Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (23,211)

Search Parameters:
Keywords = rotations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 18283 KB  
Article
Aerodynamic Effects of the Oblique Angle and the Asymmetric Leading-Edge Sweep on an Oblique-Wing Aircraft
by Zhuo Liu, Huajun Sun, Heng Zhang, Jie Li and Weijia Fu
Aerospace 2026, 13(1), 91; https://doi.org/10.3390/aerospace13010091 (registering DOI) - 15 Jan 2026
Abstract
Compared with conventional symmetric aircraft, the oblique-wing aircraft offers significant advantages across a wide speed range due to the variable oblique angle. However, the asymmetric aerodynamic characteristics will arise from the differential leading-edge sweep between the forward and aft wings during the rotation [...] Read more.
Compared with conventional symmetric aircraft, the oblique-wing aircraft offers significant advantages across a wide speed range due to the variable oblique angle. However, the asymmetric aerodynamic characteristics will arise from the differential leading-edge sweep between the forward and aft wings during the rotation process. This study investigates the aerodynamic effects of a conceptual oblique-wing configuration at transonic (Mach 0.85) and supersonic (Mach 1.40) flight conditions. For the baseline design, peak lift-to-drag ratio occurs at oblique angles of 30° and 60°, respectively. Analysis at Mach 0.85 reveals that the forward wing dominates the aerodynamic performance of the whole configuration. The parameter study of the leading-edge sweep confirms that the configuration combining a smaller forward-wing sweep with a larger aft-wing sweep is an effective design for achieving the balanced aerodynamic performance, namely, the forward wing with a 24° leading-edge sweepback angle and the after wing with 33° yield a high lift-to-drag ratio, achieving an optimal trade-off with rolling moment minimization. This drag reduction is achieved through the simultaneous decrease in both wave drag and induced drag. Furthermore, downwash analysis reveals that the inherent rolling moment originates from asymmetric tail loads induced by uneven downwash distribution. These findings provide guidance for the aerodynamic design of future oblique-wing aircraft. Full article
(This article belongs to the Special Issue Aircraft Conceptual Design: Tools, Processes and Examples)
Show Figures

