Polymer-Based Gas Sensors for Detection of Disease Biomarkers in Exhaled Breath
Abstract
1. Introduction
2. Gas-Sensing Mechanisms and Performance
2.1. Principle and Sensing Mechanism

2.2. Performance Evaluation
3. Gas Sensors Based on Conducting Polymers
3.1. NH3
3.2. H2S
3.3. H2
3.4. NOX
3.5. Acetone
4. Emerging Trends in Intelligent Polymer Gas Sensors and Electronic Noses
4.1. Applications of Machine Learning in Polymer-Based Gas Sensors
4.2. Design and Future Trends of Electronic-Nose (E-Nose) Sensor Arrays
4.3. Future Perspectives and Challenges
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaloumenou, M.; Skotadis, E.; Lagopati, N.; Efstathopoulos, E.; Tsoukalas, D. Breath analysis: A promising tool for disease diagnosis—The role of sensors. Sensors 2022, 22, 1238. [Google Scholar] [CrossRef]
- Pham, Y.L.; Beauchamp, J. Breath biomarkers in diagnostic applications. Molecules 2021, 26, 5514. [Google Scholar] [CrossRef]
- Kim, D.; Lee, J.; Park, M.K.; Ko, S.H. Recent developments in wearable breath sensors for healthcare monitoring. Commun. Mater. 2024, 5, 41. [Google Scholar] [CrossRef]
- Li, Y.; Wei, X.; Zhou, Y.; Wang, J.; You, R. Research progress of electronic nose technology in exhaled breath disease analysis. Microsyst. Nanoeng. 2023, 9, 129. [Google Scholar] [CrossRef] [PubMed]
- Ricci, P.P.; Gregory, O.J. Sensors for the detection of ammonia as a potential biomarker for health screening. Sci. Rep. 2021, 11, 7185. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, G.; Xu, J.-L.; Zhang, M.; Kuo, C.-C.; Wang, S.-D. Conducting polymer-inorganic nanocomposite-based gas sensors: A review. Sci. Technol. Adv. Mater. 2020, 21, 768–786. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wu, M.; Gao, L.; Liu, H.; Yu, J. Nanoporous polymer films based on breath figure method for stretchable chemiresistive NO2 gas sensors. Sens. Actuators B Chem. 2022, 371, 132540. [Google Scholar] [CrossRef]
- Pathak, A.K.; Swargiary, K.; Kongsawang, N.; Jitpratak, P.; Ajchareeyasoontorn, N.; Udomkittivorakul, J.; Viphavakit, C. Recent advances in sensing materials targeting clinical volatile organic compound (VOC) biomarkers: A review. Biosensors 2023, 13, 114. [Google Scholar] [CrossRef]
- Verma, A.; Gupta, R.; Verma, A.S.; Kumar, T. A review of composite conducting polymer-based sensors for detection of industrial waste gases. Sens. Actuators Rep. 2023, 5, 100143. [Google Scholar] [CrossRef]
- Velumani, M.; Prasanth, A.; Narasimman, S.; Chandrasekhar, A.; Sampson, A.; Meher, S.R.; Rajalingam, S.; Rufus, E.; Alex, Z.C. Nanomaterial-based sensors for exhaled breath analysis: A review. Coatings 2022, 12, 1989. [Google Scholar] [CrossRef]
- Zhu, C.; Zhou, T.; Xia, H.; Zhang, T. Flexible room-temperature ammonia gas sensors based on PANI-MWCNTs/PDMS film for breathing analysis and food safety. Nanomaterials 2023, 13, 1158. [Google Scholar] [CrossRef]
- Li, S.; Tang, W.; Chen, S.; Si, Y.; Liu, R.; Guo, X. Flexible organic polymer gas sensor and system integration for smart packaging. Adv. Sens. Res. 2023, 2, 2300030. [Google Scholar] [CrossRef]
- Dong, R.; Yang, M.; Zuo, Y.; Liang, L.; Xing, H.; Duan, X.; Chen, S. Conducting polymers-based gas sensors: Principles, materials, and applications. Sensors 2025, 25, 2724. [Google Scholar] [CrossRef]
- Wang, P.; Xu, S.; Shi, X.; Zhu, J.; Xiong, H.; Wen, H. Recent advances in resistive gas sensors: Fundamentals, material and device design, and intelligent applications. Chemosensors 2025, 13, 224. [Google Scholar] [CrossRef]
- Wang, L.; Choi, J. Advances in inorganic conductive material- and organic conductive polymer-based resistive gas sensors for room-temperature H2S detection. Micro Nano Syst. Lett. 2025, 13, 5. [Google Scholar] [CrossRef]
- Sunny, S.; Jena, S.S.; Shah, S.; Gopalani, B.; Hazra, A.; Garg, M.; Ghosh, S. Exploring an n-type conducting polymer (BBL) as a potential gas sensing material for NH3 and H2S detection. Sci. Rep. 2025, 15, 10623. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Cao, X.; Li, C.; Zhou, M.; Liu, T.; Liu, J.; Zhang, L. A review of machine learning-assisted gas sensor arrays in medical diagnosis. Biosensors 2025, 15, 548. [Google Scholar] [CrossRef]
- Song, G.; Jiang, D.; Wu, J.; Sun, X.; Deng, M.; Wang, L.; Hao, C.; Shi, J.; Liu, H.; Tian, Y.; et al. An ultrasensitive fluorescent breath ammonia sensor for noninvasive diagnosis of chronic kidney disease and helicobacter pylori infection. Chem. Eng. J. 2022, 440, 135979. [Google Scholar] [CrossRef]
