Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (211)

Search Parameters:
Keywords = robotic underwater vehicle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1804 KiB  
Review
Recent Progress on Underwater Wireless Communication Methods and Applications
by Zhe Li, Weikun Li, Kai Sun, Dixia Fan and Weicheng Cui
J. Mar. Sci. Eng. 2025, 13(8), 1505; https://doi.org/10.3390/jmse13081505 - 5 Aug 2025
Abstract
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication [...] Read more.
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication (UWOC), each designed to address specific challenges posed by complex underwater environments. Acoustic communication, while effective for long-range transmission, is constrained by ambient noise and high latency; recent innovations in noise reduction and data rate enhancement have notably improved its reliability. RF communication offers high-speed, short-range capabilities in shallow waters, but still faces challenges in hardware miniaturization and accurate channel modeling. UWOC has emerged as a promising solution, enabling multi-gigabit data rates over medium distances through advanced modulation techniques and turbulence mitigation. Additionally, bio-inspired approaches such as electric field communication provide energy-efficient and robust alternatives under turbid conditions. This paper further examines the practical integration of these technologies in underwater platforms, including autonomous underwater vehicles (AUVs), highlighting trade-offs between energy efficiency, system complexity, and communication performance. By synthesizing recent advancements, this review outlines the advantages and limitations of current underwater communication methods and their real-world applications, offering insights to guide the future development of underwater communication systems for robotic and vehicular platforms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 14083 KiB  
Article
Numerical Investigations and Hydrodynamic Analysis of a Screw Propulsor for Underwater Benthic Vehicles
by Yan Kai, Pengfei Xu, Meijie Cao and Lei Yang
J. Mar. Sci. Eng. 2025, 13(8), 1500; https://doi.org/10.3390/jmse13081500 - 4 Aug 2025
Abstract
Screw propulsors have attracted increasing attention for their potential applications in amphibious vehicles and benthic robots, owing to their ability to perform both terrestrial and underwater locomotion. To investigate their hydrodynamic characteristics, a two-stage numerical analysis was carried out. In the first stage, [...] Read more.
Screw propulsors have attracted increasing attention for their potential applications in amphibious vehicles and benthic robots, owing to their ability to perform both terrestrial and underwater locomotion. To investigate their hydrodynamic characteristics, a two-stage numerical analysis was carried out. In the first stage, steady-state simulations under various advance coefficients were conducted to evaluate the influence of key geometric parameters on propulsion performance. Based on these results, a representative configuration was then selected for transient analysis to capture unsteady flow features. In the second stage, a Detached Eddy Simulation approach was employed to capture unsteady flow features under three rotational speeds. The flow field information was analyzed, and the mechanisms of vortex generation, instability, and dissipation were comprehensively studied. The results reveal that the propulsion process is dominated by the formation and evolution of tip vortices, root vortices, and cylindrical wake vortices. As rotation speed increases, vortex structures exhibit a transition from ordered spiral wakes to chaotic turbulence, primarily driven by centrifugal instability and nonlinear vortex interactions. Vortex breakdown and energy dissipation are intensified downstream, especially under high-speed conditions, where vortex integrity is rapidly lost due to strong shear and radial expansion. This hydrodynamic behavior highlights the fundamental difference from conventional propellers, and these findings provide theoretical insight into the flow mechanisms of screw propulsion. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

