Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (382)

Search Parameters:
Keywords = room temperature gas sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5710 KB  
Article
Acetone Sensor Based on a Composite of Calcium Itaconate and Graphene Oxide
by Igor E. Uflyand, Anastasiya O. Zarubina, Aleksandr A. Shcherbatykh and Vladimir A. Zhinzhilo
Analytica 2026, 7(1), 8; https://doi.org/10.3390/analytica7010008 - 9 Jan 2026
Viewed by 196
Abstract
The present paper reports the preparation of a nanocomposite thin film consisting of calcium itaconate and graphene oxide (GO). The composite is a black powder consisting of individual shiny prismatic crystals at varying degrees of maturity. The crystal size distribution is quite narrow: [...] Read more.
The present paper reports the preparation of a nanocomposite thin film consisting of calcium itaconate and graphene oxide (GO). The composite is a black powder consisting of individual shiny prismatic crystals at varying degrees of maturity. The crystal size distribution is quite narrow: from 3.6 to 6.2 μm in length and from 0.7 to 1.1 μm in width. Thin-film-based acetone sensor made of a nanocomposite was fabricated by spin coating of calcium itaconate–GO nanoparticles on glass plates. The thin-film acetone sensor was characterized using FTIR, XRD, SEM, TEM, and the low-temperature nitrogen sorption–desorption method. The sensor response time is 7.66 ± 0.07 s (sr = 0.92%), and the relaxation time when blowing the surface with clean air or inert gas (nitrogen, argon) is 9.26 ± 0.12 s (sr = 1.28%). The sensing mechanism of the sensor for detecting acetone at room temperature was also is proposed based on phenomenological understanding due to the absence of direct electronic/charge-transport evidence. Full article
(This article belongs to the Section Sensors)
Show Figures

Figure 1

11 pages, 1754 KB  
Article
In2O3 Cauliflower Modified with Au Nanoparticles for O3 Gas Detection at Room Temperature
by Xiumei Xu, Yi Zhou, Mengmeng Dai, Haijiao Zhang, Jing Xu, Gui Wang, Gang Yang and Yongsheng Zhu
Nanomaterials 2026, 16(1), 50; https://doi.org/10.3390/nano16010050 - 30 Dec 2025
Viewed by 231
Abstract
Metal oxide semiconductor (MOS)-based chemiresistive gas sensors, attributable to their low cost, compact structure, and long operational lifetime, have been widely employed for the detection and monitoring of trace ozone (O3) in environmental air. Moreover, as ozone is a highly reactive [...] Read more.
Metal oxide semiconductor (MOS)-based chemiresistive gas sensors, attributable to their low cost, compact structure, and long operational lifetime, have been widely employed for the detection and monitoring of trace ozone (O3) in environmental air. Moreover, as ozone is a highly reactive oxidizing species extensively used in medical device sterilization, hospital disinfection, and food processing and preservation, accurate monitoring of ozone concentration is also essential in medical sanitation and food safety inspection. However, their practical applications are often limited by insufficient sensitivity and the requirement for elevated operating temperatures. In this study, Au-modified indium oxide (Au-In2O3) nanocomposite sensing materials were synthesized via a hydrothermal route followed by surface modification. Structural and morphological characterizations confirmed the uniform dispersion of Au nanoparticles on the In2O3 surface, which is expected to enhance the interaction between the sensor and target gas molecules. The resulting Au-In2O3 sensor exhibited excellent O3 sensing performance under room-temperature conditions. Compared with pristine In2O3, the Au-In2O3 sensor with 1.0 wt% Au modification demonstrated a remarkably enhanced response of 1398.4 toward 1 ppm O3 at room temperature. Moreover, the corresponding response/recovery times were shortened to 102/358 s for Au-In2O3. The outstanding O3 sensing performance can be attributed to the synergistic effects of Au nanoparticles, including the spillover effect and the formation of a Schottky junction at the Au-In2O3 interface. These results suggest that Au-modified In2O3 cauliflower represents a highly promising candidate material for high performance O3 sensing at low operating temperatures. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