- Ma, T.-t.; Chang, Z.; Zhang, N.; Xu, H. Application of electronic nose technology in the diagnosis of gastrointestinal diseases: A review. J. Cancer Res. Clin. Oncol. 2024, 150, 401. [Google Scholar] [CrossRef]
- Glöckler, J.; Jaeschke, C.; Padilla, M.; Mitrovics, J.; Mizaikoff, B. Ultratrace enose sensing of VOCs toward breath analysis applications utilizing an enose-based analyzer. ACS Meas. Sci. Au 2024, 4, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Vitazkova, D.; Foltan, E.; Kosnacova, H.; Micjan, M.; Donoval, M.; Kuzma, A.; Kopani, M.; Vavrinsky, E. Advances in respiratory monitoring: A comprehensive review of wearable and remote technologies. Biosensors 2024, 14, 90. [Google Scholar] [CrossRef]
- Dan, Y.; Cao, Y.; Mallouk, T.E.; Johnson, A.T.; Evoy, S. Dielectrophoretically assembled polymer nanowires for gas sensing. Sens. Actuators B Chem. 2007, 125, 55–59. [Google Scholar] [CrossRef]
- King, J.; Unterkofler, K.; Teschl, G.; Teschl, S.; Mochalski, P.; Koç, H.; Hinterhuber, H.; Amann, A. A modeling-based evaluation of isothermal rebreathing for breath gas analyses of highly soluble volatile organic compounds. J. Breath Res. 2012, 6, 016005. [Google Scholar] [CrossRef]
- Likhite, R.; Banerjee, A.; Majumder, A.; Karkhanis, M.; Kim, H.; Mastrangelo, C.H. VOC sensing using batch-fabricated temperature compensated self-leveling microstructures. Sens. Actuators B Chem. 2020, 311, 127817. [Google Scholar] [CrossRef]
- Kodu, M.; Berholts, A.; Kahro, T.; Kook, M.; Ritslaid, P.; Seemen, H.; Avarmaa, T.; Alles, H.; Jaaniso, R. Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor. Beilstein J. Nanotechnol. 2017, 8, 571–578. [Google Scholar] [CrossRef]
- Luo, W.; Dai, F.; Liu, Y.; Wang, X.; Li, M. Pulse-driven MEMS gas sensor combined with machine learning for selective gas identification. Microsyst. Nanoeng. 2025, 11, 72. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Zhou, Q.; Chen, G.; Fang, Y.; Kurilova, O.; Liu, Z.; Li, S.; Chen, J. Advances in wearable respiration sensors. Mater. Today 2024, 72, 140–162. [Google Scholar] [CrossRef]
- Rydosz, A. Sensors for enhanced detection of acetone as a potential tool for noninvasive diabetes monitoring. Sensors 2018, 18, 2298. [Google Scholar] [CrossRef]
- Liu, M.; Ren, R.; Zhou, X.; Zhu, S.; Wang, T. From gas sensing to ai–gas sensing. Chem. Commun. 2025, 61, 9996–10010. [Google Scholar] [CrossRef]
- Bai, H.; Shi, G. Gas sensors based on conducting polymers. Sensors 2007, 7, 267–307. [Google Scholar] [CrossRef]
- Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M.V. Chemiresistive polyaniline-based gas sensors: A mini review. Sens. Actuators B Chem. 2015, 220, 534–548. [Google Scholar] [CrossRef]
- Li, W.; Lefferts, M.J.; Armitage, B.I.; Murugappan, K.; Castell, M.R. Polypyrrole percolation network gas sensors: Improved reproducibility through conductance monitoring during polymer growth. ACS Appl. Polym. Mater. 2022, 4, 2536–2543. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Park, C.S.; Yoon, H. Chemo-electrical gas sensors based on conducting polymer hybrids. Polymers 2017, 9, 155. [Google Scholar] [CrossRef]
- Bhattacharyya, A.S. Conducting polymers in biosensing: A review. Chem. Phys. Impact 2024, 8, 100642. [Google Scholar] [CrossRef]
- Bulemo, P.M.; Kim, D.-H.; Shin, H.; Cho, H.-J.; Koo, W.-T.; Choi, S.-J.; Park, C.; Ahn, J.; Güntner, A.T.; Penner, R.M.; et al. Selectivity in chemiresistive gas sensors: Strategies and challenges. Chem. Rev. 2025, 125, 4111–4183. [Google Scholar] [CrossRef]
- Das, M.; Roy, S. Polypyrrole and associated hybrid nanocomposites as chemiresistive gas sensors: A comprehensive review. Mater. Sci. Semicond. Process. 2021, 121, 105332. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, W.; Kumar, R.; Kumar, M.; Zhang, J. Conducting polymer-based nanostructures for gas sensors. Coord. Chem. Rev. 2022, 462, 214517. [Google Scholar] [CrossRef]
- Askar, P.; Kanzhigitova, D.; Tapkharov, A.; Umbetova, K.; Duisenbekov, S.; Adilov, S.; Nuraje, N. Hydrogen sensors based on polyaniline and its hybrid materials: A mini review. Discov. Nano 2025, 20, 68. [Google Scholar] [CrossRef] [PubMed]
- Wohltjen, H.; Barger, W.; Snow, A.; Jarvis, N.L. A vapor-sensitive chemiresistor fabricated with planar microelectrodes and a Langmuir-blodgett organic semiconductor film. IEEE Trans. Electron Devices 1985, 32, 1170–1174. [Google Scholar] [CrossRef]
