Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (588)

Search Parameters:
Keywords = rotational spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4967 KB  
Article
Optimization of Composite Formulation Using Recycled Polyethylene for Rotational Molding
by Vitaliy Tyukanko, Roman Tarunin, Alexandr Demyanenko, Vladislav Semenyuk, Antonina Dyuryagina, Yerik Merkibayev, Abdigali Bakibaev, Rustam Alpyssov and Dmitriy Alyoshin
Polymers 2025, 17(24), 3290; https://doi.org/10.3390/polym17243290 - 11 Dec 2025
Viewed by 390
Abstract
In this work, we optimized three key factors for rotational molding composites: the recycled polyethylene (rPE) content, the pigment (Cp) content, and the process parameter-peak internal air temperature (PIAT). We studied the influence of rPE, Cp, and PIAT on various composite properties. These [...] Read more.
In this work, we optimized three key factors for rotational molding composites: the recycled polyethylene (rPE) content, the pigment (Cp) content, and the process parameter-peak internal air temperature (PIAT). We studied the influence of rPE, Cp, and PIAT on various composite properties. These included mechanical properties (e.g., elastic modulus E), impact strength (MFEsp), surface characteristics (wettability measured by contact angle θ and IR spectroscopy), thermal stability (by DTA–TG analysis), environmental stress cracking resistance (ESCR in hours), and the amplitude of the third harmonic β of the ultrasonic back-wall signal. The IR spectroscopy and contact angle results indicate that adding rPE and pigment slightly increases the composite’s surface hydrophilicity. The results show that PIAT strongly influences all the characteristics of the composites studied. Depending on its percentage, the introduction of rPE can either improve or worsen these composite properties. A correlation was found between β, ESCR, MFEsp, and E, demonstrating that β can serve as a quantitative indicator of internal stress (IS) in rotomolded parts. The recommended optimal composition is rPE 30%, Cp 0.5%, and PIAT 195 °C. Under these conditions, the composite exhibits minimal internal stress and optimal performance, which in turn extends the service life of rotomolded products. Four nomograms were developed: rPE = f(MFEsp, Cp, PIAT) and rPE = f(β, Cp, PIAT), which make it possible to quickly determine MFEsp and β of a product based on the actual PIAT, taking into account rPE and pigment content in the composite (they also allow selecting the rPE and pigment content in the composition depending on the required MFEsp). Full article
(This article belongs to the Special Issue Chemical Recycling of Polymers, 2nd Edition)
Show Figures

Figure 1

17 pages, 6831 KB  
Article
Impact of Molecular Reactive Gas Injection on Species Emitted at the Exit of a Tubular Atmospheric Pressure Plasma Jet Source
by Catalin Constantin, Marian Bazavan, Cristian Stancu, Bogdana Mitu and Gheorghe Dinescu
Appl. Sci. 2025, 15(24), 13042; https://doi.org/10.3390/app152413042 - 11 Dec 2025
Viewed by 206
Abstract
Control of reactive species generation lies at the core of atmospheric pressure plasma processing. In this work, we investigate the ability of a cold RF argon plasma jet source to produce reactive oxygen and nitrogen species (RONS) following the injection of a molecular [...] Read more.
Control of reactive species generation lies at the core of atmospheric pressure plasma processing. In this work, we investigate the ability of a cold RF argon plasma jet source to produce reactive oxygen and nitrogen species (RONS) following the injection of a molecular gas (N2 or O2), either premixed with the main gas (Ar) or introduced separately into an already generated Ar discharge. We show that, when reactive gases are injected directly into the Ar discharge, the range of operating parameters—particularly the ratio of reactive gas to main gas—is considerably widened compared to conventional injections through the main argon flow. The plasma characteristics at the source exit were analyzed using optical emission spectroscopy (OES), including the determination of electron density, rotational temperature, and the emission intensities of plasma species such as Ar I, NO(A), OH(A), and N2(C) for both injection types. Overall, the results show that plasmas generated using in-discharge injection are more stable and capable of sustaining enhanced production of reactive radicals such as NO(A) and OH(A), whereas injection through the main gas can be tuned to selectively enhance NO generation. These findings highlight the potential of plasma sources employing premixed or in-discharge reactive gas injection for surface treatment and for the processing of gas and liquid phases. Full article
Show Figures