24 pages, 3181 KB  
Article
Rapid Room-Temperature Synthesis of ZnO Nanoparticles with Styrene Gas Detection for Flexible Sensors
by Fazia Mechai, Ahmad Al Shboul, Ahmad A. L. Ahmad, Hossein Anabestani, Mohsen Ketabi, Natheer Alatawneh and Ricardo Izquierdo
Chemosensors 2026, 14(1), 5; https://doi.org/10.3390/chemosensors14010005 - 22 Dec 2025
Viewed by 436
Abstract
Efficient synthesis routes for zinc oxide nanoparticles (ZnO NPs) that are rapid and non-toxic and operate at room temperature (RT) are essential to expand accessibility, minimize environmental impact, and enable integration with temperature-sensitive substrates. In this work, ZnO NPs were synthesized by probe [...] Read more.
Efficient synthesis routes for zinc oxide nanoparticles (ZnO NPs) that are rapid and non-toxic and operate at room temperature (RT) are essential to expand accessibility, minimize environmental impact, and enable integration with temperature-sensitive substrates. In this work, ZnO NPs were synthesized by probe ultrasonication at RT for durations from 30 s to 10 min and benchmarked against our previously reported water bath sonication method. A 10-min probe treatment yielded highly uniform ZnO NPs with particle sizes of 60–550 nm and a specific surface area of up to 75 m2 g−1, compared to ~38 m2 g−1 for bath sonication. These features were largely preserved after calcination at 500 °C. When integrated into chemiresistive devices, the resulting ZnO (P(10))-based sensors exhibited pronounced selectivity toward styrene, showing reversible responses at low concentrations (10–50 ppm) and stronger signals at higher levels (up to 200 ppm, with resistance changes reaching 2930%). The sensors demonstrated stable operation across 10–90% relative humidity, and consistent performance from −20 °C to 180 °C. Flexibility tests confirmed reliable sensing after 100 bending cycles at 30°. Overall, RT-probe ultrasonication offers a rapid, scalable, and eco-friendly route to ZnO NPs with tunable properties, opening new opportunities for flexible gas sensing. Full article
(This article belongs to the Special Issue Nanomaterial-Based Sensors: Design, Development and Applications)
Show Figures

Figure 1

29 pages, 1649 KB  
Review
Polymer-Based Gas Sensors for Detection of Disease Biomarkers in Exhaled Breath
by Guangjie Shao, Yanjie Wang, Zhiqiang Lan, Jie Wang, Jian He, Xiujian Chou, Kun Zhu and Yong Zhou
Biosensors 2026, 16(1), 7; https://doi.org/10.3390/bios16010007 - 22 Dec 2025
Viewed by 561
Abstract
Exhaled breath analysis has gained considerable interest as a noninvasive diagnostic tool capable of detecting volatile organic compounds (VOCs) and inorganic gases that serve as biomarkers for various diseases. Polymer-based gas sensors have garnered significant attention due to their high sensitivity, room-temperature operation, [...] Read more.
Exhaled breath analysis has gained considerable interest as a noninvasive diagnostic tool capable of detecting volatile organic compounds (VOCs) and inorganic gases that serve as biomarkers for various diseases. Polymer-based gas sensors have garnered significant attention due to their high sensitivity, room-temperature operation, excellent flexibility, and tunable chemical properties. This review comprehensively summarized recent advancements in polymer-based gas sensors for the detection of disease biomarkers in exhaled breath. The gas-sensing mechanism of polymers, along with novel gas-sensitive materials such as conductive polymers, polymer composites, and functionalized polymers was examined in detail. Moreover, key applications in diagnosing diseases, including asthma, chronic kidney disease, lung cancer, and diabetes, were highlighted through detecting specific biomarkers. Furthermore, current challenges related to sensor selectivity, stability, and interference from environmental humidity were discussed, and potential solutions were proposed. Future perspectives were offered on the development of next-generation polymer-based sensors, including the integration of machine learning for data analysis and the design of electronic-nose (e-nose) sensor arrays. Full article
Show Figures