Figure 1

22 pages, 17055 KB  
Article
Effects of Wheel-Ground Conditions on Racing Car Aerodynamics Under Ride-Height-Related Attitude Variations
by Xiaojing Ma, Jie Li, Kun Zhang, Yi Zou and Matteo Massaro
Appl. Sci. 2026, 16(2), 874; https://doi.org/10.3390/app16020874 - 14 Jan 2026
Abstract
In racing cars, a low ride height is crucial for inverted wings and ground-effect systems to function effectively, significantly enhancing aerodynamic performance but also increasing sensitivity to pitch and roll variations. However, the specific impact of wheel-ground conditions on racing cars under ride-height-related [...] Read more.
In racing cars, a low ride height is crucial for inverted wings and ground-effect systems to function effectively, significantly enhancing aerodynamic performance but also increasing sensitivity to pitch and roll variations. However, the specific impact of wheel-ground conditions on racing cars under ride-height-related attitude variations has not received attention. This study employed numerical simulations (compared with wind tunnel test data) to investigate these effects on racecar aerodynamic characteristics, analyzing three specific wheel-ground combinations: moving ground with rotating wheels (MR), moving ground with stationary wheels (MS), and stationary ground with stationary wheels (SS). A systematic analysis was conducted on aerodynamic changes associated with wheel-plane total pressure coefficient differences, upper-lower surface pressure coefficient variations, and front-rear axle aerodynamic force distributions, elucidating individual component contributions to overall performance changes induced by wheel-ground alterations. Results indicate that wheel conditions, especially rear wheels and their localized interactions with the diffuser-equipped body predominantly influence drag. In contrast, ground conditions primarily affect the body and front wing to alter downforce, with induced drag variations further amplifying total drag differences. Moreover, ground conditions’ impact on the front wing is modulated by vehicle attitude, resulting in either increased or decreased front wing downforce and thus altering aerodynamic balance. These insights highlight that ride-height related attitudes are critical variables when evaluating combined wheel-ground effects, and while wheel rotation is significant, the aerodynamic force and balance changes induced by ground conditions (as modulated by attitude) warrant greater attention. This understanding provides valuable guidance for racecar aerodynamic design. Full article
(This article belongs to the Section Fluid Science and Technology)
17 pages, 3946 KB  
Article
Design and Wind-Induced Fatigue Analysis of a Dynamic Movable Sculpture in Coastal Environments: A Case Study of the Welcome Tower
by Leming Gu, Haixia Liu, Mingzhuo Rui, Laizhu Jiang, Jie Chen, Dagen Dong, Hai Wang and Jianguo Cai
Buildings 2026, 16(2), 350; https://doi.org/10.3390/buildings16020350 - 14 Jan 2026
Abstract
This study focuses on the design, material selection, and wind-induced fatigue analysis of a dynamic movable sculpture atop the Welcome Tower at Yazhou Bay Bougainvillea Park in Sanya. The sculpture, consisting of eight movable leaves, is driven by a hydraulic system enabling it [...] Read more.
This study focuses on the design, material selection, and wind-induced fatigue analysis of a dynamic movable sculpture atop the Welcome Tower at Yazhou Bay Bougainvillea Park in Sanya. The sculpture, consisting of eight movable leaves, is driven by a hydraulic system enabling it to assume five distinct shapes. Nickel-saving stainless steel (S22152/S32001) was chosen as the primary material due to its excellent corrosion resistance and strength, ensuring durability in the harsh coastal environment. The mechanical system is designed with a two-level lifting device, rotation system, and push-rod mechanism, allowing the leaves to perform functions such as rising, opening, closing, and rotating while minimizing mechanical load. Wind tunnel tests and numerical simulations were conducted to analyze the sculpture’s performance under wind loads. Using the rain-flow counting method and Miner’s linear fatigue accumulation theory, the study calculated stress amplitude and fatigue damage, finding that the most unfavorable fatigue life of the sculpture’s components is 380 years. This analysis demonstrates that the sculpture will not experience fatigue damage over its expected lifespan, providing valuable insights for the design of dynamic sculptures in coastal environments. The research integrates mechanical design, material selection, and fatigue analysis, ensuring the sculpture’s long-term stability and resistance to wind-induced fatigue. Full article
13 pages, 474 KB  
Article
Instrumented Timed Up and Go Test as a Tool to Early Detection of Gait and Functional Mobility Impairments in Multiple Sclerosis
by Piotr Szaflik, Aleksandra Kaczmarczyk, Hanna Zadoń, Justyna Szefler-Derela, Dagmara Wasiuk-Zowada, Katarzyna Nowakowska-Lipiec, Robert Michnik and Joanna Siuda
J. Clin. Med. 2026, 15(2), 679; https://doi.org/10.3390/jcm15020679 - 14 Jan 2026
Abstract
Background/Objectives: Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system that typically affects adults aged 20–50. Its early stages can be difficult to diagnose due to the variable clinical course, although subtle impairments often appear in balance and [...] Read more.
Background/Objectives: Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system that typically affects adults aged 20–50. Its early stages can be difficult to diagnose due to the variable clinical course, although subtle impairments often appear in balance and motor control. The Timed Up and Go (TUG) test is commonly used to assess functional mobility; however, traditional evaluation based solely on total test duration may not be sensitive to early gait alterations. The use of inertial measurement units enables instrumented analysis of individual TUG subphases (iTUG). The aim of this study was determine whether iTUG parameters can help detect balance and movement difficulties indicative of early-stage MS. Methods: A total of 30 healthy people and 30 people in the early stages of MS with an expanded disability status score between 1 and 2 were included. The iTUG was performed using three Noraxon inertial sensors placed on the feet and upper spine. Results: No significant differences were observed in total iTUG duration between the MS and control groups (p = 0.888). In contrast, individuals with MS demonstrated significant differences in spatiotemporal gait parameters, trunk flexion range of motion (p = 0.003), number of steps during gait (p = 0.004), and turning velocity compared with healthy controls (p = 0.008). Conclusions: Analysis of iTUG duration is not enough to identify subtle gait and balance impairments in individuals with early-stage MS. Parameters that should be considered when performing an iTUG for the assessment of early stages of MS are spatiotemporal parameters, number of steps, and speed of rotation and subphase times. Full article
(This article belongs to the Special Issue Innovative Approaches to the Challenges of Neurodegenerative Disease)
Show Figures

