluent. A 16-inch shroud is designed through a four-step procedure considering tip clearance, the diffuser expansion ratio, and the inlet lip radius, and multiple rotor configurations are optimized using genetic algorithms. The results show strong agreement between analytical predictions and Computational Fluid Dynamics, with thrust predictions across operating conditions. In hover, variable-pitch rotors achieve comparable thrust–power performance to fixed-pitch rotors, despite requiring only a single optimized geometry; performance variations are achieved through pitch adjustment. In forward flight, variable-pitch rotors maintain high efficiency over a broader range of advance ratios, whereas fixed-pitch rotors exhibit peak efficiency only at a specific design point. These findings highlight the superior adaptability of variable-pitch rotors for missions requiring efficient operation across both hover and forward flight and demonstrate the reliability of the proposed analytical model as a rapid design tool. Full article
(This article belongs to the Special Issue Multidisciplinary Collaborative Design of Aircraft)
Show Figures

Figure 1

22 pages, 17668 KB  
Article
Enhancing the Aerodynamic Performance of Airfoils Using DBD Plasma Actuators: An Experimental Approach
by Eder Ricoy-Zárate, Horacio Martínez, Erik Rosado-Tamariz, Andrés Blanco-Ortega and Rafael Campos-Amezcua
Processes 2025, 13(9), 2725; https://doi.org/10.3390/pr13092725 - 26 Aug 2025
Viewed by 2169
Abstract
This research presents an experimental analysis of the influence of atmospheric pressure plasma on the performance of a micro horizontal-axis wind turbine blade. The investigation was conducted using an NACA 4412 airfoil equipped with a dielectric barrier discharge (DBD) plasma actuator. The electrodes [...] Read more.
This research presents an experimental analysis of the influence of atmospheric pressure plasma on the performance of a micro horizontal-axis wind turbine blade. The investigation was conducted using an NACA 4412 airfoil equipped with a dielectric barrier discharge (DBD) plasma actuator. The electrodes were configured asymmetrically, with a 2 mm gap and copper electrodes that are 0.20 mm in thickness. A high voltage of 6 kV was applied, resulting in a current of 0.071 mA and a power output of 0.426 W. Optical emission spectroscopy identified the excited components through the interaction of the high-voltage AC electric field with air molecules: N2, N2+, O2+, and O. The electrohydrodynamic force mainly results from the observed charged ions that, when accelerated by the electric field, transfer momentum to neutral molecules via collisions, leading to the formation of the observed jet plasma. The findings indicated a notable enhancement in aerodynamic performance attributable to the electrohydrodynamic (EHD) flow generated by the plasma. The estimated electrohydrodynamic force (8.712×104 N) is capable of maintaining the flow attached to the airfoil surface, thereby augmenting flow circulation and, consequently, enhancing the lift force. According to blade element theory, the lift and drag coefficients directly influence the torque and mechanical power generated by the wind turbine rotor. Schlieren imaging was utilized to observe alterations in air density and flow patterns. Lissajous curve analysis was used to examine the electrical discharge behavior, showing that only 7.04% of the input power was converted into heat. This indicates that nearly all input electric energy was transformed into EHD force by the atmospheric pressure plasma. Compared to traditional aerodynamic control methods, DBD actuators are a feasible alternative for small wind turbines due to their lightweight design, absence of moving parts, ability to be surface-embedded without altering blade geometry, and capacity to generate active, dynamic flow control with reduced energy consumption. Full article
(This article belongs to the Special Issue Modeling and Optimization for Multi-scale Integration)
Show Figures