Figure 1

31 pages, 11140 KB  
Article
High-Temperature Properties of Hot Mix Asphalt Modified with Different Nanomaterials
by Yousuf M. Hamed AlHamdo, Amjad H. Khalil Albayati and Mazen J. Al-Kheetan
Nanomaterials 2025, 15(24), 1845; https://doi.org/10.3390/nano15241845 - 8 Dec 2025
Viewed by 375
Abstract
Rutting is a predominant distress in asphalt pavements, particularly in hot climatic regions. This study systematically investigated the high-temperature performance of hot mix asphalt modified with five nanomaterials, namely, nano-silica (NS), nano-alumina (NA), nano-titanium (NT), nano-zinc (NZ), and carbon nanotubes (CNTs), under consistent [...] Read more.
Rutting is a predominant distress in asphalt pavements, particularly in hot climatic regions. This study systematically investigated the high-temperature performance of hot mix asphalt modified with five nanomaterials, namely, nano-silica (NS), nano-alumina (NA), nano-titanium (NT), nano-zinc (NZ), and carbon nanotubes (CNTs), under consistent laboratory conditions. Modification dosages were selected up to 10% for NS, NA, and NT, and up to 5% for NZ and CNTs. The experimental methodology comprised the following: (i) binder rheological characterization through rotational viscosity, G*/sinδ, and multiple stress creep recovery (MSCR) to quantify rutting susceptibility; (ii) chemical and microstructural assessments using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM); (iii) mixture-level evaluation via repeated-load axial testing coupled with digital image correlation (DIC) to monitor permanent microstrain evolution; and (iv) rutting performance over a 20-year period using the VESYS 5W predictive model. A cost–performance analysis was further incorporated to assess the economic viability of each nanomaterial. The results demonstrated that nanomodification substantially improved rutting resistance, consistent with reductions in non-recoverable creep compliance and permanent microstrain. Among additives, the 8% NS mixture exhibited the most favorable performance, maintaining a present serviceability index (PSI) of 2.5 after 20 years, whereas the un-modified mixture dropped below the failure threshold within a few years. These findings confirm that nanomaterial selection and dosage can meaningfully enhance the structural and performance of asphalt pavements. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

23 pages, 9618 KB  
Article
Influence Mechanism of Performance and Aging Behavior of High-Content SBS-Modified Asphalt
by Qi Zheng, Haibo Wang, Beirong Jiang, Shulin Yue and Tao Wang
Buildings 2025, 15(24), 4430; https://doi.org/10.3390/buildings15244430 - 8 Dec 2025
Viewed by 231
Abstract
To address the research bottlenecks in the performance mechanism and engineering application of high-content SBS-modified asphalt (SBS content ≥ 6%), this study used 70# and 90# base asphalts as raw materials to prepare modified asphalts with SBS contents of 5%, 8%, 10%, and [...] Read more.
To address the research bottlenecks in the performance mechanism and engineering application of high-content SBS-modified asphalt (SBS content ≥ 6%), this study used 70# and 90# base asphalts as raw materials to prepare modified asphalts with SBS contents of 5%, 8%, 10%, and 12% via a high-speed shearing-stirring process. Combined with conventional performance tests (penetration, ductility, elastic recovery), rheological analysis (dynamic shear rheology (DSR), rotational viscosity), and micro-characterization (Scanning Electron Microscopy (SEM), X-ray photoelectron spectroscopy (XPS)), the regulatory mechanisms of SBS content, base asphalt type, and aging process (RTFOT short-term aging, PAV long-term aging) on asphalt performance were systematically investigated. The results showed that with the increase in SBS content, the asphalt’s increased consistency (as indicated by decreased penetration), low-temperature crack resistance (5 °C ductility increased by more than 5 times), and high-temperature rutting resistance (60 °C complex shear modulus G* increased by 17 times) were significantly enhanced. Due to its higher content of light components, the 90# base asphalt exhibited a better modification effect than the 70# base asphalt. At 12% SBS content, the 5 °C ductility and 60 °C G* of the 90# base asphalt system reached 49.42 cm and 41.62 kPa, respectively. High-content SBS optimized the viscoelastic balance of asphalt: the 70# base asphalt system with 10–12% SBS content showed a phase angle δ < 45° (elasticity-dominated), and the modified asphalt with 12% SBS content exhibited a decrease in fatigue factor (G*sinδ) after PAV aging, indicating excellent fatigue resistance stability. The aging process significantly increased asphalt viscosity (the viscosity of 70# base asphalt with 10% SBS increased by 242% after PAV aging at 135 °C), while high-content SBS inhibited aging deterioration—the penetration ratio of both systems exceeded 96% at 10% SBS content. At the microscale, 10% SBS content enabled the asphalt to form a continuous and dense network structure, reducing carbon loss and slowing oxygen incorporation. Based on PG classification, the modified asphalt with 12% SBS content reached the PG100 grade, which can meet the needs of heavy-load and high-temperature scenarios such as high-toughness ultra-thin asphalt wearing courses. This study provides a key theoretical basis and data support for the content design and engineering promotion of high-content SBS-modified asphalt. Full article
(This article belongs to the Special Issue Green Innovation and Performance Optimization of Road Materials)
Show Figures