Figure 1

21 pages, 99702 KB  
Article
A Multi-Modal Approach for Robust Oriented Ship Detection: Dataset and Methodology
by Jianing You, Yixuan Lv, Shengyang Li, Silei Liu, Kailun Zhang and Yuxuan Liu
Remote Sens. 2026, 18(2), 274; https://doi.org/10.3390/rs18020274 - 14 Jan 2026
Abstract
Maritime ship detection is a critical task for security and traffic management. To advance research in this area, we constructed a new high-resolution, spatially aligned optical-SAR dataset, named MOS-Ship. Building on this, we propose MOS-DETR, a novel query-based framework. This model incorporates an [...] Read more.
Maritime ship detection is a critical task for security and traffic management. To advance research in this area, we constructed a new high-resolution, spatially aligned optical-SAR dataset, named MOS-Ship. Building on this, we propose MOS-DETR, a novel query-based framework. This model incorporates an innovative multi-modal Swin Transformer backbone to extract unified feature pyramids from both RGB and SAR images. This design allows the model to jointly exploit optical textures and SAR scattering signatures for precise, oriented bounding box prediction. We also introduce an adaptive probabilistic fusion mechanism. This post-processing module dynamically integrates the detection results generated by our model from the optical and SAR inputs, synergistically combining their complementary strengths. Experiments validate that MOS-DETR achieves highly competitive accuracy and significantly outperforms unimodal baselines, demonstrating superior robustness across diverse conditions. This work provides a robust framework and methodology for advancing multimodal maritime surveillance. Full article
24 pages, 4135 KB  
Article
Design and Error Calibration of a Machine Vision-Based Laser 2D Tracking System
by Dabao Lao, Xiaojian Wang and Tianqi Chen
Sensors 2026, 26(2), 570; https://doi.org/10.3390/s26020570 - 14 Jan 2026
Abstract
A laser tracker is an essential tool in the field of precise geometric measurement. Its fundamental operating idea is a dual-axis rotating device that propels the laser beam to continuously align and measure the attitude of a collaborating target. Such systems provide numerous [...] Read more.
A laser tracker is an essential tool in the field of precise geometric measurement. Its fundamental operating idea is a dual-axis rotating device that propels the laser beam to continuously align and measure the attitude of a collaborating target. Such systems provide numerous benefits, including a broad measuring range, high precision, outstanding real-time performance, and ease of use. To solve the issue of low beam recovery efficiency in typical laser trackers, this research offers a two-dimensional laser tracking system that incorporates a machine vision module. The system uses a unique off-axis optical design in which the distance measuring and laser tracking paths are independent, decreasing the system’s dependency on optical coaxiality and mechanical processing precision. A tracking head error calibration method based on singular value decomposition (SVD) is introduced, using optical axis point cloud data obtained from experiments on various components for geometric fitting. A complete prototype system was constructed and subjected to accuracy testing. Experimental results show that the proposed system achieves a relative positioning accuracy of less than 0.2 mm (spatial root mean square error (RMSE) = 0.189 mm) at the maximum working distance of 1.5 m, providing an effective solution for the design of high-precision laser tracking systems. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