Figure 1

22 pages, 3049 KB  
Article
Octachlorinated Metal Phthalocyanines (M = Co, Zn, VO): Crystal Structures, Thin-Film Properties, and Chemiresistive Sensing of Ammonia and Hydrogen Sulfide
by Tatiana Kamdina, Darya Klyamer, Aleksandr Sukhikh, Pavel Popovetskiy, Pavel Krasnov and Tamara Basova
Sensors 2026, 26(1), 8; https://doi.org/10.3390/s26010008 - 19 Dec 2025
Viewed by 402
Abstract
Octachlorinated metal phthalocyanines (MPcCl8, M = Co, Zn, VO) represent an underexplored class of functional materials with promising potential for chemiresistive sensing applications. This work is the first to determine the structure of single crystals of CoPcCl8, revealing a [...] Read more.
Octachlorinated metal phthalocyanines (MPcCl8, M = Co, Zn, VO) represent an underexplored class of functional materials with promising potential for chemiresistive sensing applications. This work is the first to determine the structure of single crystals of CoPcCl8, revealing a triclinic (P-1) packing motif with cofacial molecular stacks and an interplanar distance of 3.381 Å. Powder XRD, vibrational spectroscopy, and elemental analysis confirm phase purity and isostructurality between CoPcCl8 and ZnPcCl8, while VOPcCl8 adopts a tetragonal arrangement similar to its tetrachlorinated analogue. Thin films were fabricated via physical vapor deposition (PVD) and spin-coating (SC), with SC yielding highly crystalline films and PVD resulting in poorly crystalline or amorphous layers. Electrical measurements demonstrate that SC films exhibit n-type semiconducting behavior with conductivities 2–3 orders of magnitude higher than PVD films. Density functional theory (DFT) calculations corroborate the experimental findings, predicting band gaps of 1.19 eV (Co), 1.11 eV (Zn), and 0.78 eV (VO), with Fermi levels positioned near the conduction band, which is consistent with n-type character. Chemiresistive sensing tests reveal that SC-deposited MPcCl8 films respond reversibly and selectively to ammonia (NH3) and hydrogen sulfide (H2S) at room temperature. ZnPcCl8 shows the highest NH3 response (45.3% to 10 ppm), while CoPcCl8 exhibits superior sensitivity to H2S (LOD = 0.3 ppm). These results suggest that the films of octachlorinated phthalocyanines produced by the SC method are highly sensitive materials for gas sensors designed to detect toxic and corrosive gases. Full article
Show Figures

Figure 1

17 pages, 2289 KB  
Article
Hydroxyl Functionalization Effects on Carbene–Graphene for Enhanced Ammonia Gas Sensing
by Athar A. Hassanian, Kamal A. Soliman, Tawfiq Hasanin, Abdesslem Jedidi and Adnene Dhouib
Molecules 2025, 30(24), 4726; https://doi.org/10.3390/molecules30244726 - 10 Dec 2025
Cited by 1 | Viewed by 476
Abstract
DFT study of graphene functionalized via carbene was performed to identify the preferred –OH adsorption sites and to assess how hydroxylation affects adsorption of NH3 gas. The carbene attaches to the graphene basal plane through a [2+1] cycloaddition, producing a local cyclopropane-like [...] Read more.
DFT study of graphene functionalized via carbene was performed to identify the preferred –OH adsorption sites and to assess how hydroxylation affects adsorption of NH3 gas. The carbene attaches to the graphene basal plane through a [2+1] cycloaddition, producing a local cyclopropane-like motif with a C–C bond. This modification introduces localized mid-gap states and asymmetric charge redistribution that create chemically active anchoring sites for –OH groups. We systematically scanned possible –OH adsorption sites and identified site-dependent binding energies. NH3 preferentially anchors at the carbene center and is further stabilized by multidentate hydrogen bonding with neighboring –OH groups. Calculated NH3 adsorption energies range from moderate values (single –OH and some two –OH symmetric sites, Eads ≈ −0.64 to −0.75 eV) to strong interaction for selected through-plane two –OH pairs (Eads ≈ −1.78 to −1.83 eV), where synergistic hydrogen bonding amplifies the NH3 interaction. Charge density difference and Bader analyses indicate polarization-dominated binding with minimal net charge transfer, consistent with hydrogen bonding rather than covalent bond formation. Desorption time estimation shows that moderate binding motifs provide rapid recovery at room temperature. We conclude that targeted placement of paired –OH groups on carbene-functionalized graphene offers a tunable route to balance sensitivity and reusability for NH3 sensing. Full article
(This article belongs to the Special Issue Density Functional Theory: From Fundamentals to Applications)
Show Figures