- Masemola, C.M.; Moloto, N.; Tetana, Z.; Linganiso, L.Z.; Motaung, T.E.; Linganiso-Dziike, E.C. Advances in polyaniline-based composites for room-temperature chemiresistor gas sensors. Processes 2025, 13, 401. [Google Scholar] [CrossRef]
- Scott, C.; Giri, H.; Dowell, T.; Almtiri, M. Polyaniline derivatives and their applications. In Trends and Developments in Modern Applications of Polyaniline; Năstase, F., Ed.; IntechOpen: London, UK, 2023; Volume 17, p. 176. [Google Scholar]
- Korent, A.; Žagar Soderžnik, K.; Šturm, S.; Žužek Rožman, K.; Redon, N.; Wojkiewicz, J.-L.; Duc, C. Facile fabrication of an ammonia-gas sensor using electrochemically synthesised polyaniline on commercial screen-printed three-electrode systems. Sensors 2021, 21, 169. [Google Scholar] [CrossRef]
- Wang, Y.; Lan, Z.; Wang, J.; Zhu, K.; He, J.; Chou, X.; Zhou, Y. Advancement in functionalized electrospun nanofiber-based gas sensors: A review. Sensors 2025, 25, 4896. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, H.; Wang, Y.; Zhou, Y. Approaches for selectivity improvement of conductometric gas sensors: An overview. Sens. Diagn. 2024, 3, 336–353. [Google Scholar] [CrossRef]
- Panda, S.; Mehlawat, S.; Dhariwal, N.; Kumar, A.; Sanger, A. Comprehensive review on gas sensors: Unveiling recent developments and addressing challenges. Mater. Sci. Eng. B 2024, 308, 117616. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U. Conduction model of metal oxide gas sensors. J. Electroceramics 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef]
- Walker, J.; Karnati, P.; Miller, D.R.; Al-Hashem, M.; Akbar, S.A.; Morris, P.A. A new open-access online database for resistive-type gas sensor properties and performance. Sens. Actuators B Chem. 2020, 321, 128591. [Google Scholar] [CrossRef]
- Mirzaei, A.; Lee, J.-H.; Majhi, S.M.; Weber, M.; Bechelany, M.; Kim, H.W.; Kim, S.S. Resistive gas sensors based on metal-oxide nanowires. J. Appl. Phys. 2019, 126, 241102. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Eranna, G.; Joshi, B.C.; Runthala, D.P.; Gupta, R.P. Oxide materials for development of integrated gas sensors—A comprehensive review. Crit. Rev. Solid State Mater. Sci. 2004, 29, 111–188. [Google Scholar] [CrossRef]
- Yaqoob, U.; Younis, M.I. Chemical gas sensors: Recent developments, challenges, and the potential of machine learning—A review. Sensors 2021, 21, 2877. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Wang, X.; Sun, F.; Tong, X.; Zhu, C.; Lv, Q.; Ye, D.; Wang, S.; Luo, W.; Huang, Y. Aligned hierarchical Ag/ZnO nano-heterostructure arrays via electrohydrodynamic nanowire template for enhanced gas-sensing properties. Sci. Rep. 2017, 7, 12206. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, B.; Zhang, B.; Wang, Y.; Bala, H.; Zhang, Z. Structural evolution of NiO from porous nanorods to coral-like nanochains with enhanced methane sensing performance. Sens. Actuators B Chem. 2021, 334, 129645. [Google Scholar] [CrossRef]
- Akamatsu, T.; Itoh, T.; Izu, N.; Shin, W. NO and NO2 Sensing Properties of WO3 and Co3O4 Based Gas Sensors. Sensors 2013, 13, 12467–12481. [Google Scholar] [CrossRef]
- Sha, J.; Shi, H.; Zhang, Y.; Chen, C.; Liu, L.; Chen, Y. Salt gradient improving signal-to-noise ratio in solid-state nanopore. ACS Sens. 2017, 2, 506–512. [Google Scholar] [CrossRef]
- Yang, S.; Guo, C.; Li, Y.; Guo, J.; Xiao, J.; Qing, Z.; Li, J.; Yang, R. A ratiometric two-photon fluorescent cysteine probe with well-resolved dual emissions based on intramolecular charge transfer-mediated two-photon-FRET integration mechanism. ACS Sens. 2018, 3, 2415–2422. [Google Scholar] [CrossRef]
- Vera, L.; Mestres, M.; Boqué, R.; Busto, O.; Guasch, J. Use of synthetic wine for models transfer in wine analysis by HS-MS e-nose. Sens. Actuators B Chem. 2010, 143, 689–695. [Google Scholar] [CrossRef]
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A review on detection of heavy metal ions in water—An electrochemical approach. Sens. Actuators B Chem. 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Boonkaew, S.; Jang, I.; Noviana, E.; Siangproh, W.; Chailapakul, O.; Henry, C.S. Electrochemical paper-based analytical device for multiplexed, point-of-care detection of cardiovascular disease biomarkers. Sens. Actuators B Chem. 2021, 330, 129336. [Google Scholar] [CrossRef]
- Nayak, B.B.; Vitta, S.; Bahadur, D. Synthesis and properties of nanograined La-Ca-manganite–Ni-ferrite composites. Mater. Sci. Eng. B 2007, 139, 171–176. [Google Scholar] [CrossRef]