28 pages, 9199 KB  
Article
Utilising the Potential of a Robust Three-Band Hyperspectral Vegetation Index for Monitoring Plant Moisture Content in a Summer Maize-Winter Wheat Crop Rotation Farming System
by James E. Kanneh, Caixia Li, Yanchuan Ma, Shenglin Li, Madjebi Collela BE, Zuji Wang, Daokuan Zhong, Zhiguo Han, Hao Li and Jinglei Wang
Remote Sens. 2026, 18(2), 271; https://doi.org/10.3390/rs18020271 - 14 Jan 2026
Abstract
Water is vital for producing summer maize (SM) and winter wheat (WW); therefore, its proper management is crucial for sustainable farming. This study aimed to develop new tri-band spectral vegetation indices that enhance the accuracy of monitoring plant moisture content (PMC) [...] Read more.
Water is vital for producing summer maize (SM) and winter wheat (WW); therefore, its proper management is crucial for sustainable farming. This study aimed to develop new tri-band spectral vegetation indices that enhance the accuracy of monitoring plant moisture content (PMC) in SM and WW. We conducted irrigation treatments, including W0, W1, W2, W3, and W4, in SM–WW rotations to address this issue. Canopy reflectance was measured with a field spectroradiometer. Tri-band hyperspectral vegetation indices were constructed: Normalised Water Stress Index (NWSI), Normalised Difference Index (NDI), and Exponential Water Stress Index (EWSI), for assessing the PMC of SM and WW. Results indicate that NWSI outperformed other indices. In the maize trials, the correlation reached R = −0.8369, while in wheat, it reached R = −0.9313, surpassing traditional indices. Four mainstream machine learning models (Random Forest, Partial Least Squares Regression, Support Vector Machine, and Artificial Neural Network) were employed for modelling. NWSI-PLSR exhibited the best index-type performance with an R2 of 0.7878. When the new indices were combined with traditional indices as input data, the NWSI-Published indices-SVM model achieved superior performance with an R2 of 0.8203, outperforming other models. The RF model produced the most consistent performance and achieved the highest average R2 across all input types. The NDI-Published indices models also outperformed those of the published indices alone. This indicates that these new indices improve the accuracy of moisture content monitoring in SM and WW fields. It provides a technical basis and support for precision irrigation, holding significant potential for application. Full article
16 pages, 12922 KB  
Article
Three-Dimensional Accuracy of Digitally Planned Orthodontic Tooth Movement in a Fully Customized Self-Ligating Lingual System
by Arda Arısan and Tülin Taner
Bioengineering 2026, 13(1), 94; https://doi.org/10.3390/bioengineering13010094 - 14 Jan 2026
Abstract
Background: Lingual orthodontic systems have recently advanced with the introduction of fully customized CAD/CAM-based designs featuring self-ligating (SL) mechanisms. This study aimed to evaluate the three-dimensional accuracy of a customized SL lingual system in reproducing digitally planned tooth positions. Methods: A [...] Read more.
Background: Lingual orthodontic systems have recently advanced with the introduction of fully customized CAD/CAM-based designs featuring self-ligating (SL) mechanisms. This study aimed to evaluate the three-dimensional accuracy of a customized SL lingual system in reproducing digitally planned tooth positions. Methods: A total of 280 teeth were analyzed following treatment with a fully customized self-ligating lingual system (Harmony®, Aso International Inc., Tokyo, Japan). Digital models obtained before treatment (T0), from the setup (TS), and after treatment (T1) were superimposed using a best fit algorithm in GOM Inspect. Tooth movements were quantified across seven biomechanically relevant parameters including tip, torque, rotation, buccolingual, mesiodistal, vertical, and overall displacement. Predicted and achieved movements were compared using paired t tests and Bland–Altman analysis. Results: The fully customized SL lingual appliance achieved an overall dentition accuracy of 92.1%. Mean accuracy for linear tooth movements was 94.5% ± 2.1% in the maxilla and 93.8% ± 2.5% in the mandible. For angular movements, mean accuracy was 90.8% ± 3.4% in the maxilla and 89.3% ± 3.9% in the mandible. The highest precision was observed in anterior teeth for mesiodistal (96.2%) and buccolingual (95.8%) movements, whereas the lowest accuracy occurred in rotational movements of the posterior segments (87.1%). No statistically significant differences were found between predicted and achieved movements for most parameters (p > 0.05). Conclusions: The fully customized SL lingual orthodontic system demonstrated high accuracy in reproducing digitally planned tooth movements, particularly in the anterior segments. Although accuracy was slightly lower in the posterior regions, the overall outcomes remained mechanically and clinically acceptable across all evaluated dimensions. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Graphical abstract