Graphical abstract

15 pages, 7014 KB  
Article
Gas Sensing Properties of Pt- and Rh-Decorated InS Monolayer Towards Toxic Industrial Gases: A First-Principles Study
by Jinyan Li, Junxian Lin, Shuying Huang, Dejian Hou, Shaomin Lin and Jianhong Dong
Molecules 2025, 30(23), 4510; https://doi.org/10.3390/molecules30234510 - 22 Nov 2025
Viewed by 302
Abstract
The development of highly sensitive gas sensors for toxic industrial gases (TIGs) is paramount for environmental monitoring and public safety. Here, the first-principles calculations were employed to systematically investigate the potential of Pt- and Rh-decorated InS (Pt-InS and Rh-InS) monolayers as advanced gas [...] Read more.
The development of highly sensitive gas sensors for toxic industrial gases (TIGs) is paramount for environmental monitoring and public safety. Here, the first-principles calculations were employed to systematically investigate the potential of Pt- and Rh-decorated InS (Pt-InS and Rh-InS) monolayers as advanced gas sensing materials for the five TIGs (SO2, NH3, NO, CO, and NO2). The results reveal that Pt and Rh atoms can be stably anchored at the InS monolayer, inducing significant modulation of its electronic properties. The Pt-InS system exhibits strong chemisorption of NH3 and CO, while the other TIGs interact via physisorption. In contrast, the Rh-InS monolayer demonstrates strong chemisorption and distinct electronic responses to all five gases, driven by robust hybridization between the Rh-d and TIG-p orbitals. Based on comprehensive analyses of sensitivity and recovery time, Rh-InS is identified as a theoretically promising candidate for a reusable SO2 sensor at room temperature, boasting a calculated rapid theoretical recovery time of 2.20 s. The Pt-InS system, conversely, shows potential for high-temperature NH3 sensing. Our findings highlight the exceptional and tunable gas sensing capabilities of Pt- and Rh-decorated InS monolayers, offering a theoretical foundation for designing InS-based sensing devices. Full article
Show Figures