- Kim, H.-J.; Lee, J.-H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Enkhtsetseg, E.; Byambagar, B.; Monkhoobor, D.; Avid, B.; Tuvshinjargal, A. Determination of sterane and triterpane in the tamsagbulag oilfield. Adv. Chem. Eng. Sci 2011, 1, 163–168. [Google Scholar]
- Anton, J.A.; Oudijk, G. A forensic approach for assessing modes of subsurface petroleum releases. J. Environ. Prot. 2016, 7, 312–322. [Google Scholar] [CrossRef]
- Xu, M.; Hou, D.; Cheng, X.; Gan, J.; Xu, X.; Liang, G.; Ding, W. Aliphatic biomarker signatures of early oligocene-early miocene source rocks in the central qiongdongnan basin:source analyses of organic matter. Acta Oceanol. Sin. 2023, 42, 1–18. [Google Scholar] [CrossRef]
- Saasa, V.; Beukes, M.; Lemmer, Y.; Mwakikunga, B. Blood ketone bodies and breath acetone analysis and their correlations in type 2 diabetes mellitus. Diagnostics 2019, 9, 224. [Google Scholar] [CrossRef]
- Wang, Y.; Weng, H.; Xu, D.; Zhang, S. Comparison of breath biomarker studies for early diagnosis of chronic kidney disease: A review. J. Breath Res. 2025, 19, 034002. [Google Scholar] [CrossRef]
- Liu, C.; Tai, H.; Zhang, P.; Yuan, Z.; Du, X.; Xie, G.; Jiang, Y. A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens. Actuators B Chem. 2018, 261, 587–597. [Google Scholar] [CrossRef]
- Moore, R.R., Jr.; Hirata-Dulas, C.A.; Kasiske, B.L. Use of urine specific gravity to improve screening for albuminuria. Kidney Int. 1997, 52, 240–243. [Google Scholar] [CrossRef]
- Ma, Z.; Zhao, X.; Cui, Z.; Zou, Y.; Xiang, C.; Xu, F.; Sun, L.; Kraatz, H.-B. A zero-, two-, and three-dimensional heterostructured MXene@Zn3In2S6@polyaniline composite for highly sensitive room temperature ammonia gas sensing. Sens. Actuators B Chem. 2025, 443, 138301. [Google Scholar] [CrossRef]
- Abdollahi-Esfahlani, H.; Sabzmeydani, H.; Pourmahdian, S.; Tanha, A.; Hadjizadeh, A. Development of three-dimension polyaniline-based ternary hierarchical architectures as chemiresistive ammonia gas sensor and smart green label for fish freshness. Microchem. J. 2025, 217, 114845. [Google Scholar] [CrossRef]
- Li, X.-D.; Huang, H.-X. Flexible and multifunctional pressure/gas sensors with polypyrrole-coated TPU hierarchical array. ACS Appl. Mater. Interfaces 2024, 16, 53072–53082. [Google Scholar] [CrossRef]
- Wongrat, E.; Moonmuang, I.; Chanlek, N.; Hongsith, N.; Pramchu, S.; Choopun, S. Enhanced ammonia gas sensing performance of in situ-polymerised ZnO/PANI–HCl-doped emeraldine base: Experimental and theoretical investigations. Sens. Actuators B Chem. 2025, 441, 137981. [Google Scholar] [CrossRef]
- Deng, S.; Peng, Y.; Zhou, J.; Huang, J.; Qin, Z.; Ran, Y.; Wang, N.; Ning, E.; Shen, L.; Hu, Y.; et al. Interfacial fluid manipulated strategies: Flexible polyaniline film with artificial microstructure for multifunctional sensing of physical and chemical stimuli. Chem. Eng. J. 2025, 522, 167881. [Google Scholar] [CrossRef]
- Lee, J.S.; Jun, J.; Shin, D.H.; Jang, J. Urchin-like polypyrrole nanoparticles for highly sensitive and selective chemiresistive sensor application. Nanoscale 2014, 6, 4188–4194. [Google Scholar] [CrossRef]
- Husain, A.; Ahmad, S.; Shariq, M.U.; Khan, M.M.A. Ultra-sensitive, highly selective and completely reversible ammonia sensor based on polythiophene/SWCNT nanocomposite. Materialia 2020, 10, 100704. [Google Scholar] [CrossRef]
- Guidotti, T.L. Hydrogen sulfide: Advances in understanding human toxicity. Int. J. Toxicol. 2010, 29, 569–581. [Google Scholar] [CrossRef]
- Yang, X.; Liu, J.; Xie, P.; Han, X.; Zhang, D.; Ye, Y.; Zhao, Y. Visualization of biothiols and HClO in cancer therapy via a multi-responsive fluorescent probe. Sens. Actuators B Chem. 2021, 347, 130620. [Google Scholar] [CrossRef]
- Jing, Q.; Gong, C.; Bian, W.; Tian, Q.; Zhang, Y.; Chen, N.; Xu, C.; Sun, N.; Wang, X.; Li, C.; et al. Ultrasensitive chemiresistive gas sensor can diagnose asthma and monitor its severity by analyzing its biomarker H2S: An experimental, clinical, and theoretical study. ACS Sens. 2022, 7, 2243–2252. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Du, L.; Xing, X.; Wang, C.; Chen, J.; Zhu, Z.; Tian, Y.; Yang, D. Highly sensitive and selective NiO/WO3 composite nanoparticles in detecting H2S biomarker of halitosis. ACS Sens. 2021, 6, 733–741. [Google Scholar] [CrossRef]
