Recent Progress on Underwater Wireless Communication Methods and Applications
Abstract
1. Introduction
2. Main Methods of Underwater Wireless Communication
2.1. Underwater Acoustic Communication
2.2. Underwater RF Communication
2.3. Underwater Wireless Optical Communication
2.4. Alternative Underwater Communication Technologies
2.5. Comparison Between Commercial Systems and Research Prototypes
3. Wireless Communication System Applied in Underwater Devices
3.1. Application and Limitations of Single Mode Underwater Communication Technology
3.2. Development and Applications of Multimodal Underwater Communication
4. Future Trends
4.1. Technological Innovation and System Integration
4.2. Intelligent and Sustainable Development
4.3. Expansion into Emerging Applications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
No. | Abbreviation | Full Name |
1 | AUV | Autonomous Underwater Vehicle |
2 | BECS | Bio-inspired Electrocommunication System |
3 | BER | Bit Error Rate |
4 | CNN | Convolutional Neural Networks |
5 | DBPSK | Differential Binary Phase-Shift Keying |
6 | DL | Deep Learning |
7 | DPSK | Differential Phase Shift Keying |
8 | DRL | Deep Reinforcement Learning |
9 | EMD | Empirical Mode Decomposition |
10 | FEC | Forward Error Correction |
11 | GAN | General Adversarial Network |
12 | IoUT | Internet of Underwater Things |
13 | LD | Laser Diode |
14 | LED | Light-Emitting Diodes |
15 | LMS | Least-Mean-Square |
16 | MIMO | Multi-Input Multi-Output |
17 | ML | Machine Learning |
18 | NRZ-OOK | Non-Return to Zero On-Off Keying |
19 | OCDMA | Optical Code Division Multiple Access |
20 | OFDM | Orthogonal Frequency Division Multiplexing |
21 | OAM | Orbital Angular Momentum |
22 | QKD | Quantum Key Distribution |
23 | QPSK | Quadrature Phase-Shift Keying |
24 | RF | Radio Frequency |
25 | RNN | Recurrent Neural Networks |
26 | SPM | Subcarrier Power Modulation |
27 | TENG | Triboelectric Nanogenerator |
28 | UWOC | Underwater Wireless Optical Communication |
29 | VMD | Variational Mode Decomposition |
30 | WDM | Wavelength Division Multiplexing |
References
- Liu, F.; Li, G.; Yang, H. Application of multi-algorithm mixed feature extraction model in underwater acoustic signal. Ocean Eng. 2024, 296, 116959. [Google Scholar] [CrossRef]
- Yang, H.; Cheng, Y.; Li, G. A denoising method for ship radiated noise based on Spearman variational mode decomposition, spatial-dependence recurrence sample entropy, improved wavelet threshold denoising, and Savitzky-Golay filter. Alex. Eng. J. 2021, 60, 3379–3400. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, B.; Zhang, Y.; Li, J.; Wu, C. Convolutional neural network based filter bank multicarrier system for underwater acoustic communications. Appl. Acoust. 2021, 177, 107920. [Google Scholar] [CrossRef]
- Song, Y.; Liu, F.; Shen, T. A novel noise reduction technique for underwater acoustic signals based on dual-path recurrent neural network. IET Commun. 2023, 17, 135–144. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Li, G.; Bu, W.; Yang, H. Noise reduction method for ship radiated noise signal based on modified uniform phase empirical mode decomposition. Measurement 2024, 227, 114193. [Google Scholar] [CrossRef]
- Zhou, A.; Li, X.; Zhang, W.; Zhao, C.; Ren, K.; Ma, Y.; Song, J. An attention-based multi-scale convolution network for intelligent underwater acoustic signal recognition. Ocean Eng. 2023, 287, 115784. [Google Scholar] [CrossRef]