37 pages, 6898 KB  
Article
Tracing the Sociospatial Affordances of Physical Environment: An AI-Based Unified Framework for Modeling Social Behavior in Campus Open Spaces
by Ecem Kara and Barış Dinç
Architecture 2026, 6(1), 10; https://doi.org/10.3390/architecture6010010 - 14 Jan 2026
Abstract
In educational settings, it is crucial to comprehend and manage individuals’ social interaction behaviors through the physical environment. However, analyzing social interaction patterns manually is a time-consuming and energy-intensive process. This study aims to reveal the socio-behavioral implications of spatial features, based on [...] Read more.
In educational settings, it is crucial to comprehend and manage individuals’ social interaction behaviors through the physical environment. However, analyzing social interaction patterns manually is a time-consuming and energy-intensive process. This study aims to reveal the socio-behavioral implications of spatial features, based on the Affordance Theory, using artificial intelligence (AI). To this end, the study proposes a unified quantitative methodology that leverages diverse AI approaches. Behavioral data are gathered via systematic observation and analyzed using (1) Deep Learning (DL)-based Human Detection and classified by (2) Machine Learning (ML)-based Interaction Score Prediction approach. The behavioral findings were analyzed in relation to spatial data via (3) Spatial Feature Selection. As the study area, the ATU Faculty of Engineering building complex was selected, and behavioral data from 746 participants were collected in the complex’s open spaces. The results indicated that AI-based approaches provide a high degree of precision in analyzing the relationships between social interaction and spatial features within the addressed context. Also, (1) the existence and (2) the rotation of seating units and (3) shading strategies are identified as the spatial features that contribute to higher interaction scores in the educational settings. The study proposes an integrated and transferable methodology based on diverse AI approaches for determining social interaction and its spatial aspects, leading to a comprehensive and reproducible approach. Full article
(This article belongs to the Special Issue Architecture in the Digital Age)
Show Figures

Figure 1

23 pages, 8315 KB  
Article
Dubins-Aware NCO: Learning SE(2)-Equivariant Representations for Heading-Constrained UAV Routing
by Jiazhan Gao, Yutian Wu, Liruizhi Jia, Heng Shi and Jihong Zhu
Drones 2026, 10(1), 59; https://doi.org/10.3390/drones10010059 - 14 Jan 2026
Abstract
The nonholonomic constraints of fixed-wing UAVs, characterized by coupled heading-curvature feasibility and asymmetric costs, fundamentally deviate from classical Euclidean routing assumptions. While standard neural combinatorial optimization (NCO) architectures could theoretically incorporate Dubins costs via reward signals, such naive adaptations lack the capacity to [...] Read more.
The nonholonomic constraints of fixed-wing UAVs, characterized by coupled heading-curvature feasibility and asymmetric costs, fundamentally deviate from classical Euclidean routing assumptions. While standard neural combinatorial optimization (NCO) architectures could theoretically incorporate Dubins costs via reward signals, such naive adaptations lack the capacity to explicitly model the intrinsic SE(2) geometric invariance and directional asymmetry of fixed-wing motion, leading to suboptimal generalization. To bridge this gap, we propose a Dubins-Aware NCO framework. We design a dual-channel embedding to decouple asymmetric physical distances from rotation-stable geometric features. Furthermore, we introduce a Rotary Phase Encoding (RoPhE) mechanism that theoretically guarantees strict SO(2) equivariance within the attention layer. Extensive sensitivity, ablation, and cross-distribution generalization experiments are conducted on tasks spanning varying turning radii and problem variants with instance scales of 10, 20, 36, and 52 nodes. The results consistently validate the superior optimality and stability of our approach compared with state-of-the-art DRL and NCO baselines, while maintaining significant computational efficiency advantages over classical heuristics. Our results highlight the importance of explicitly embedding geometry-physics consistency, rather than relying on scalar reward signals, for real-world fixed-wing autonomous scheduling. Full article
(This article belongs to the Special Issue Path Planning, Trajectory Tracking and Guidance for UAVs: 3rd Edition)
Show Figures