40 pages, 7941 KiB  
Article
Synergistic Hierarchical AI Framework for USV Navigation: Closing the Loop Between Swin-Transformer Perception, T-ASTAR Planning, and Energy-Aware TD3 Control
by Haonan Ye, Hongjun Tian, Qingyun Wu, Yihong Xue, Jiayu Xiao, Guijie Liu and Yang Xiong
Sensors 2025, 25(15), 4699; https://doi.org/10.3390/s25154699 - 30 Jul 2025
Viewed by 380
Abstract
Autonomous Unmanned Surface Vehicle (USV) operations in complex ocean engineering scenarios necessitate robust navigation, guidance, and control technologies. These systems require reliable sensor-based object detection and efficient, safe, and energy-aware path planning. To address these multifaceted challenges, this paper proposes a novel synergistic [...] Read more.
Autonomous Unmanned Surface Vehicle (USV) operations in complex ocean engineering scenarios necessitate robust navigation, guidance, and control technologies. These systems require reliable sensor-based object detection and efficient, safe, and energy-aware path planning. To address these multifaceted challenges, this paper proposes a novel synergistic AI framework. The framework integrates (1) a novel adaptation of the Swin-Transformer to generate a dense, semantic risk map from raw visual data, enabling the system to interpret ambiguous marine conditions like sun glare and choppy water, enabling real-time environmental understanding crucial for guidance; (2) a Transformer-enhanced A-star (T-ASTAR) algorithm with spatio-temporal attentional guidance to generate globally near-optimal and energy-aware static paths; (3) a domain-adapted TD3 agent featuring a novel energy-aware reward function that optimizes for USV hydrodynamic constraints, making it suitable for long-endurance missions tailored for USVs to perform dynamic local path optimization and real-time obstacle avoidance, forming a key control element; and (4) CUDA acceleration to meet the computational demands of real-time ocean engineering applications. Simulations and real-world data verify the framework’s superiority over benchmarks like A* and RRT, achieving 30% shorter routes, 70% fewer turns, 64.7% fewer dynamic collisions, and a 215-fold speed improvement in map generation via CUDA acceleration. This research underscores the importance of integrating powerful AI components within a hierarchical synergy, encompassing AI-based perception, hierarchical decision planning for guidance, and multi-stage optimal search algorithms for control. The proposed solution significantly advances USV autonomy, addressing critical ocean engineering challenges such as navigation in dynamic environments, object avoidance, and energy-constrained operations for unmanned maritime systems. Full article
Show Figures

Figure 1

20 pages, 9169 KiB  
Article
Dynamic Mission Planning Framework for Collaborative Underwater Operations Using Behavior Trees
by Seunghyuk Choi and Jongdae Jung
J. Mar. Sci. Eng. 2025, 13(8), 1458; https://doi.org/10.3390/jmse13081458 - 30 Jul 2025
Viewed by 202
Abstract
This paper presents a behavior tree-based control architecture for end-to-end mission planning of an autonomous underwater vehicle (AUV) collaborating with a moving mothership in dynamic marine environments. The framework is organized into three phases—prepare and launch, execute the mission, and retrieval and docking—each [...] Read more.
This paper presents a behavior tree-based control architecture for end-to-end mission planning of an autonomous underwater vehicle (AUV) collaborating with a moving mothership in dynamic marine environments. The framework is organized into three phases—prepare and launch, execute the mission, and retrieval and docking—each encapsulated in an independent sub-tree to enable modular error handling and seamless phase transitions. The AUV and mothership operate entirely underwater, with real-time docking to a moving platform. An extended Kalman filter (EKF) fuses data from inertial, pressure, and acoustic sensors for accurate navigation and state estimation. At the same time, obstacle avoidance leverages forward-looking sonar (FLS)-based potential field methods to react to unpredictable underwater hazards. The system is implemented on the robot operating system (ROS) and validated in the Stonefish physics engine simulator. Simulation results demonstrate reliable mission execution, successful dynamic docking under communication delays and sensor noise, and robust retrieval from injected faults, confirming the validity and stability of the proposed architecture. Full article
(This article belongs to the Special Issue Innovations in Underwater Robotic Software Systems)
Show Figures