- Duc, C.; Boukhenane, M.L.; Fagniez, T.; Khouchaf, L.; Redon, N.; Wojkiewicz, J.-L. Conductive polymer composites for hydrogen sulphide sensors working at sub-PPM level and room temperature. Sensors 2021, 21, 6529. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, Z.; Zong, X. Flexible and highly sensitive H2S gas sensor based on in-situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. Sens. Actuators B Chem. 2019, 289, 32–41. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, K.; Sun, J.; Zhang, D.; Luo, R.; Li, D.; Liu, C. Polythiophene-WO3 hybrid architectures for low-temperature H2S detection. Sens. Actuators B Chem. 2014, 197, 142–148. [Google Scholar] [CrossRef]
- Bibi, A.; Rubio, Y.R.M.; Santiago, K.S.; Jia, H.-W.; Ahmed, M.M.M.; Lin, Y.-F.; Yeh, J.-M. H2S-Sensing studies using interdigitated electrode with spin-coated carbon aerogel-polyaniline composites. Polymers 2021, 13, 1457. [Google Scholar] [CrossRef]
- Preethichandra, D.M.G.; Gholami, M.D.; Izake, E.L.; O′Mullane, A.P.; Sonar, P. Conducting polymer based ammonia and hydrogen sulfide chemical sensors and their suitability for detecting food spoilage. Adv. Mater. Technol. 2023, 8, 2200841. [Google Scholar] [CrossRef]
- Saravanan, K.K.; Siva Karthik, P.; Mirtha, P.R.; Balaji, J.; Rajeshkanna, B. A one-pot hydrothermal-induced PANI/SnO2 and PANI/SnO2/rGO ternary composites for high-performance chemiresistive-based H2S and NH3 gas sensors. J. Mater. Sci. Mater. Electron. 2020, 31, 8825–8836. [Google Scholar] [CrossRef]
- Gautam, S.K.; Panda, S. Effect of moisture and molecular weight of polyaniline on H2S sensing characteristics. Sens. Actuators B Chem. 2021, 344, 130323. [Google Scholar] [CrossRef]
- Buttner, W.J.; Post, M.B.; Burgess, R.; Rivkin, C. An overview of hydrogen safety sensors and requirements. Int. J. Hydrogen Energy 2011, 36, 2462–2470. [Google Scholar] [CrossRef]
- Jung, H.; Hwang, J.; Choe, Y.-S.; Lee, H.-S.; Lee, W. Highly Sensitive and Selective Detection of Hydrogen Using Pd-Coated SnO2 Nanorod Arrays for Breath-Analyzer Applications. Sensors 2022, 22, 2056. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, H.; Bu, X.; Wu, Q.; Wang, X.; Han, C.; Li, X.; Wang, X.; Liu, W. Improving ammonia detecting performance of polyaniline decorated rGO composite membrane with GO doping. Materials 2021, 14, 2829. [Google Scholar] [CrossRef]
- Askar, P.; Kanzhigitova, D.; Ospanova, A.; Tapkharov, A.; Duisenbekov, S.; Abutalip, M.; Soltabayev, B.; Turlybekuly, A.; Adilov, S.; Nuraje, N. 1 ppm-detectable hydrogen gas sensor based on nanostructured polyaniline. Sci. Rep. 2024, 14, 26984. [Google Scholar] [CrossRef]
- Cho, S.; Lee, J.S.; Jun, J.; Jang, J. High-sensitivity hydrogen gas sensors based on Pd-decorated nanoporous poly(aniline-co-aniline-2-sulfonic acid):poly(4-styrenesulfonic acid). J. Mater. Chem. A 2014, 2, 1955–1966. [Google Scholar] [CrossRef]
- Virji, S.; Kaner, R.B.; Weiller, B.H. Hydrogen sensors based on conductivity changes in polyaniline nanofibers. J. Phys. Chem. B 2006, 110, 22266–22270. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Qi, S.; Zhang, S.; Wang, Y.; Zhao, Y.; Zou, Y.; Luo, Y.; Wang, P.; Wu, L. Short- and medium-chain chlorinated paraffins in honey from China: Distribution, source analysis, and risk assessment. Environ. Pollut. 2022, 308, 119695. [Google Scholar] [CrossRef]
- Mokrushin, A.S.; Gorban, Y.M.; Averin, A.A.; Gorobtsov, P.Y.; Simonenko, N.P.; Lebedinskii, Y.Y.; Simonenko, E.P.; Kuznetsov, N.T. Obtaining of ZnO/Fe2O3 Thin Nanostructured Films by AACVD for Detection of ppb-Concentrations of NO2 as a Biomarker of Lung Infections. Biosensors 2023, 13, 445. [Google Scholar] [CrossRef]
- Umar, A.; Ibrahim, A.A.; Algadi, H.; Albargi, H.; Alsairi, M.A.; Wang, Y.; Akbar, S. Enhanced NO2 gas sensor device based on supramolecularly assembled polyaniline/silver oxide/graphene oxide composites. Ceram. Int. 2021, 47, 25696–25707. [Google Scholar] [CrossRef]
- Zheng, Q.-Y.; Yang, M.; Dong, X.; Zhang, X.-F.; Cheng, X.-L.; Huo, L.-H.; Major, Z.; Xu, Y.-M. ZnO/PANI nanoflake arrays sensor for ultra-low concentration and rapid detection of NO2 at room temperature. Rare Met. 2023, 42, 536–544. [Google Scholar] [CrossRef]
- Kamble, D.B.; Sharma, A.K.; Yadav, J.B.; Patil, V.B.; Devan, R.S.; Jatratkar, A.A.; Yewale, M.A.; Ganbavle, V.V.; Pawar, S.D. Facile chemical bath deposition method for interconnected nanofibrous polythiophene thin films and their use for highly efficient room temperature NO2 sensor application. Sens. Actuators B Chem. 2017, 244, 522–530. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, J.; Wang, S.; Li, X.; Wang, H.; Song, Y.-Y.; Song, P.; Gao, Z.; Zhao, C. Accelerating carrier transfer in dual p–n heterojunctions by Mo–N coupling to gain an ultrahigh-sensitive NO2 sensing at room temperature for asthma diagnosis. ACS Sens. 2025, 10, 3681–3691. [Google Scholar] [CrossRef]