Figure 1

15 pages, 4190 KB  
Article
The Effect of Preliminary Mixing Methods on the Properties of PA6 Composites with Molybdenum Disulphide
by Dmitry Zavrazhin, Tatiana Dyachkova, Artem Obukhov, Mikhail Krasnyanskiy, Elena Burakova, Denis Dedov and Anastasia Chuprikova
Sci 2025, 7(4), 178; https://doi.org/10.3390/sci7040178 - 3 Dec 2025
Viewed by 259
Abstract
This study is motivated by the severe tribological regime of PA6 composites in VR platforms operating under dry or boundary lubrication, where alternating shear during foot rotation, localised contact pressures, and third-body abrasion concurrently challenge wear resistance and retention of strength. This paper [...] Read more.
This study is motivated by the severe tribological regime of PA6 composites in VR platforms operating under dry or boundary lubrication, where alternating shear during foot rotation, localised contact pressures, and third-body abrasion concurrently challenge wear resistance and retention of strength. This paper presents the results of research into the properties of composites based on polyamide PA6 and molybdenum disulphide, obtained by combining the components through high-intensity mechanochemical activation in a planetary mill and classical mixing in a turbulence mixer. We demonstrate that varying the energy of the premixing stage (mechanochemical activation versus low-energy premixing) serves as an effective means of interfacial engineering in PA6/MoS2 composites, enabling simultaneous enhancement of mechanical and tribological properties at low filler contents. Analysis of experimental composite samples using Fourier-transform infrared spectroscopy (FTIR) indicates the interaction between MoS2 and oxygen-containing groups of polyamide while maintaining its overall chemical composition. According to the TG-DSC curves, modification of polyamide leads to an increase in the melting temperature by 2 °C, while mechanical activation ensures stronger interaction between the matrix and the filler. Compared to pure PA6, the tensile strength of composites increases by 10–20% for mechanoactivated materials and by 5–10% for materials obtained by conventional methods. The mechanical activation effect is observed even at minimal amounts (0.25 and 0.5%) of MoS2 in composites. The toughness of all composites, regardless of the mixing method, increases by 5–7% compared to pure polyamide. All composites show a 10–20% reduction in the coefficient of friction on steel. Simultaneously, the water absorption of composites becomes 5–20% higher than that of the original material, which indicates a change in structure and an increase in porosity. The obtained composite materials are planned to be used for manufacturing platforms for the movement of virtual reality (VR) operators. Full article
Show Figures