Figure 1

22 pages, 1725 KiB  
Article
Whole-Body Vision/Force Control for an Underwater Vehicle–Manipulator System with Smooth Task Transitions
by Jie Liu, Guofang Chen, Fubin Zhang and Jian Gao
J. Mar. Sci. Eng. 2025, 13(8), 1447; https://doi.org/10.3390/jmse13081447 - 29 Jul 2025
Viewed by 120
Abstract
Robots with multiple degrees of freedom (DOFs), such as underwater vehicle–manipulator systems (UVMSs), are expected to optimize system performance by exploiting redundancy with various basic tasks while still fulfilling the primary objective. Multiple tasks for robots, which are expected to be carried out [...] Read more.
Robots with multiple degrees of freedom (DOFs), such as underwater vehicle–manipulator systems (UVMSs), are expected to optimize system performance by exploiting redundancy with various basic tasks while still fulfilling the primary objective. Multiple tasks for robots, which are expected to be carried out simultaneously with prescribed priorities, can be referred to as sets of tasks (SOTs). In this work, a hybrid vision/force control method with continuous task transitions is proposed for a UVMS to simultaneously track the reference vision and force trajectory during manipulation. Several tasks with expected objectives and specific priorities are established and combined as SOTs in hybrid vision/force tracking. At different stages, various SOTs are carried out with different emphases. A hierarchical optimization-based whole-body control framework is constructed to obtain the solution in a strictly hierarchical fashion. A continuous transition method is employed to mitigate oscillations during the task switching phase. Finally, comparative simulation experiments are conducted and the results verify the improved convergence of the proposed tracking controller for UVMSs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 14336 KiB  
Article
Three-Dimensional Binary Marker: A Novel Underwater Marker Applicable for Long-Term Deployment Scenarios
by Alaaeddine Chaarani, Patryk Cieslak, Joan Esteba, Ivan Eichhardt and Pere Ridao
J. Mar. Sci. Eng. 2025, 13(8), 1442; https://doi.org/10.3390/jmse13081442 - 28 Jul 2025
Viewed by 280
Abstract
Traditional 2D optical markers degrade quickly in underwater applications due to sediment accumulation and marine biofouling, becoming undetectable within weeks. This paper presents a Three-Dimensional Binary Marker, a novel passive fiducial marker designed for underwater Long-Term Deployment. The Three-Dimensional Binary Marker addresses the [...] Read more.
Traditional 2D optical markers degrade quickly in underwater applications due to sediment accumulation and marine biofouling, becoming undetectable within weeks. This paper presents a Three-Dimensional Binary Marker, a novel passive fiducial marker designed for underwater Long-Term Deployment. The Three-Dimensional Binary Marker addresses the 2D-markers limitation through a 3D design that enhances resilience and maintains contrast for computer vision detection over extended periods. The proposed solution has been validated through simulation, water tank testing, and long-term sea trials for 5 months. In each stage, the marker was compared based on detection per visible frame and the detection distance. In conclusion, the design demonstrated superior performance compared to standard 2D markers. The proposed Three-Dimensional Binary Marker provides compatibility with widely used fiducial markers, such as ArUco and AprilTag, allowing quick adaptation for users. In terms of fabrication, the Three-Dimensional Binary Marker uses additive manufacturing, offering a low-cost and scalable solution for underwater localization tasks. The proposed marker improved the deployment time of fiducial markers from a couple of days to sixty days and with a range up to seven meters, providing robustness and reliability. As the marker survivability and detection range depend on its size, it is still a valuable innovation for Autonomous Underwater Vehicles, as well as for inspection, maintenance, and monitoring tasks in marine robotics and offshore infrastructure applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