- Xie, D.; Jiang, Y.; Pan, W.; Li, D.; Wu, Z.; Li, Y. Fabrication and characterization of polyaniline-based gas sensor by ultra-thin film technology. Sens. Actuators B Chem. 2002, 81, 158–164. [Google Scholar] [CrossRef]
- Navale, S.T.; Mane, A.T.; Khuspe, G.D.; Chougule, M.A.; Patil, V.B. Room temperature NO2 sensing properties of polythiophene films. Synth. Met. 2014, 195, 228–233. [Google Scholar] [CrossRef]
- Kroutil, J.; Laposa, A.; Voves, J.; Davydova, M.; Nahlik, J.; Kulha, P.; Husak, M. Performance evaluation of low-cost flexible gas sensor array with nanocomposite polyaniline films. IEEE Sens. J. 2018, 18, 3759–3766. [Google Scholar] [CrossRef]
- Amiri, V.; Roshan, H.; Mirzaei, A.; Neri, G.; Ayesh, A.I. Nanostructured metal oxide-based acetone gas sensors: A review. Sensors 2020, 20, 3096. [Google Scholar] [CrossRef]
- Amann, A.; Costello, B.d.L.; Miekisch, W.; Schubert, J.; Buszewski, B.; Pleil, J.; Ratcliffe, N.; Risby, T. The human volatilome: Volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res. 2014, 8, 034001. [Google Scholar] [CrossRef]
- Alizadeh, N.; Jamalabadi, H.; Tavoli, F. Breath Acetone Sensors as Non-Invasive Health Monitoring Systems: A Review. IEEE Sens. J. 2020, 20, 5–31. [Google Scholar] [CrossRef]
- Rodríguez-Torres, M.; Altuzar, V.; Mendoza-Barrera, C.; Beltrán-Pérez, G.; Castillo-Mixcóatl, J.; Muñoz-Aguirre, S. Acetone Detection and Classification as Biomarker of Diabetes Mellitus Using a Quartz Crystal Microbalance Gas Sensor Array. Sensors 2023, 23, 9823. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Kim, J.-Y.; Mirzaei, A.; Nam, M.-S.; Kim, H.W.; Kim, S.S. Room-temperature detection of acetone gas by PANI/NiO-loaded TiO2 nanoparticles under UV irradiation. Sens. Actuators B Chem. 2023, 374, 132850. [Google Scholar] [CrossRef]
- Byeon, J.-H.; Kim, J.-S.; Kang, H.-K.; Kang, S.; Kim, J.-Y. Acetone gas sensor based on SWCNT/Polypyrrole/Phenyllactic acid nanocomposite with high sensitivity and humidity stability. Biosensors 2022, 12, 354. [Google Scholar] [CrossRef]
- Adhikari, M.; Das, S.; Chattopadhyay, D.; Saha, D.; Pal, M. Room-temperature high-performance trace level acetone sensor based on polypyrrole nanotubes. ChemNanoMat 2023, 9, e202300191. [Google Scholar] [CrossRef]
- Davis, D.; Narayanan, S.K.; Ajeev, A.; Nair, J.; Jeeji, J.; Vijayan, A.; Viyyur Kuttyadi, M.; Nelliparambil Sathian, A.; Arulraj, A.K. Flexible paper-based room-temperature acetone sensors with ultrafast regeneration. ACS Appl. Mater. Interfaces 2023, 15, 25734–25743. [Google Scholar] [CrossRef]
- Yang, L.; Mao, L.; Du, S.; Wang, Z.; Fu, W.; Yao, C.; Xu, L.; Zhang, H.; Cheng, H. Highly sensitive and fast response/recovery ammonia sensor based on PANI/LIG at room temperature. Sens. Actuators B Chem. 2025, 437, 137710. [Google Scholar] [CrossRef]
- Aalam, S.M.; Farooq, A.; Sarvar, M.; Bhat, M.N.; Tomar, M.; Raza, M.M.H.; Ali, J. To study the performance of polyaniline-based copper and carbon-nanotube (PANI@Cu@CNT) nanocomposite for harmful NH3 gas sensing. Sci. Rep. 2025, 15, 26886. [Google Scholar] [CrossRef]
- Azmoodeh, Z.; Nasirian, S.; Milani Moghaddam, H. Improving H2 gas sensing with ZnMn2O4/Polypyrrole Nanocomposite. Int. J. Hydrog. Energy 2024, 85, 854–864. [Google Scholar] [CrossRef]
- Yadhukrishnan, K.V.; Jose, S.P.; Vasu, V.; Jose, J. Fabrication of polythiophene/graphitic carbon nitride IDE sensors for exceptional room temperature hydrogen sensitivity. Int. J. Hydrogen Energy 2024, 93, 1088–1099. [Google Scholar] [CrossRef]
- Pippara, R.K.; Chauhan, P.S.; Yadav, A.; Kishnani, V.; Gupta, A. Room temperature hydrogen sensing with polyaniline/SnO2/Pd nanocomposites. Micro Nano Eng. 2021, 12, 100086. [Google Scholar] [CrossRef]
- Hong, J.; Lee, S.; Seo, J.; Pyo, S.; Kim, J.; Lee, T. A highly sensitive hydrogen sensor with gas selectivity using a PMMA Membrane-Coated Pd nanoparticle/single-layer graphene hybrid. ACS Appl. Mater. Interfaces 2015, 7, 3554–3561. [Google Scholar] [CrossRef]
- Wang, X.; Wei, M.; Li, X.; Shao, S.; Ren, Y.; Xu, W.; Li, M.; Liu, W.; Liu, X.; Zhao, J. Large-area flexible printed thin-film transistors with semiconducting single-walled carbon nanotubes for NO2 sensors. ACS Appl. Mater. Interfaces 2020, 12, 51797–51807. [Google Scholar] [CrossRef]