Figure 1

9 pages, 693 KB  
Article
Perturbed Angular Correlation (PAC) Spectroscopy in the Fast Reorientation Time Regime: Can Global Molecular Rotational Diffusion and Local Dynamics Be Discriminated?
by Matthew O. Zacate and Lars Hemmingsen
Spectrosc. J. 2025, 3(4), 33; https://doi.org/10.3390/spectroscj3040033 - 2 Dec 2025
Viewed by 198
Abstract
In PAC spectroscopy, hyperfine interactions of a radioactive probe nucleus with its surroundings are measured, providing information about the local atomic structure and dynamics at the probe site. In the so-called fast reorientation time regime for fluctuating nuclear quadrupole interactions (NQIs), the PAC [...] Read more.
In PAC spectroscopy, hyperfine interactions of a radioactive probe nucleus with its surroundings are measured, providing information about the local atomic structure and dynamics at the probe site. In the so-called fast reorientation time regime for fluctuating nuclear quadrupole interactions (NQIs), the PAC signal is an exponentially decaying function, with decay constant λ depending on both the hyperfine interaction and dynamics. For a molecular system in solution, dynamics may originate from Brownian molecular tumbling (rotational diffusion) with rotational correlation time τc and from local dynamics at the probe site, occurring at a characteristic time scale τloc. The τc and the τloc cannot be discriminated in a single PAC spectrum; however, assuming that they scale differently with viscosity and temperature, a series of experiments in which these parameters are varied may allow for discrimination of τc and the τloc. Three models are presented for the effect of dynamics on the PAC signal: (1) the Stokes–Einstein–Debye model with linear scaling of λ with viscosity ξ; (2) a more general model presenting a power law scaling of λ with (ξ/ξ0)n; and (3) a model that includes rotational and local dynamics leading to an expression for λ that scales with ξ/(ξ + c), where c is a constant that depends on temperature, molecular volume, and τloc. These models may serve as different approaches to analyze PAC data and their dependence on temperature and solvent viscosity in the fast reorientation time regime, and they can be applied to design experiments for optimal discrimination of global rotational diffusion and local dynamics at the probe site. Full article
Show Figures

Graphical abstract

12 pages, 2302 KB  
Communication
Phytochemical Investigation of Aquilaria agallocha and Identification of a Diarylheptanoid Exhibiting Anti-Tau Aggregation Activity
by Yeo Rang Cho, Jiyeon Kim, Bora Kim, Dong Min Kang, Yun Kyung Kim, Jin-Chul Kim, Sungsu Lim and Ki Hyun Kim
Biomedicines 2025, 13(12), 2855; https://doi.org/10.3390/biomedicines13122855 - 23 Nov 2025
Viewed by 357
Abstract
Agarwood from Aquilaria agallocha, known as chim-hyuang in Korea, is widely distributed throughout Southeast Asia and has traditionally been used to treat asthma, pain, and gastrointestinal disorders. As part of our ongoing efforts to identify bioactive metabolites from natural sources, a phytochemical [...] Read more.
Agarwood from Aquilaria agallocha, known as chim-hyuang in Korea, is widely distributed throughout Southeast Asia and has traditionally been used to treat asthma, pain, and gastrointestinal disorders. As part of our ongoing efforts to identify bioactive metabolites from natural sources, a phytochemical investigation of the EtOAc fraction of A. agallocha extract led to the isolation and identification of four compounds, N-trans-feruloyltyramine (1), (3R,5R)-octahydrocurcumin (2), 1,7-bis(4-hydroxyphenyl)heptane (3), and trans-caffeoyltyramine (4), via HPLC purification and LC/MS-based analysis. Structural elucidation of the isolated compounds was achieved using NMR spectroscopy, LC/MS, and high-resolution electrospray ionization mass spectrometry (HR-ESIMS). The absolute configuration of compound 2 was further confirmed by optical rotation and electronic circular dichroism (ECD) analyses. All isolated compounds (14) were evaluated for their inhibitory activity against tau protein aggregation. Notably, compound 2 exhibited a 43.7% reduction in tau aggregation at 20 μM, without cytotoxicity at the same concentration. These findings indicate that phytochemicals from A. agallocha, particularly the diarylheptanoid compound 2, hold promise as natural lead candidates for the development of therapeutic agents targeting tau protein aggregation. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Graphical abstract