28 pages, 3717 KiB  
Article
Comparison of Innovative Strategies for the Coverage Problem: Path Planning, Search Optimization, and Applications in Underwater Robotics
by Ahmed Ibrahim, Francisco F. C. Rego and Éric Busvelle
J. Mar. Sci. Eng. 2025, 13(7), 1369; https://doi.org/10.3390/jmse13071369 - 18 Jul 2025
Viewed by 302
Abstract
In many applications, including underwater robotics, the coverage problem requires an autonomous vehicle to systematically explore a defined area while minimizing redundancy and avoiding obstacles. This paper investigates coverage path-planning strategies to enhance the efficiency of underwater gliders particularly in maximizing the probability [...] Read more.
In many applications, including underwater robotics, the coverage problem requires an autonomous vehicle to systematically explore a defined area while minimizing redundancy and avoiding obstacles. This paper investigates coverage path-planning strategies to enhance the efficiency of underwater gliders particularly in maximizing the probability of detecting a radioactive source while ensuring safe navigation. We evaluate three path-planning approaches: the Traveling Salesman Problem (TSP), Minimum Spanning Tree (MST), and the Optimal Control Problem (OCP). Simulations were conducted in MATLAB R2020a, comparing processing time, uncovered areas, path length, and traversal time. Results indicate that the OCP is preferable when traversal time is constrained, although it incurs significantly higher computational costs. Conversely, MST-based approaches provide faster but fewer optimal solutions. These findings offer insights into selecting appropriate algorithms based on mission priorities, balancing efficiency and computational feasbility. Full article
(This article belongs to the Special Issue Innovations in Underwater Robotic Software Systems)
Show Figures

Figure 1

18 pages, 3225 KiB  
Article
Autonomous Tracking of Steel Lazy Wave Risers Using a Hybrid Vision–Acoustic AUV Framework
by Ali Ghasemi and Hodjat Shiri
J. Mar. Sci. Eng. 2025, 13(7), 1347; https://doi.org/10.3390/jmse13071347 - 15 Jul 2025
Viewed by 292
Abstract
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental [...] Read more.
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental and operational loads results in repeated seabed contact. This repeated interaction modifies the seabed soil over time, gradually forming a trench and altering the riser configuration, which significantly impacts stress patterns and contributes to fatigue degradation. Accurately reconstructing the riser’s evolving profile in the TDZ is essential for reliable fatigue life estimation and structural integrity evaluation. This study proposes a simulation-based framework for the autonomous tracking of SLWRs using a fin-actuated autonomous underwater vehicle (AUV) equipped with a monocular camera and multibeam echosounder. By fusing visual and acoustic data, the system continuously estimates the AUV’s relative position concerning the riser. A dedicated image processing pipeline, comprising bilateral filtering, edge detection, Hough transform, and K-means clustering, facilitates the extraction of the riser’s centerline and measures its displacement from nearby objects and seabed variations. The framework was developed and validated in the underwater unmanned vehicle (UUV) Simulator, a high-fidelity underwater robotics and pipeline inspection environment. Simulated scenarios included the riser’s dynamic lateral and vertical oscillations, in which the system demonstrated robust performance in capturing complex three-dimensional trajectories. The resulting riser profiles can be integrated into numerical models incorporating riser–soil interaction and non-linear hysteretic behavior, ultimately enhancing fatigue prediction accuracy and informing long-term infrastructure maintenance strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