Figure 1

18 pages, 4061 KB  
Article
Aerosol Spraying of Carbon Nanofiber-Based Films for NO2 Detection: The Role of the Spraying Technique
by Artyom Shishin, Valeriy Golovakhin, Eugene Maksimovskiy, Ekaterina Vostretsova, Vladimir Timofeev and Alexander Bannov
Appl. Sci. 2025, 15(22), 12110; https://doi.org/10.3390/app152212110 - 14 Nov 2025
Viewed by 364
Abstract
This study is devoted to the determination of the role of aerosol spraying in the formation of NO2 sensor properties of carbon nanofiber (CNF)-based films. This is the first paper to systematically apply the aerosol spraying technique to CNF-based films and link [...] Read more.
This study is devoted to the determination of the role of aerosol spraying in the formation of NO2 sensor properties of carbon nanofiber (CNF)-based films. This is the first paper to systematically apply the aerosol spraying technique to CNF-based films and link the spraying parameters directly to sensor performance metrics (response, signal-to-noise ratio, response times, etc.). Chemiresistive gas sensors were created based on CNFs and tested at room temperature (25 ± 1 °C). It has been shown that the increase in the concentration of the CNF/ethanol mixture used for spraying from 3 to 30 mg/mL led to a growth in sensor response from 1.2% to 12.0% at 2 ppm NO2. The increase in the thickness of the CNF film of the sensor induced a growth in ΔR/R0 to NO2 that is attributed to the formation of a porous film. With increased film thickness, the response improves (from 7.0% to 10.6% at 2 ppm NO2) as does the signal-to-noise ratio (from 735:1 to 1892:1). The creation of hybrid all-carbon composites based on CNFs and multi-walled carbon nanotubes (MWCNTs) resulted in a decrease in both sensor response and signal-to-noise ratio; however, the response time and recovery degree improved. Two types of hybrid materials based on CNFs and MWCNTs were created using aerosol spraying to enhance the sensor behavior of CNFs. The obtained data confirm the dominant role of the thickness of CNF-based films and their density (in terms of distance between nearest carbon inclusions within the film) in sensor characteristics. The machine learning data used to describe the sensing behavior of two gases with opposite resistance changes when in contact with CNFs, namely NO2 and NH3, showed final accuracies of 92.13% on training data and 91.98% on validation data. Full article
Show Figures

Figure 1

16 pages, 19565 KB  
Article
High-Performance Ethylene Glycol Room-Temperature Gas Sensor Based on Biomass-Derived Na-Doped Porous Carbon Microtubules
by Yan Xu, Qihua Sun, Jialin Li, Zhaofeng Wu and Haiming Duan
Nanomaterials 2025, 15(22), 1686; https://doi.org/10.3390/nano15221686 - 7 Nov 2025
Viewed by 595
Abstract
Ethylene glycol (EG) is a vital industrial raw material. However, it has the potential to be hazardous to the environment and human health. High operating temperatures and long response/recovery times limit the wide application of EG sensors. Thus, we need to develop high-performance [...] Read more.
Ethylene glycol (EG) is a vital industrial raw material. However, it has the potential to be hazardous to the environment and human health. High operating temperatures and long response/recovery times limit the wide application of EG sensors. Thus, we need to develop high-performance room-temperature EG-sensing materials. This paper proposes the direct hydrothermal carbonization of magnolia hair to prepare porous microtubular carbon (CMH) for room-temperature EG sensing. SEM, TEM, and XPS characterization showed that the CMH exhibited a porous microtubular structure and contained Na, which enhanced the adsorption capacity of the CMH for ethylene glycol gas. The CMH sensor exhibits a high response (156.4) to 500 ppm ethylene glycol gas at room temperature with moderate response/recovery time (14.2/37.3 s). It exhibits good linearity in measuring EG gases in the 10–100 ppm range, with a 0.292 ppm theoretical detection limit. Additionally, CMH sensors provide excellent repeatability and long-term stability. The synergistic effect of microtubule porous structure and Na doping is the main reason for enhancing the response of the sensor to EG gas. On this basis, the gas-sensitive enhancement mechanism of CMH was analyzed. The results show that biomass carbon materials provide a new method to prepare high-performance EG gas sensors. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