15 pages, 1962 KB  
Article
A Competing Hydrogen Bond Network Offers Access to a New Conformation in 24-Atom Triazine Macrocycles
by K. Harsha Vardan Reddy, Arshad Mehmood, Akop Yepremyan and Eric E. Simanek
Molecules 2025, 30(22), 4475; https://doi.org/10.3390/molecules30224475 - 20 Nov 2025
Viewed by 519
Abstract
For a family of 24-atom triazine macrocycles, a single intramolecular hydrogen bond (IMHB) network leads to a conserved, hinge-like motif in solution. Modifications to the backbone of these macrocycles preserve this motif. Modifications to peripheral sites lead to conformational isomers due to hindered [...] Read more.
For a family of 24-atom triazine macrocycles, a single intramolecular hydrogen bond (IMHB) network leads to a conserved, hinge-like motif in solution. Modifications to the backbone of these macrocycles preserve this motif. Modifications to peripheral sites lead to conformational isomers due to hindered bond rotation while conserving the hinge motif. Here, a competitive IMHB network is introduced by the addition of a hydrogen bond donor on the periphery. Cyclization remains quantitative, but multiple conformers result. Three conformers are derived from the hinge motif. Three others are attributed to a new motif that utilizes the new IMHB network. Crystallographic analysis confirms this hypothesis and establishes that this new motif differs significantly from the original with respect to overall shape and disposition of groups. Variable temperature 1H NMR spectroscopy is used to partially assign the spectra because conformers adopting the hinge motif undergo dynamic motion on the NMR timescale, while the new motif appears static. QTAIM analysis corroborates the hydrogen bond designations in the new conformer and categorizes these interactions as moderate and strong. Full article
Show Figures

Graphical abstract

17 pages, 6617 KB  
Article
Ultrahigh-Speed Deposition of Diamond-like Carbon on a Pipe Surface Using a Scanning Deposition Method via Local High-Density Plasma
by Akihiko Ito, Masahiro Esaki, Su-Min Bae, Taketo Nagai, Hiroyuki Kousaka and Toru Harigai
Coatings 2025, 15(11), 1348; https://doi.org/10.3390/coatings15111348 - 19 Nov 2025
Viewed by 307
Abstract
This study presents a highly effective method for depositing diamond-like carbon (DLC) films onto pipe substrates using a scanning deposition by plasma enhanced chemical vapor deposition. A microwave–sheath voltage combination plasma was employed to generate local high-density plasma along a rotating pipe. While [...] Read more.
This study presents a highly effective method for depositing diamond-like carbon (DLC) films onto pipe substrates using a scanning deposition by plasma enhanced chemical vapor deposition. A microwave–sheath voltage combination plasma was employed to generate local high-density plasma along a rotating pipe. While conventional contact-mode deposition using a metal contactor suffers from arcing and surface damage due to unstable sliding contact during rotation, a non-contact deposition using a metal antenna was developed to overcome these limitations. Electromagnetic field simulations were conducted to evaluate microwave power absorption in various antenna geometries, showing that the flat-plate antenna demonstrated the most effective power coupling. Subsequent scanning deposition experiments to a rotating pipe using flat-plate antennas of different lengths revealed that the 100 mm configuration achieved the highest deposition volume rate (exceeding that of the contact-mode) while avoiding arcing. Optical emission observations during deposition confirmed the formation of high-density plasma surrounding the flat-plate antenna and Raman spectroscopy of the deposited film showed typical spectra of DLC films. The deposition rates of DLC-coated pipe showed no significant variation with respect to rotational angle, suggesting that rotation during deposition contributes to achieving uniform film thickness along the circumferential direction of the pipe. Full article
Show Figures