Figure 1

21 pages, 3392 KB  
Article
Free Vibration Analysis of Wind-Tunnel Stiffened Plates Considering Stiffeners’ Transverse Deformation
by Yueyin Ma, Zhenhua Chen, Wanhua Chen, Bin Ma, Xinyu Gao, Xutao Nie and Daokui Li
Vibration 2026, 9(1), 5; https://doi.org/10.3390/vibration9010005 - 14 Jan 2026
Abstract
The free vibration of stiffened plates analyzed using classical plate–beam theoretical theory (PBM) simplified the vibrations of stiffeners parallel to the plane of the stiffened plate as the first-order torsional vibration of the stiffener cross-section. This simplification introduces errors in both the natural [...] Read more.
The free vibration of stiffened plates analyzed using classical plate–beam theoretical theory (PBM) simplified the vibrations of stiffeners parallel to the plane of the stiffened plate as the first-order torsional vibration of the stiffener cross-section. This simplification introduces errors in both the natural frequencies and mode shapes of the structure for stiffened plates with relatively tall stiffeners. To mitigate the issue previously described, this paper proposes an enhanced plate–beam theoretical model (EPBM). The EBPM decouples stiffener deformation into two components: (1) bending deformation along the transverse direction of the stiffened plate, governed by Euler–Bernoulli beam theory, and (2) transverse deformation of the stiffeners, modeled using thin plate theory. Virtual torsional springs are introduced at the stiffener–plate and stiffener–stiffener interfaces via penalty function method to enforce rotational continuity. These constraints are transformed into energy functionals and integrated into the system’s total energy. Displacement trial functions constructed from Chebyshev polynomials of the first kind are solved using the Ritz method. Numerical validation demonstrates that the EBPM significantly improves accuracy over the BPM: errors in free-vibration frequency decrease from 2.42% to 0.63% for the first mode and from 9.79% to 1.34% for the second mode. For constrained vibration, the second-mode error is reduced from 4.22% to 0.03%. This approach provides an effective theoretical framework for the vibration analysis of structures with high stiffeners. Full article
Show Figures

Figure 1

8 pages, 2479 KB  
Proceeding Paper
Slip Effect on Rotational Capacity (Chord Rotation) of Corroded RC Members Due to Pull Out of Steel Reinforcement
by Konstantinos Koulouris, Maria Basdeki and Charis Apostolopoulos
Eng. Proc. 2025, 119(1), 54; https://doi.org/10.3390/engproc2025119054 - 14 Jan 2026
Abstract
Based on ongoing experimental research, the present manuscript presents the effect of the slippage of a steel reinforcing bar due to corrosion on the chord rotation and deformation of corroded Reinforced Concrete members. The experimental results recorded that the increase in the corrosion [...] Read more.
Based on ongoing experimental research, the present manuscript presents the effect of the slippage of a steel reinforcing bar due to corrosion on the chord rotation and deformation of corroded Reinforced Concrete members. The experimental results recorded that the increase in the corrosion level of the steel led to bond strength loss and relative slip between the steel and concrete, which was increased from 1.5 mm in non-corroded conditions to 3.5 mm even at low corrosion levels, up to a 5% steel mass loss. This slippage of corroded reinforcing bars from the anchorage leads to a proportional increase in terms of chord rotation due to pull out resulting in an additional increase in the displacement of the column’s top. In conclusion, the present study highlights the great importance of the contribution of the resulting slippage of a steel reinforcing bar due to corrosion in the calculation of the limit chord rotation (column–beam), a term which is of major importance in the assessment of the structural integrity of old RC structures, which was introduced as an adequacy requirement by both Eurocode 8-3 and the Greek Code of Structural Interventions (KAN.EPE). Full article
Show Figures