18 pages, 4497 KB  
Article
Theoretical Comparison Between Noble Metal (Pd or Ru)-Doped GeS2 Monolayers as Sensitive Materials upon C4F7N Decomposed Gases
by Xinyu Guo, Shouxiao Ma, Yun Liu and Hao Cui
Inorganics 2025, 13(11), 348; https://doi.org/10.3390/inorganics13110348 - 24 Oct 2025
Viewed by 559
Abstract
This work comparably investigates the gas sensing potential of noble metal (Pd and Ru)-doped GeS2 monolayers upon three C4F7N decomposed species (FCN, CF3CN, and C2F4) using the first-principles theory, for operation status [...] Read more.
This work comparably investigates the gas sensing potential of noble metal (Pd and Ru)-doped GeS2 monolayers upon three C4F7N decomposed species (FCN, CF3CN, and C2F4) using the first-principles theory, for operation status evaluation in C4F7N-insulated devices. The Pd- and Ru-doping effects on the pristine GeS2 monolayer are analyzed, followed by the adsorption mechanism and sensing performance of two doped monolayers. Our results demonstrate that while Ru doping induces stronger surface interactions with the GeS2 substrate and consequently exhibits superior adsorption strengths upon the three gases, the Pd-doped monolayer shows remarkable advantages in charge transfer capability that leads to exceptional room-temperature sensitivity responses of −99.6% (FCN), −95.0% (CF3CN), and −88.0% (C2F4), thus significantly outperforming the Ru-doped system. Combined with the instantaneous recovery for gas desorption, the Pd-GeS2 monolayer holds significance as an ideal room-temperature sensor to monitor the operation status of C4F7N-insulated devices in power systems. This research provides promising insights into the application of GeS2-based materials for gas sensing in power systems and emphasizes the importance of dopant selection in designing high-performance gas sensing materials, especially for developing advanced electrical equipment monitoring technologies. Full article
Show Figures

Figure 1

25 pages, 4924 KB  
Review
Recent Progress in Low-Power-Consumption Metal Oxide Semiconductor Gas Sensors
by Yu Zhang, Renbo Li, Ruqi Guo, Mingzhi Jiao, Gang Wang and Zhikai Zhao
Materials 2025, 18(21), 4864; https://doi.org/10.3390/ma18214864 - 24 Oct 2025
Viewed by 3238
Abstract
Metal oxide semiconductor (MOS) gas sensors offer several advantages, including low cost, high accuracy, and ease of miniaturization. Thus, they are excellent candidates for environmental monitoring and food spoilage detection applications, particularly in the safe Internet of Things field or for portable instruments. [...] Read more.
Metal oxide semiconductor (MOS) gas sensors offer several advantages, including low cost, high accuracy, and ease of miniaturization. Thus, they are excellent candidates for environmental monitoring and food spoilage detection applications, particularly in the safe Internet of Things field or for portable instruments. Typically, there are two general routes for realizing low-power-consumption MOS gas sensors: room-temperature MOS gas sensors or MEMS MOS gas sensors. The review focuses on the detection of four typical gases, namely methane, hydrogen, carbon monoxide, and nitrogen dioxide, systematically summarizing and analyzing the most recent results of low-power-consumption MOS gas sensors. The 2D materials, MOS composites, and 3D structured composites exhibit excellent room-temperature gas detection capabilities. The mechanism of the room-temperature gas sensors is also discussed in detail. Another route is MEMS MOS gas sensors. First, the progress of the micro-hotplate research is introduced. Then, several of the latest reported MEMS MOS gas sensors are shown and compared. The gas sensing mechanism of these MEMS MOS gas sensors is also given. The paper will provide a valuable guide for researchers in the MOS gas sensor field, particularly for those working towards low-power-consumption MOS gas sensors. Full article
Show Figures