32 pages, 2740 KiB  
Article
Vision-Based Navigation and Perception for Autonomous Robots: Sensors, SLAM, Control Strategies, and Cross-Domain Applications—A Review
by Eder A. Rodríguez-Martínez, Wendy Flores-Fuentes, Farouk Achakir, Oleg Sergiyenko and Fabian N. Murrieta-Rico
Eng 2025, 6(7), 153; https://doi.org/10.3390/eng6070153 - 7 Jul 2025
Viewed by 1314
Abstract
Camera-centric perception has matured into a cornerstone of modern autonomy, from self-driving cars and factory cobots to underwater and planetary exploration. This review synthesizes more than a decade of progress in vision-based robotic navigation through an engineering lens, charting the full pipeline from [...] Read more.
Camera-centric perception has matured into a cornerstone of modern autonomy, from self-driving cars and factory cobots to underwater and planetary exploration. This review synthesizes more than a decade of progress in vision-based robotic navigation through an engineering lens, charting the full pipeline from sensing to deployment. We first examine the expanding sensor palette—monocular and multi-camera rigs, stereo and RGB-D devices, LiDAR–camera hybrids, event cameras, and infrared systems—highlighting the complementary operating envelopes and the rise of learning-based depth inference. The advances in visual localization and mapping are then analyzed, contrasting sparse and dense SLAM approaches, as well as monocular, stereo, and visual–inertial formulations. Additional topics include loop closure, semantic mapping, and LiDAR–visual–inertial fusion, which enables drift-free operation in dynamic environments. Building on these foundations, we review the navigation and control strategies, spanning classical planning, reinforcement and imitation learning, hybrid topological–metric memories, and emerging visual language guidance. Application case studies—autonomous driving, industrial manipulation, autonomous underwater vehicles, planetary rovers, aerial drones, and humanoids—demonstrate how tailored sensor suites and algorithms meet domain-specific constraints. Finally, the future research trajectories are distilled: generative AI for synthetic training data and scene completion; high-density 3D perception with solid-state LiDAR and neural implicit representations; event-based vision for ultra-fast control; and human-centric autonomy in next-generation robots. By providing a unified taxonomy, a comparative analysis, and engineering guidelines, this review aims to inform researchers and practitioners designing robust, scalable, vision-driven robotic systems. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

19 pages, 25417 KiB  
Article
Pectoral Fin-Assisted Braking and Agile Turning: A Biomimetic Approach to Improve Underwater Robot Maneuverability
by Qu He, Yunpeng Zhu, Weikun Li, Weicheng Cui and Dixia Fan
J. Mar. Sci. Eng. 2025, 13(7), 1295; https://doi.org/10.3390/jmse13071295 - 30 Jun 2025
Viewed by 272
Abstract
The integration of biomimetic pectoral fins into robotic fish presents a promising approach to enhancing maneuverability, stability, and braking efficiency in underwater robotics. This study investigates a 1-DOF (degree of freedom) pectoral fin mechanism integrated into the SpineWave robotic fish. Through force measurements [...] Read more.
The integration of biomimetic pectoral fins into robotic fish presents a promising approach to enhancing maneuverability, stability, and braking efficiency in underwater robotics. This study investigates a 1-DOF (degree of freedom) pectoral fin mechanism integrated into the SpineWave robotic fish. Through force measurements and particle image velocimetry (PIV), we optimized control parameters to improve braking and turning performances. The results show a 50% reduction in stopping distance, significantly enhancing agility and control. The fin-assisted braking and turning modes enable precise movements, making this approach valuable for autonomous underwater vehicles. This research lays the groundwork for adaptive fin designs and real-time control strategies, with applications in underwater exploration, environmental monitoring, and search-and-rescue operations. Full article
(This article belongs to the Special Issue Advancements in Deep-Sea Equipment and Technology, 3rd Edition)
Show Figures