Figure 1

15 pages, 1576 KB  
Article
High-Resolution FTIR Spectroscopy of CH3F: Global Effective Hamiltonian Analysis of the Ground State and the 2ν3, ν3 + ν6, and 2ν6 Bands
by Hazem Ziadi, Michaël Rey, Alexandre Voute, Jeanne Tison, Bruno Grouiez, Laurent Manceron, Vincent Boudon, Hassen Aroui and Maud Rotger
Molecules 2025, 30(22), 4389; https://doi.org/10.3390/molecules30224389 - 13 Nov 2025
Viewed by 531
Abstract
High-resolution Fourier transform infrared (FTIR) spectra of methyl fluoride (CH3F) were recorded in the mid- and far-infrared regions using the Bruker IFS 125HR spectrometers at GSMA (Reims, France) and at the SOLEIL synchrotron facility (Saint-Aubin, France). The measurements cover both the [...] Read more.
High-resolution Fourier transform infrared (FTIR) spectra of methyl fluoride (CH3F) were recorded in the mid- and far-infrared regions using the Bruker IFS 125HR spectrometers at GSMA (Reims, France) and at the SOLEIL synchrotron facility (Saint-Aubin, France). The measurements cover both the pure rotational transitions of the ground state (10–100 cm−1) and the vibrational triad region (1950–2450 cm−1), which includes the 2ν3, ν3+ν6, and 2ν6 bands. Spectra were recorded under various pressure conditions to optimize line visibility, with a high resolution. Line assignments were performed using predictions from the tensorial effective Hamiltonian implemented in the MIRS package, together with a newly developed automated assignment tool, SpectraMatcher, which facilitates line matching and discrimination of CH3F transitions from overlapping CO2 features. More than 5000 transitions (up to J=52 in the ground state and up to J=45 in the triad and K=19) were assigned and included in a global fit. The sixth-order tensorial effective Hamiltonian model yielded excellent agreement with experiment, with root mean square (RMS) deviations better than 7 × 10−4 cm−1 across all regions. This paper presents the first continuous rovibrational study of CH3F over both the triad and far-infrared ground state regions. The improved accuracy from previous studies stems from the improved set of effective Hamiltonian parameters which will also form a good basis from future applications in atmospheric modelling and spectroscopic databases. Full article
(This article belongs to the Section Cross-Field Chemistry)
Show Figures

Graphical abstract

20 pages, 2241 KB  
Article
Computational and Spectroscopic Investigation of Diaminomethane Formation: The Simplest Geminal Diamine of Astrochemical Interest
by Pravi Mishra, Parmanand Pandey, Rachana Singh, Manisha Yadav, Shivani, Aftab Ahamad, Alka Misra, Amritanshu Shukla and Poonam Tandon
Atoms 2025, 13(11), 91; https://doi.org/10.3390/atoms13110091 - 12 Nov 2025
Viewed by 563
Abstract
A high-level ab initio characterization and formation of diaminomethane (DAM), the simplest geminal diamine, is presented to support its spectroscopic detection and astrochemical relevance in the interstellar medium. The C2v DAM conformer is identified as the global minimum, while C1 [...] Read more.
A high-level ab initio characterization and formation of diaminomethane (DAM), the simplest geminal diamine, is presented to support its spectroscopic detection and astrochemical relevance in the interstellar medium. The C2v DAM conformer is identified as the global minimum, while C1 DAM and C2 DAM represent higher-energy local minima. The proposed reaction pathways are exothermic and proceed without activation barriers. Simulated infrared spectrum reproduces accurate key spectral signatures with several vibrational modes exhibiting strong IR intensities (>80 km mol−1), particularly in the 800–3000 cm−1 range and band shapes. Dipole moments and accurate rovibrational spectroscopic parameters, including rotational constants, anharmonic vibrational frequencies, quartic and sextic distortion constants, and nuclear quadrupole coupling constants are reported to assist with high-resolution spectroscopic identification. This study provides significant theoretical benchmarks for its formation and offers guidance for future laboratory spectroscopy and molecular searches in interstellar environments. Full article
Show Figures