Figure 1

31 pages, 5318 KB  
Review
Recent Advances in Doping and Polymer Hybridization Strategies for Enhancing ZnO-Based Gas Sensors
by Nazir Mustapha, Boutheina Ben Abdelaziz, Majdi Benamara and Mokhtar Hjiri
Nanomaterials 2025, 15(21), 1609; https://doi.org/10.3390/nano15211609 - 22 Oct 2025
Cited by 3 | Viewed by 1132
Abstract
Zinc oxide (ZnO) nanomaterials have emerged as promising candidates for gas sensing applications due to their high sensitivity, fast response–recovery cycles, thermal and chemical stability, and low fabrication cost. However, the performance of pristine ZnO remains limited by high operating temperatures, poor selectivity, [...] Read more.
Zinc oxide (ZnO) nanomaterials have emerged as promising candidates for gas sensing applications due to their high sensitivity, fast response–recovery cycles, thermal and chemical stability, and low fabrication cost. However, the performance of pristine ZnO remains limited by high operating temperatures, poor selectivity, and suboptimal detection at low gas concentrations. To address these limitations, significant research efforts have focused on dopant incorporation and polymer hybridization. This review summarizes recent advances in dopant engineering using elements such as Al, Ga, Mg, In, Sn, and transition metals (Co, Ni, Cu), which modulate ZnO’s crystal structure, defect density, carrier concentration, and surface activity—resulting in enhanced gas adsorption and electron transport. Furthermore, ZnO–polymer nanocomposites (e.g., with polyaniline, polypyrrole, PEG, and chitosan) exhibit improved flexibility, surface functionality, and room-temperature responsiveness due to the presence of active functional groups and tunable porosity. The synergistic combination of dopants and polymers facilitates enhanced charge transfer, increased surface area, and stronger gas–molecule interactions. Where applicable, sol–gel-based studies are explicitly highlighted and contrasted with non-sol–gel routes to show how synthesis controls defect chemistry, morphology, and sensing metrics. This review provides a comprehensive understanding of the structure–function relationships in doped ZnO and ZnO–polymer hybrids and offers guidelines for the rational design of next-generation, low-power, and selective gas sensors for environmental and industrial applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

21 pages, 13386 KB  
Article
Enhanced Gas Sensitivity Characteristics of NO2 Sensor Based on a Silicon Micropillar Design Strategy at Room Temperature
by Zhiyuan Zhang, An Ning, Jian-Jun Zhu, Yi-Yu Yue, Zhi-Qiang Fan and Sai Chen
Sensors 2025, 25(20), 6406; https://doi.org/10.3390/s25206406 - 17 Oct 2025
Viewed by 581
Abstract
In this study, two types of gas sensors—silicone-based interdigital electrode and silicon micropillar sensors based on rGO and rGO/SnO2—were fabricated. Their gas-sensing performance was investigated at room temperature. First, interdigital electrodes of different channel widths were fabricated to investigate the impact [...] Read more.
In this study, two types of gas sensors—silicone-based interdigital electrode and silicon micropillar sensors based on rGO and rGO/SnO2—were fabricated. Their gas-sensing performance was investigated at room temperature. First, interdigital electrodes of different channel widths were fabricated to investigate the impact of the channel width parameter. Subsequently, the rGO/SnO2 doping ratio in the composite material was varied to identify the optimal composition for gas sensitivity. Additionally, triangular and square-arrayed silicon micropillar substrates were fabricated via photolithography and inductively coupled plasma etching. The rGO/SnO2-based gas sensor on a silicon micropillar substrate exhibited an ultra-high specific surface area. The triangular micropillar arrangement of rGO/SnO2-160 demonstrates the best performance, showing approximately 14% higher response and a 106 s reduction in response time compared with interdigital electrode sensors spray-coated with the same concentration of rGO/SnO2 when tested at room temperature under 250 ppm NO2. The optimized sensor achieves a detection limit as low as 5 ppm and maintains high responsiveness, even in conditions of 60% relative humidity (RH). Additionally, the repeatability, selectivity, and stability of the sensor were evaluated. Finally, structural and morphological characterization was conducted using XRD, SEM, TEM, and Raman spectroscopy, which confirmed the successful modification of rGO with SnO2. Full article
(This article belongs to the Special Issue Recent Advances in Gas Sensors)
Show Figures