Figure 1

20 pages, 4092 KiB  
Article
Task-Sequencing Optimization Using DSSA Algorithm for AUV with Limited Endurance
by Qixin Sha, Jiaming Zhang, Yue Shen and Bo He
J. Mar. Sci. Eng. 2025, 13(6), 1111; https://doi.org/10.3390/jmse13061111 - 2 Jun 2025
Viewed by 344
Abstract
Efficiency is very important for robots when executing multiple tasks, especially for autonomous underwater vehicles (AUVs) with limited endurance. In order to improve efficiency, task-sequencing optimization, which focuses on achieving the optimal execution order of multiple tasks, is one effective way. In this [...] Read more.
Efficiency is very important for robots when executing multiple tasks, especially for autonomous underwater vehicles (AUVs) with limited endurance. In order to improve efficiency, task-sequencing optimization, which focuses on achieving the optimal execution order of multiple tasks, is one effective way. In this paper, the classic lawnmower traverse task is taken as an example for optimization, and discrete salp swarm algorithm (DSSA), which combines salp swarm algorithm (SSA) and genetic algorithm (GA), is selected and applied to optimize task sequencing for one AUV. In the optimization process, there are two key problems that need to be solved. One is how to encode the individual chromosome and the other is how to perform genetic operations on chromosomes of different lengths. For the former problem, a two-layer encoding method is proposed to generate individuals in the population, in which identity number and entry point of different areas are encoded, respectively. For the latter problem, mutation and crossover operators are modified and extended to deal with individuals of variable length due to the limited endurance of AUVs. Simulation results show that the sequencing optimization can be achieved after finite iteration. Through comprehensive comparison, DSSA is finally implemented and verified in a physical AUV. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 2591 KiB  
Article
Enhanced Real-Time Simulation of ROV Attitude and Trajectory Under Ocean Current and Wake Disturbances
by Yujing Zhao, Shipeng Xu, Xiaoben Zheng, Lisha Luo, Boyan Xu and Chunru Xiong
Appl. Syst. Innov. 2025, 8(3), 75; https://doi.org/10.3390/asi8030075 - 30 May 2025
Viewed by 991
Abstract
This study focuses on the remotely operated underwater vehicle (ROV) and addresses key issues in existing simulation systems, such as neglecting the influence of ocean currents on the ROV’s trajectory or only simulating the impact of ocean currents instead of combining wake flow [...] Read more.
This study focuses on the remotely operated underwater vehicle (ROV) and addresses key issues in existing simulation systems, such as neglecting the influence of ocean currents on the ROV’s trajectory or only simulating the impact of ocean currents instead of combining wake flow and ocean currents. Additionally, the visualization capabilities of current simulation systems still have room for improvement. This paper develops a three-dimensional path simulation system for ocean inspection robots to tackle these challenges based on MATLAB and Simulink. The system optimizes the drag matrix of the original simulation model by decomposing the sea current into three directional components in three-dimensional space and simulating the relative velocity in each direction separately; it introduces the influence of the current wake, thus more accurately realizing the trajectory simulation of the ROV under the current perturbation. Experimental results demonstrate high consistency between the optimized model’s simulation outcomes and theoretical expectations. The proposed system significantly improves trajectory evolution stability and consistency, compared to traditional models. The findings of this study indicate that the proposed optimized simulation system not only effectively verifies the applicability of control algorithms but also provides reliable data support for ROV design and optimization. Additionally, it lays a solid foundation for further developing intelligent underwater robots based on Internet of Things (IoT) technology. Full article
Show Figures

Figure 1

19 pages, 4870 KiB  
Article
Adaptive Event-Triggered Predictive Control for Agile Motion of Underwater Vehicles
by Bo Wang, Junchao Peng, Jing Zhou and Liming Zhao
J. Mar. Sci. Eng. 2025, 13(6), 1072; https://doi.org/10.3390/jmse13061072 - 28 May 2025
Viewed by 399
Abstract
As the demand for underwater robots in complex environments continues to grow, research on their agile motion capabilities becomes increasingly crucial. This paper focuses on the design and agile motion control of autonomous underwater vehicles (AUVs) operating in subsea environments, addressing key issues [...] Read more.
As the demand for underwater robots in complex environments continues to grow, research on their agile motion capabilities becomes increasingly crucial. This paper focuses on the design and agile motion control of autonomous underwater vehicles (AUVs) operating in subsea environments, addressing key issues such as structural design, system modeling, and control algorithm development. An optimization model for the arrangement of propellers is formulated and solved using a Sequential Quadratic Programming (SQP) algorithm. Computational Fluid Dynamics (CFD) software is employed for hydrodynamic analysis and shape optimization. A novel adaptive event-triggered nonlinear model predictive control (AET-NMPC) algorithm is proposed and compared with traditional Cascaded Proportional–Integral–Derivative (PID) control and event-triggered cascaded PID control algorithms. Simulation and experimental results demonstrate that the AET-NMPC algorithm significantly enhances the response capability and control accuracy of underwater robots in complex tasks, with the trajectory tracking error being reduced to 4.89%. This study provides valuable insights into the design and control strategies for AUVs, paving the way for more sophisticated underwater operations in challenging environments. Full article
(This article belongs to the Special Issue Advancements in Deep-Sea Equipment and Technology, 3rd Edition)
Show Figures