Figure 1

18 pages, 6393 KB  
Article
Deep Plowing Increases Subsoil Carbon Accrual Through Enhancing Macroaggregate Protection in a Mollisol with Two Different Tillage Regimes
by Jiuhui Chen, Zhicheng Bao, Yulong Yang, Jingkun Lu, Baoyu Chen, Xingmin Zhao, Hongbin Wang, Fangming Liu, Dongmei Wang, Chenyu Zhao, Li Wang, Hongjun Wang and Biao Sui
Agronomy 2026, 16(2), 198; https://doi.org/10.3390/agronomy16020198 - 14 Jan 2026
Abstract
Soil organic carbon (SOC) is a core component of farmland fertility, and its content is significantly influenced by tillage practices. To clarify the effects of alternate tillage on soil organic carbon sequestration and soil aggregate stability, a tillage experiment was initiated in 2017. [...] Read more.
Soil organic carbon (SOC) is a core component of farmland fertility, and its content is significantly influenced by tillage practices. To clarify the effects of alternate tillage on soil organic carbon sequestration and soil aggregate stability, a tillage experiment was initiated in 2017. The study focused on the distribution of soil aggregates across different particle sizes and their organic carbon contents under four tillage treatments: (1) rotary tillage for two consecutive years after initial deep plowing (RT_DP); (2) no-tillage for two consecutive years after initial deep plowing (NT_DP); (3) continuous rotary tillage (RT); and (4) continuous no-tillage (NT). Compared with continuous rotary tillage (RT), RT_DP increased the crop yield by 14.78%, NT decreased the yield by 10.59%, and NT_DP increased the yield by 3.40%. In the topsoil, soil organic carbon (SOC) content increased by 21.57% under RT_DP, 24.47% under NT, and 21.57% under NT_DP. In the subsoil, SOC content increased by 36.91% under RT_DP, 24.80% under NT, and 42.52% under NT_DP. Compared with the RT treatment, practices such as RT_DP increased the SOC content and the proportion of macroaggregates. No significant differences were observed among all treatments in the topsoil. However, in the subsoil, RT_DP significantly increased the SOC content (by 36.91%), SOC content within >0.25 mm aggregates (by 35.75%), and the proportion of >0.25 mm aggregates (by 1.28%), relative to RT. Compared with NT, NT_DP also increased these three indices by 14.2%, 13.38%, and 0.32%, respectively. In the topsoil, the NT_DP treatment resulted in higher mean weight diameter (MWD) stability than the other treatments. In the subsoil, the NT treatment showed the highest MWD and geometric mean diameter (GMD) values, while both RT_DP and NT_DP had significantly higher MWD and GMD than RT. In the deeper soil layer, the NT treatment exhibited the highest aggregate stability. Further analysis indicated that the positive effects of alternate tillage (NT_DP and RT_DP) on aggregate distribution, aggregate stability, and subsoil SOC sequestration were mainly due to improvements in the soil’s nutrient availability, bulk density, porosity, and water content. The optimization of these soil properties further enhanced soil enzyme activity and ultimately promoted the stabilization and accumulation of SOC. In conclusion, incorporating deep plowing into rotational tillage can effectively promote SOC accumulation, especially in the subsoil of maize farmland, and enhance the physical protection of SOC. This study provides a practical tillage strategy for increasing the maize yield and enhancing soil organic carbon sequestration. Full article
(This article belongs to the Special Issue Plant Nutrition Eco-Physiology and Nutrient Management)
Show Figures