Figure 1

17 pages, 3452 KB  
Article
Room Temperature Sub-ppm NO2 Gas Sensor Based on Ag/SnS2 Heterojunction Driven by Visible Light
by Ding Gu, Jun Dong, Wei Liu and Xiaogan Li
Chemosensors 2025, 13(10), 368; https://doi.org/10.3390/chemosensors13100368 - 10 Oct 2025
Cited by 1 | Viewed by 1478
Abstract
As industrial waste gas, nitrogen dioxide (NO2) is a serious hazard to air pollution and human health, and there is a pressing demand for developing high-performance NO2 gas sensors. Tin disulfide (SnS2), a representative two-dimensional metal sulfide characterized [...] Read more.
As industrial waste gas, nitrogen dioxide (NO2) is a serious hazard to air pollution and human health, and there is a pressing demand for developing high-performance NO2 gas sensors. Tin disulfide (SnS2), a representative two-dimensional metal sulfide characterized by a significant specific surface area, a suitable electron band gap, and an easily tunable layered structure, shows a broad application prospect in gas sensing applications. Nevertheless, SnS2-based gas sensors suffer from poor sensitivity, which seriously hinders their application in room temperature gas sensing. In this study, Ag/SnS2 heterojunction nanomaterials were synthesized by an in situ reduction approach. The findings reveals that the gas-sensitive response of the Ag/SnS2 nanocomposites at room temperature under visible light irradiation can achieve 10.5 to 1 ppm NO2, with a detection limit as low as 200 ppb, which realizes the room-temperature detection of Sub-ppm NO2. Meanwhile, the sensor exhibits good selectivity, reproducibility (cyclic stability > 95%). The improved gas sensitivity of the Ag/SnS2 sensor can be due to the synergistic effect of the carrier separation at the Ag/SnS2 Schottky junction and the localized surface plasmon resonance (LSPR) of Ag nanoparticles. The LSPR effect significantly enhances light absorption and surface-active site density, facilitating trace NO2 detection at room temperature. This study provides the foundation for the subsequent development of room temperature layered metal sulfide gas sensors. Full article
(This article belongs to the Special Issue Advanced Chemical Sensors in Gas Detection)
Show Figures

Figure 1

13 pages, 4976 KB  
Article
Nanostructured CeO2-C Derived from Ce-BDC Precursors for Room-Temperature Ammonia Sensing
by Liang Wang, Manyi Liu, Shan Ren, Xiankang Zhong, Bofeng Bai, Shouning Chai, Chi He and Xinzhe Li
Chemosensors 2025, 13(10), 362; https://doi.org/10.3390/chemosensors13100362 - 3 Oct 2025
Viewed by 990
Abstract
The prompt and reliable detection of NH3 leakage at room temperature (RT) is considered important for safety assurance and sustainable production. Although chemiresistive NH3 sensors feature low cost and structural simplicity, their practical application is hindered by high operating temperatures and [...] Read more.
The prompt and reliable detection of NH3 leakage at room temperature (RT) is considered important for safety assurance and sustainable production. Although chemiresistive NH3 sensors feature low cost and structural simplicity, their practical application is hindered by high operating temperatures and inadequate selectivity. Metal–organic frameworks (MOFs) and their derivatives offer a promising approach to address these limitations. In this work, Ce-BDC precursors with tunable particle sizes and crystallinity were synthesized by adjusting the raw material concentration. Controlled pyrolysis yielded a series of CeO2-C-X (X = 0.5, 1, 1.5, 2) materials with nanosized particles. Among them, the CeO2-C-1 sensor delivered a high response of 82% toward NH3 under 40% relative humidity at RT. Moreover, it possessed excellent selectivity, repeatability, and rapid response-recovery behavior compared with the other samples. CeO2-C-1 also remained stable under varying oxygen and humidity conditions, demonstrating high applicability. The superior sensing properties may be attributed to its high specific surface area and optimized mesoporous structure, which facilitated efficient gas adsorption and reaction. These findings demonstrated that precise control of MOF precursors and the structure in CeO2 nanomaterials was critical for achieving high-performance gas sensing and established Ce-MOF-derived CeO2 as a promising sensing material for NH3 detection at RT. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors)
Show Figures

Figure 1

Back to TopTop