Figure 1

21 pages, 3921 KB  
Article
Symmetry-Based Evaluation of Tool Coating Effects on the Machining Behavior of Ti-6Al-4V Using Micro-EDM
by Shailesh Shirguppikar, Vaibhav Ganachari, Marko Vulović, Andreja Stefanović, Pankaj B. Gavali, Nguyen Huu-Phan and Aleksandar Ašonja
Symmetry 2025, 17(11), 1935; https://doi.org/10.3390/sym17111935 - 11 Nov 2025
Viewed by 448
Abstract
Titanium alloy Ti-6Al-4V possesses excellent mechanical and corrosion-resistant properties; therefore, it is widely employed in aerospace, automotive, and biomedical fields. However, its poor machinability restricts traditional processing methods. To overcome this limitation, the current work presents a symmetry analysis approach to evaluate the [...] Read more.
Titanium alloy Ti-6Al-4V possesses excellent mechanical and corrosion-resistant properties; therefore, it is widely employed in aerospace, automotive, and biomedical fields. However, its poor machinability restricts traditional processing methods. To overcome this limitation, the current work presents a symmetry analysis approach to evaluate the effects of tool coating on the micro-electric discharge machining (micro-EDM) characteristics of Ti-6Al-4V. Tungsten carbide (WC) microelectrodes were fabricated in three forms: uncoated, copper-coated, and carbon-coated. The chemical vapor deposition (CVD) method was used to coat the carbon layer, and the integrity of the coating was confirmed by Energy-Dispersive X-ray Spectroscopy/Analysis (EDS/EDX). The effect of input variables—namely, voltage, capacitance, and spindle rotational speed—on two responses was studied—the machining depth (Z-axis displacement) and tool wear rate (TWR)—using a Taguchi L9 orthogonal array. Analysis conducted using Minitab statistical software 17 revealed that both voltage and capacitance contributed to the response parameters as optimized variables. The comparative study showed that the copper- and carbon-coated WC microtool could obtain a better Z coordinate and lower tool wear ratio compared with those of the uncoated tool. The findings confirm that applying thin conductive coatings to WC tools can significantly improve the stability, precision, and overall symmetry of the micro-EDM process when machining difficult-to-cut titanium alloys. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Smart Manufacturing)
Show Figures

Figure 1

29 pages, 20387 KB  
Article
Effects of Equal Channel Angular Pressing on the Microstructure and Mechanical Properties of Explosion-Welded Al-Cu Bimetallic Plates
by Krzysztof Żaba, Kinga Ortyl, Ondřej Hilšer, Martin Pastrnak, Łukasz Kuczek, Ilona Różycka, Paweł Pałka, Aleksander Gałka and Tomasz Trzepieciński
Materials 2025, 18(22), 5080; https://doi.org/10.3390/ma18225080 - 8 Nov 2025
Viewed by 567
Abstract
Explosive welding technology is crucial for the production of large-area plates composed of materials with varying plastic and physical properties. Severe plastic deformation processes increase the mechanical strength of the plates by refining grains and increasing dislocation density. The aim of the research [...] Read more.
Explosive welding technology is crucial for the production of large-area plates composed of materials with varying plastic and physical properties. Severe plastic deformation processes increase the mechanical strength of the plates by refining grains and increasing dislocation density. The aim of the research presented in this paper was to analyze the effect of Equal Channel Angular Pressing (ECAP) on the mechanical properties and microstructure of an Al/Cu (EN AW-1050/Cu-ETP) bimetallic plate produced by the explosive welding technology. The ECAP process was carried out at room temperature. The ECAP experiments consisted of 1–3 passes using a die with a channel angle of 90°. The ram speed was 40 mm/min. The study also considered various sample cutting orientations (longitudinal, transverse) and various positions of the bimetallic sample in the die entry channel. Rotating the sample by an angle of 180° between consecutive passes was also considered. To achieve the research objective, static tensile tests, Vickers hardness tests at a load of 4.9 N, and microstructural analysis of the samples using scanning electron microscopy and energy dispersive spectroscopy were carried out. It was found that each subsequent pass in the ECAP process led to a gradual, severe change in the morphology of the Al/Cu interfacial transition layer. The orientation of the cutting plane of the samples was shown to have no effect on the hardness of the bimetallic material. Vickers hardness tests preceded by the ECAP process revealed a more uniform hardness distribution compared to the base material. The orientation of the Al/Cu plate layers in the ECAP die channel clearly influenced the character of the hardness distribution. Full article
Show Figures