- Zhai, Z.; Liu, Y.; Li, C.; Wang, D.; Wu, H. Electronic noses: From gas-sensitive components and practical applications to data processing. Sensors 2024, 24, 4806. [Google Scholar] [CrossRef]
- Ye, Z.; Liu, Y.; Li, Q. Recent progress in smart electronic nose technologies enabled with machine learning methods. Sensors 2021, 21, 7620. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.; Yuan, C.; Fu, D.; Liu, J. Formaldehyde gas sensors fabricated with polymer-based materials: A review. Chemosensors 2023, 11, 134. [Google Scholar] [CrossRef]
- Zhou, G.; Du, B.; Zhong, J.; Chen, L.; Sun, Y.; Yue, J.; Zhang, M.; Long, Z.; Song, T.; Peng, B.; et al. Advances in gas detection of pattern recognition algorithms for chemiresistive gas sensor. Materials 2024, 17, 5190. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, S.; Zhang, Z.; Wang, L.; Rigoll, G.; Wang, Q.J.; Lin, Z. Unsupervised attention-based multi-source domain adaptation framework for drift compensation in electronic nose systems. IEEE Trans. Instrum. Meas. 2025. [Google Scholar] [CrossRef]
- Fonollosa, J.; Fernandez, L.; Gutiérrez-Gálvez, A.; Huerta, R.; Marco, S. Calibration transfer and drift counteraction in chemical sensor arrays using direct sandardization. Sens. Actuators B Chem. 2016, 236, 1044–1053. [Google Scholar] [CrossRef]
- Vergara, A.; Vembu, S.; Ayhan, T.; Ryan, M.A.; Homer, M.L.; Huerta, R. Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators B Chem. 2012, 166, 320–329. [Google Scholar] [CrossRef]
- Krayden, A.; Avraham, M.; Ashkar, H.; Blank, T.; Stolyarova, S.; Nemirovsky, Y. TinyML-based real-time drift compensation for gas sensors using spectral–temporal neural networks. Chemosensors 2025, 13, 223. [Google Scholar] [CrossRef]
- Bornamehr, B.; Presser, V.; Husmann, S. Mixed Cu–Fe sulfides derived from polydopamine-coated prussian blue analogue as a lithium-ion battery electrode. ACS Omega 2022, 7, 38674–38685. [Google Scholar] [CrossRef]
- Lorwongtragool, P.; Sowade, E.; Watthanawisuth, N.; Baumann, R.R.; Kerdcharoen, T. A novel wearable electronic nose for healthcare based on flexible printed chemical sensor array. Sensors 2014, 14, 19700–19712. [Google Scholar] [CrossRef] [PubMed]
- Kroutil, J.; Laposa, A.; Ahmad, A.; Voves, J.; Povolny, V.; Klimsa, L.; Davydova, M.; Husak, M. A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification. Beilstein J. Nanotechnol. 2022, 13, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.-W.; Tang, K.-T. Towards a chemiresistive sensor-integrated electronic nose: A review. Sensors 2013, 13, 14214–14247. [Google Scholar] [CrossRef]
- Andrews, B.; Chakrabarti, A.; Dauphin, M.; Speck, A. Application of machine learning for calibrating gas sensors for methane emissions monitoring. Sensors 2023, 23, 9898. [Google Scholar] [CrossRef]
- Tang, K.-T.; Li, C.-H.; Chiu, S.-W. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications. Sensors 2011, 11, 4609–4621. [Google Scholar] [CrossRef] [PubMed]
- Andriulo, F.C.; Fiore, M.; Mongiello, M.; Traversa, E.; Zizzo, V. Edge computing and cloud computing for internet of things: A review. Informatics 2024, 11, 71. [Google Scholar] [CrossRef]
- Bakker, E. Can calibration-free sensors be realized. ACS Sens. 2016, 1, 838–841. [Google Scholar] [CrossRef]
- Shooshtari, M.; Salehi, A. An electronic nose based on carbon nanotube -titanium dioxide hybrid nanostructures for detection and discrimination of volatile organic compounds. Sens. Actuators B Chem. 2022, 357, 131418. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, D.; Sun, Q.; Zheng, S.; Sun, J.; Wang, Y. Hierarchical SnS2/SnO2 nanoheterojunctions with increased active-sites and charge transfer for ultrasensitive NO2 detection. Nanoscale 2018, 10, 7210–7217. [Google Scholar] [CrossRef]
- Shooshtari, M.; Salehi, A.; Vollebregt, S. Effect of humidity on gas sensing performance of carbon nanotube gas sensors operated at room temperature. IEEE Sens. J. 2021, 21, 5763–5770. [Google Scholar] [CrossRef]
- Liu, J.; Xin, T.; Yang, Z.; Hao, W.; Wang, Y.; Hao, J. Bi2S3/ZnS heterostructures for H2S sensing in the dark: The synergy of increased surface-adsorbed oxygen and charge transfer. Inorg. Chem. Front. 2022, 9, 4921–4929. [Google Scholar] [CrossRef]