Figure 1

35 pages, 11851 KB  
Article
Numerical Investigation of Concave-to-Convex Blade Profile Transformation in Vertical Axis Wind Turbines for Enhanced Performance Under Low Reynolds Number Conditions
by Venkatesh Subramanian, Venkatesan Sorakka Ponnappa, Madhan Kumar Gurusamy and Kadhavoor R. Karthikeyan
Fluids 2025, 10(9), 221; https://doi.org/10.3390/fluids10090221 - 25 Aug 2025
Cited by 1 | Viewed by 1446
Abstract
Vertical axis wind turbines (VAWTs) are increasingly utilized for decentralized power generation in urban and low-wind settings because of their omnidirectional wind capture and compact form. This study numerically investigates the aerodynamic performance of Darrieus-type VAWT blades as their curvature varies systematically from [...] Read more.
Vertical axis wind turbines (VAWTs) are increasingly utilized for decentralized power generation in urban and low-wind settings because of their omnidirectional wind capture and compact form. This study numerically investigates the aerodynamic performance of Darrieus-type VAWT blades as their curvature varies systematically from deeply convex (−50 mm) to strongly concave (+50 mm) across seven configurations. Using steady-state computational fluid dynamics (CFD) with the frozen rotor method, simulations were conducted over a low Reynolds number range of 25 to 300, representative of small-scale and rooftop wind scenarios. The results indicate that deeply convex blades achieve the highest lift-to-drag ratio (Cl/Cd), peaking at 1.65 at Re = 25 and decreasing to 0.76 at Re = 300, whereas strongly concave blades show lower and more stable values ranging from 0.95 to 0.86. The power coefficient (Cp) and torque coefficient (Ct) similarly favor convex shapes, with Cp starting at 0.040 and remaining above 0.030, and Ct sustaining a robust 0.067 at low Re. Convex blades also maintain higher tip speed ratios (TSR), exceeding 1.30 at Re = 300. Velocity and pressure analyses reveal that convex profiles promote stable laminar flows and compact wakes, whereas concave geometries experience early flow separation and fluctuating torque. These findings demonstrate that optimizing the blade curvature toward convexity enhances the start-up, torque stability, and power output, providing essential design guidance for urban VAWTs operating under low Reynolds number conditions. Full article
Show Figures

Figure 1

23 pages, 10266 KB  
Article
Application of Passive Serration Technologies for Aero-Engine Noise Control in Turbulent Inflow Environments
by Andrei-George Totu, Daniel-Eugeniu Crunțeanu, Marius Deaconu, Grigore Cican, Laurențiu Cristea and Constantin Levențiu
Technologies 2025, 13(8), 363; https://doi.org/10.3390/technologies13080363 - 15 Aug 2025
Viewed by 877
Abstract
This study explores the aeroacoustic influence of leading-edge serrations applied to stator blades subjected to turbulent inflow, which is representative of rotor–stator interaction in turbomachinery. A set of serrated geometries—75 mm span, with up to 9 teeth corresponding to 10% chord amplitude—was fabricated [...] Read more.
This study explores the aeroacoustic influence of leading-edge serrations applied to stator blades subjected to turbulent inflow, which is representative of rotor–stator interaction in turbomachinery. A set of serrated geometries—75 mm span, with up to 9 teeth corresponding to 10% chord amplitude—was fabricated via 3D printing and tested experimentally in a dedicated aeroacoustic facility at COMOTI. The turbulent inflow was generated using a passive grid, and far-field acoustic data were acquired using a semicircular microphone array placed in multiple inclined planes covering 15°–90° elevation and 0–180° azimuthal angles. The analysis combined power spectral density and autocorrelation techniques to extract turbulence-related quantities, such as integral length scale and velocity fluctuations. Beamforming methods were applied to reconstruct spatial distributions of sound pressure level (SPL), complemented by polar directivity curves to assess angular effects. Compared to the reference case, configurations with serrations demonstrated broadband noise reductions between 2 and 6 dB in the mid- and high-frequency range (1–4 kHz), with spatial consistency observed across measurement planes. The results extend the existing literature by linking turbulence properties to spatially resolved acoustic maps, offering new insights into the directional effects of serrated stator blades. Full article
(This article belongs to the Special Issue Aviation Science and Technology Applications)
Show Figures

Figure 1

Back to TopTop