Figure 1

21 pages, 6648 KB  
Article
Tailoring PBT Performance Through PBT/POE-g-GMA Nanocomposites with MWCNT
by Eduardo da Silva Barbosa Ferreira, Elieber Barros Bezerra, Carlos Bruno Barreto Luna, Edson Antonio dos Santos Filho, Renate Maria Ramos Wellen and Edcleide Maria Araújo
Polymers 2025, 17(21), 2962; https://doi.org/10.3390/polym17212962 - 6 Nov 2025
Viewed by 710
Abstract
The production of polymer nanocomposites from supertough blends reinforced with carbon-based nanofillers has garnered attention in recent years due to improvements in their mechanical, thermal, and electrical properties. Currently, the main challenge is to develop materials with balanced performance for diverse industrial demands. [...] Read more.
The production of polymer nanocomposites from supertough blends reinforced with carbon-based nanofillers has garnered attention in recent years due to improvements in their mechanical, thermal, and electrical properties. Currently, the main challenge is to develop materials with balanced performance for diverse industrial demands. In this context, this work aimed to produce nanocomposites of poly(butylene terephthalate) (PBT) and poly(ethylene-octene) grafted with glycidyl methacrylate (POE-g-GMA), reinforced with carbon nanotubes (MWCNTs). The PBT, the PBT/POE-g-GMA blend, and the respective MWCNT nanocomposites were initially premixed in an internal mixer and then processed in a co-rotational twin-screw extruder. After processing, they were injection-molded to obtain tensile, impact, and HDT test specimens. Mechanical (tensile, impact, and Shore D hardness), thermal (differential scanning calorimetry—DSC), thermomechanical (heat deflection temperature—HDT), electrical resistivity/conductivity, morphology, and Fourier transform infrared spectroscopy (FTIR) properties were evaluated. The results demonstrated a good balance among the investigated properties, with improvements in mechanical, thermal, and thermomechanical properties when compared to PBT. The impact strength of the nanocomposites reached 186 J/m, approximately 158% higher than that of neat PBT. The HDT reached approximately 55 °C in the PBT/POE-g-GMA/MWCNT5 nanocomposites, while the crystallization temperature increased by 11 °C, as evidenced by DSC, an aspect of great relevance for industrial applications. Furthermore, the PBT/POE-g-GMA/MWCNT5 nanocomposites exhibited an electrical conductivity of 1.06 × 10−7 S/cm, indicating potential for electrical applications. Full article
Show Figures

Figure 1

19 pages, 4672 KB  
Article
A Ternary Spinel Strategy for Increasing the Performances of Oxygen Reduction Reaction and Anion Exchange Membrane Fuel Cell Based on Mn-Co Spinel Oxides
by Weitao Jin, Ruiqing Song, Jiansong Yuan, Hengxi Pang, Wen Zong, Xiao Zhang and Juan Zhou
Catalysts 2025, 15(11), 1031; https://doi.org/10.3390/catal15111031 - 1 Nov 2025
Viewed by 543
Abstract
Anion exchange membrane fuel cells (AEMFCs) represent a promising class of clean energy devices, with their performance being critically dependent on the efficiency of the cathode oxygen reduction reaction (ORR) catalyst. Manganese-cobalt spinel (Mn1.5Co1.5O4, MCS) has been [...] Read more.
Anion exchange membrane fuel cells (AEMFCs) represent a promising class of clean energy devices, with their performance being critically dependent on the efficiency of the cathode oxygen reduction reaction (ORR) catalyst. Manganese-cobalt spinel (Mn1.5Co1.5O4, MCS) has been demonstrated to be a highly active ORR catalyst. Herein, we report a strategy of incorporating Cu (MCCS) and Fe (MCFS) into MCS to form ternary spinel oxides for tuning ORR activity. Among them, MCS exhibits the best ORR performance, with a half-wave potential (E1/2) of 0.736 V vs. RHE in 0.1 M KOH and a peak power density (PPD) of 248.3 mW·cm−2 for the fuel cell test. In contrast, MCCS and MCFS show divergent behaviors in a rotating disk-ring electrode (RRDE) and fuel cell tests. X-ray diffraction (XRD) analyses and X-ray photoelectron spectroscopy (XPS) analyses reveal that the introduction of Cu2+ and Fe3+ induces a phase transformation in the spinel structure, leading to a reduction in oxygen vacancies and an increase in the valence state of Mn, thereby degrading catalytic activity. However, the incorporation of these elements also modulates the hydration capability of the catalysts, which is critical for the ion and charge transfer in the fuel cell environment and has been validated in the distribution of relaxation time (DRT) analysis of the fuel cell test. This study provides a valuable strategy for designing and synthesizing low-cost, highly efficient, and stable ternary spinel electrocatalysts for AEMFC applications, and bridges the gap between RRDE evaluation and fuel cell testing through DRT analysis. Full article
(This article belongs to the Special Issue Metal Oxide-Supported Catalysts)
Show Figures

Graphical abstract

Back to TopTop