- Zellers, E.T.; Han, M. Effects of temperature and humidity on the performance of polymer-coated surface acoustic wave vapor sensor arrays. Anal. Chem. 1996, 68, 2409–2418. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Li, J.; Yin, D.; Zhou, Z.; Wei, C.; Wang, Y.; Hao, J. Enhanced oxygen anions generation on Bi2S3/Sb2S3 heterostructure by visible light for trace H2S detection at room temperature. J. Hazard. Mater. 2024, 476, 134392. [Google Scholar] [CrossRef]




| Gas Species | Disease/Condition Associated with the Biomarker | Reported Concentration Range | Ref. |
|---|---|---|---|
| NH3 | Chronic kidney disease | 153–130,000 ppb | [63] |
| NH3 | Heliobacter pylori Infection | 50–400 ppb | [63] |
| H2S | Halitosis | 0.1–0.5 ppm | [64] |
| H2 | Small intestinal bacterial overgrowth | an increase of ≥20 ppm | [63] |
| NOX | Asthma | FeNO levels ≥40 ppb | [65] |
| Acetone | Type 1 diabetes mellitus | 2.2–22 ppm. | [66] |
| Acetone | Type 2 diabetes mellitus | 1.76–9 ppm | [66] |
| Acetone | Diabetes mellitus | >1.8 ppm. | [66] |
| Sensing Material | Target Gas | R | LOD | Tres/Trec | SF/SN | Ref. |
|---|---|---|---|---|---|---|
| MXene@Zn3In2S6@PANI | NH3 (100 ppm) | 484.28% b | 573.105 ppb | 200.2 s/95.7 s | 2.39 | [70] |
| PVA/CS/PANI | NH3 (100 ppm) | 79.49% b | 571 ppb | 150 s/18 s | 2.41 | [71] |
| PANI-CeO2 | NH3 (50 ppm) | 262.7% b | 16 ppb | -/- | 1.58 | [68] |
| PPy-coated TPU | NH3 (100 ppm) | 1.2 a | - | 23 s/43 s | 1.30 | [72] |
| ZnO/PANI nanocomposites | NH3 (500 ppm) | 5990 a | 0.1 ppm | -/- | 5990.00 | [73] |
| PANI/LIG | NH3 (60 ppm) | 68% b | 5 ppm | 53 s/167 s | 6.80 | [111] |
| s-PANI@PDMS | NH3 (60 ppm) | 4.02 a | 0.5 ppm | 43 s/53 s | 1.24 | [74] |
| PANI@Cu2@MWCNT2 | NH3 (100 ppm) | 43% b | 100 ppm | 10 s/13 s | 2.39 | [112] |
| urchin-like polypyrrole | NH3 (10 ppm) | 3% b | 0.01 ppm | 1 s/30 s | 10 | [75] |
| PTh/SWCNT nanocomposite | NH3 (2000 ppm) | 27% b | 5 ppm | 60 s/60 s | 12.6 | [76] |
| PAni-SnCl2-PEDOT:PSS | H2S (1 ppm) | 0.8% b | 28 ppb | 70 s/- | - | [81] |
| SnO2/rGO/PANI | H2S (5 ppm) | 76.25% b | 50 ppb | 80 s/88 s | 12.0 | [82] |
| PT-WO3 | H2S (100 ppm) | 13.3 a | <2 ppm | -/- | 5.32 | [83] |
| PANI/GOA | H2S (50 ppm) | 49% b | 1 ppm | 1 s/135 s | 12.25 | [85] |
| PANI/SnO2/rGO | H2S (100 ppm) | 56% a | - | 35 s/40 s | 4.67 | [86] |
| ZnMn2O4/PPy NC | H2 (2500 ppm) | 1.02 a | 2500 ppm | 21.6 s/97.2 s | 1.2 | [113] |
| PTh/g-C3N4 NC | H2 (10,000 ppm) | 29.3% b | 1000 ppm | 69 s/83 s | 5.77 | [114] |
| CSA-Doped PANI NFs | H2 (10,000 ppm) | 3% b | 10,000 ppm | - | 10 | [93] |
| PANI/SnO2/Pd NC | H2 (400 ppm) | 546.14% b | 50 ppm | 547 s/164 s | 40 | [115] |
| PANI hollow nanotubes | H2 (1 ppm) | 29% b | 1 ppm | 15 s/17 s | 4.83 | [91] |
| PMMA/Pd NP/SLG hybrid | H2 (20,000 ppm) | 66.37% b | 250 ppm | 64.2 s/676.8 s | 1.33 | [116] |
| PANI/Ag2O/GO | NO2 (25 ppm) | 5.85 b | - | 100 s/140 s | 2.34 | [96] |
| ZnO/PANI nanoflake arrays | NO2 (10 ppm) | 28 a | 10 ppb | 32 s/18 s | 23.53 | [97] |
| TPMNTs | NO2 (1 ppm) | 11.96 b | 0.12 ppb | 9 s/11 s | 5.98 | [98] |
| PANI-PSSA | NO2 (20 ppm) | 0.2 a | - | 8 s/120 s | 1.2 | [99] |
| INPTh | NO2 (100 ppm) | 47.58% b | 1 ppm | - | 6.93 | [100] |
| SWCNT TFTs | NO2 (0.5 ppm) | 0.928 b | 0.069 ppm | 8 s/8 s | 2.72 | [117] |
| polythiophene, PTh | NO2 (10 ppm) | 9% b | 10 ppm | 220 s/585 s | - | [101] |
| PANI/NiO-loaded TiO2 NPs | acetone (50 ppm) | 11.3 a | 176.2 ppb | 150 s/290s | 5.5 | [107] |
| C8F-doped-PPy/PLA@SWCNT | acetone (5 ppm) | 1.45 b | 50 ppb | - | 72.5 | [108] |
| PPNT | acetone (0.5 ppm) | 47% b | 500 ppb | 5.4 s/73.94 s | 235 | [109] |
| ZnO-PANI composite on paper | acetone (100 ppm) | 0.02 b | 260 ppm | 4 s/15 s | 4 | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shao, G.; Wang, Y.; Lan, Z.; Wang, J.; He, J.; Chou, X.; Zhu, K.; Zhou, Y. Polymer-Based Gas Sensors for Detection of Disease Biomarkers in Exhaled Breath. Biosensors 2026, 16, 7. https://doi.org/10.3390/bios16010007
Shao G, Wang Y, Lan Z, Wang J, He J, Chou X, Zhu K, Zhou Y. Polymer-Based Gas Sensors for Detection of Disease Biomarkers in Exhaled Breath. Biosensors. 2026; 16(1):7. https://doi.org/10.3390/bios16010007
Chicago/Turabian StyleShao, Guangjie, Yanjie Wang, Zhiqiang Lan, Jie Wang, Jian He, Xiujian Chou, Kun Zhu, and Yong Zhou. 2026. "Polymer-Based Gas Sensors for Detection of Disease Biomarkers in Exhaled Breath" Biosensors 16, no. 1: 7. https://doi.org/10.3390/bios16010007
APA StyleShao, G., Wang, Y., Lan, Z., Wang, J., He, J., Chou, X., Zhu, K., & Zhou, Y. (2026). Polymer-Based Gas Sensors for Detection of Disease Biomarkers in Exhaled Breath. Biosensors, 16(1), 7. https://doi.org/10.3390/bios16010007