Figure 1

18 pages, 2707 KB  
Article
Design of a Dual Path Mixed Coupling Wireless Power Transfer Coupler for Improving Transmit Arrays in UAV Charging
by GwanTae Kim and SangWook Park
Appl. Sci. 2026, 16(2), 827; https://doi.org/10.3390/app16020827 - 13 Jan 2026
Abstract
This paper proposes a dual path mixed coupling wireless power transfer (DPMPT) coupler as a four-port structure for near-field wireless power transfer in drone and unmanned aerial vehicles. The DPMPT coupler integrates orthogonal double-D coils and 8-plates to realize mixed inductive–capacitive coupling at [...] Read more.
This paper proposes a dual path mixed coupling wireless power transfer (DPMPT) coupler as a four-port structure for near-field wireless power transfer in drone and unmanned aerial vehicles. The DPMPT coupler integrates orthogonal double-D coils and 8-plates to realize mixed inductive–capacitive coupling at 6.78 MHz without additional lumped matching networks. A four-port equivalent model is developed by classifying the mutual networks into three coupling types and representing them with a transmission-matrix formulation fitted to three-dimensional full-wave simulations. The model is used to identify the main coupling paths and to evaluate the effect of rotation and lateral/diagonal misalignment on power-transfer characteristics. Simulation results at a transfer distance of 70 mm show a maximum transmission coefficient of about 0.82 at 6.78 MHz and high robustness against rotation. When switch-based port selection is applied on the transmit side, blind spots associated with pose variations that cause an abrupt drop in transmission characteristics are significantly reduced, demonstrating that the DPMPT coupler with switch control provides an effective structural basis for enhancing alignment tolerance in mixed coupling wireless power transfer systems. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
16 pages, 509 KB  
Article
Residual Effects of Cover Crop Species, Tillage, and Manure Application on Corn Yield and Soil Nitrogen Dynamics in Organic Management Systems
by Emily E. Evans, Mary Wiedenhoeft, Marcelo Carvalho Minhoto Teixeira Filho, Bhim Bahadur Ghaley and Paulo H. Pagliari
Agronomy 2026, 16(2), 195; https://doi.org/10.3390/agronomy16020195 - 13 Jan 2026
Abstract
Nitrogen (N) management remains a primary challenge in organic grain systems, particularly in rotations where heavy N-consuming crops, such as corn and wheat, follow one another. Daikon radish (Raphanus sativus L.) is widely adopted for its ability to scavenge residual soil nitrate [...] Read more.
Nitrogen (N) management remains a primary challenge in organic grain systems, particularly in rotations where heavy N-consuming crops, such as corn and wheat, follow one another. Daikon radish (Raphanus sativus L.) is widely adopted for its ability to scavenge residual soil nitrate between cash crops; yet the subsequent availability of scavenged N to the following crop is inconsistent and often negligible. This 4-year field study (2014–2017) at the University of Minnesota Southwest Research and Outreach Center evaluated whether planting daikon radish in polyculture with berseem clover, and either annual oats or winter rye could improve N retention and timed release compared to daikon radish monoculture. Three cover crop treatments were tested across three common organic management systems: no manure with no tillage, manure with tillage, and manure plus shallow tillage incorporation before cover crop seeding. Polycultures, especially those including winter rye, produced significantly more fall biomass (up to 6435 kg ha−1) than daikon radish monoculture (573–1272 kg ha−1). Manure incorporation consistently increased total and daikon radish biomass, as well as the percent living cover. Despite substantial biomass differences, mid-season and fall soil inorganic N, potentially mineralizable N, permanganate-oxidizable C, and enzyme activities showed few consistent treatment effects. Corn grain yield was highest following manure with tillage incorporation but was significantly reduced after the winter rye polyculture in all years, likely due to N immobilization and delayed corn planting caused by late rye termination under wet spring conditions. Results indicate that while polycultures with winter rye maximize biomass and soil cover, they do not reliably enhance N recycling to the subsequent organic corn crop and can reduce yield. Full article
Show Figures

Figure 1

Back to TopTop