Figure 1

13 pages, 19655 KiB  
Article
Persistent Localization of Autonomous Underwater Vehicles Using Visual Perception of Artificial Landmarks
by Jongdae Jung, Hyun-Taek Choi and Yeongjun Lee
J. Mar. Sci. Eng. 2025, 13(5), 828; https://doi.org/10.3390/jmse13050828 - 22 Apr 2025
Viewed by 595
Abstract
Persistent localization is a critical requirement for autonomous underwater vehicles (AUVs) engaged in long-term missions. Conventional dead-reckoning (DR) methods for estimating the position and orientation of AUVs often suffer from drift, necessitating additional information to correct accumulating errors. In this paper, we propose [...] Read more.
Persistent localization is a critical requirement for autonomous underwater vehicles (AUVs) engaged in long-term missions. Conventional dead-reckoning (DR) methods for estimating the position and orientation of AUVs often suffer from drift, necessitating additional information to correct accumulating errors. In this paper, we propose a visual artificial landmarks-based simultaneous localization and mapping (SLAM) system for AUVs. This system utilizes two types of underwater artificial landmarks that are observed using forward and downward-looking cameras. The information obtained from these detected landmarks, along with incremental DR estimates, is integrated within a framework based on the extended Kalman filter (EKF) SLAM approach, allowing for the recursive estimation of both the robot and the landmark states. We implemented the proposed visual SLAM method using our yShark II AUV and conducted experiments in an engineering basin to validate its effectiveness. A ceiling vision-based reference pose acquisition system was installed, facilitating a comparison between the pose estimation results obtained from DR and those derived from the SLAM method. Full article
Show Figures

Figure 1

27 pages, 5852 KiB  
Article
Deep Reinforcement Learning Based Active Disturbance Rejection Control for ROV Position and Attitude Control
by Gaosheng Luo, Dong Zhang, Wei Feng, Zhe Jiang and Xingchen Liu
Appl. Sci. 2025, 15(8), 4443; https://doi.org/10.3390/app15084443 - 17 Apr 2025
Cited by 1 | Viewed by 593
Abstract
Remotely operated vehicles (ROVs) face challenges in achieving optimal trajectory tracking performance during underwater movement due to external disturbances and parameter uncertainties. To address this issue, this paper proposes a position and attitude control strategy for underwater robots based on a reinforcement learning [...] Read more.
Remotely operated vehicles (ROVs) face challenges in achieving optimal trajectory tracking performance during underwater movement due to external disturbances and parameter uncertainties. To address this issue, this paper proposes a position and attitude control strategy for underwater robots based on a reinforcement learning active disturbance rejection controller. The linear active disturbance rejection controller has achieved satisfactory results in the field of underwater robot control. However, fixed-parameter controllers cannot achieve optimal control performance for the controlled object. Therefore, further exploration of the adaptive capability of control parameters based on the linear active disturbance rejection controller was conducted. The deep deterministic policy gradient (DDPG) algorithm was used to optimize the linear extended state observer (LESO). This strategy employs deep neural networks to adjust the LESO parameters online based on measured states, allowing for more accurate estimation of model uncertainties and environmental disturbances, and compensating the total disturbance into the control input online, resulting in better disturbance estimation and control performance. Simulation results show that the proposed control scheme, compared to PID and fixed parameter LADRC, as well as the double closed-loop sliding mode control method based on nonlinear observers (NESO-DSMC), significantly improves the disturbance estimation accuracy of the linear active disturbance rejection controller, leading to higher control precision and stronger robustness, thus demonstrating the effectiveness of the proposed control strategy. Full article
Show Figures

Figure 1

Back to TopTop