- Yang, S.; Jin, A.; Zeng, X.; Wang, H.; Hong, X.; Lei, M. Underwater acoustic target recognition based on sub-band concatenated Mel spectrogram and multidomain attention mechanism. Eng. Appl. Artif. Intell. 2024, 133, 107983. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, X.; Liu, X.; Zhang, G.; Tian, P. Recent progress in and perspectives of underwater wireless optical communication. Prog. Quantum Electron. 2020, 73, 100274. [Google Scholar] [CrossRef]
- Tian, B.; Zhao, L.; Chen, B.; Wu, M.; Zheng, H.; Vasisht, D.; Yan, F.Y.; Nahrstedt, K. AquaScope: Reliable Underwater Image Transmission on Mobile Devices. arXiv 2025, arXiv:2502.10891. [Google Scholar]
- Ali, M.; Jayakody, D.N.; Chursin, Y.; Affes, S.; Dmitry, S. Recent Advances and Future Directions on Underwater Wireless Communications. Arch. Comput. Methods Eng. 2019, 26, 1–34. [Google Scholar] [CrossRef]
- Esmaiel, H.; Sun, H. Underwater Wireless Communications. Sensors 2024, 24, 7075. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, M.; Shu, M.; An, J.; Ding, W.; Liu, X.; Wang, S.; Zhao, C.; Yu, H.; Wang, H.; et al. Underwater wireless communication via TENG-generated Maxwell’s displacement current. Nat. Commun. 2022, 13, 3325. [Google Scholar] [CrossRef]
- Li, Y.X.; Wang, L. A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise, minimum mean square variance criterion and least mean square adaptive filter. Def. Technol. 2020, 16, 543–554. [Google Scholar] [CrossRef]
- Yang, H.; Li, L.; Li, G. A new denoising method for underwater acoustic signal. IEEE Access 2020, 8, 201874–201888. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, L.; Yan, H.; Bai, Y.; Wang, P. Denoising and baseline drift removal method of MEMS hydrophone signal based on VMD and wavelet threshold processing. IEEE Access 2019, 7, 59913–59922. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Ma, Z.; Gao, G.; Guo, Y.J.; Zhang, F.; Huang, S.; Zhang, J. Long-Term and Real-Time High-Speed Underwater Wireless Optical Communications in Deep Sea. IEEE Commun. Mag. 2023, 62, 96–101. [Google Scholar] [CrossRef]
- Rahman, Z.; Zafaruddin, S.M.; Chaubey, V.K. Direct Air-to-Underwater Optical Wireless Communication: Statistical Characterization and Outage Performance. IEEE Trans. Veh. Technol. 2022, 72, 2655–2660. [Google Scholar] [CrossRef]
- Urick, R.J. Principles of Underwater Sound, 3rd ed.; Peninsula Publishing: Newport Beach, CA, USA, 1983. [Google Scholar]
- Stojanovic, M.; Preisig, J. Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Commun. Mag. 2009, 47, 84–89. [Google Scholar] [CrossRef]
- Singer, A.C.; Andrew, C.; Nelson, J.; Jill, K.; Kozat, S. Signal Processing for Underwater Acoustic Communications. IEEE Commun. Mag. 2009, 47, 90–96. [Google Scholar] [CrossRef]
- Jiang, J.; Wu, Z.; Lu, J.; Huang, M.; Xiao, Z. Interpretable features for underwater acoustic target recognition. Measurement 2020, 173, 108586. [Google Scholar] [CrossRef]
- Middleton, D. Channel Modeling and Threshold Signal Processing in Underwater Acoustics: An Analytical Overview. IEEE J. Ocean. Eng. 1987, 12, 4–28. [Google Scholar] [CrossRef]
- Wenz, G.M. Review of Underwater Acoustics Research: Noise. J. Acoust. Soc. Am. 1972, 51, 1010–1024. [Google Scholar] [CrossRef]
- Raj, K.M.; Murugan, S.S.; Natarajan, V.; Radha, S. Denoising algorithm using wavelet for underwater signal affected by wind driven ambient noise. In Proceedings of the IEEE-International Conference on Recent Trends in Information Technology, ICRTIT 2011, Chennai, India, 3–5 June 2011. [Google Scholar]
- Li, G.; Han, Y.; Yang, H. A new underwater acoustic signal denoising method based on modified uniform phase empirical mode decomposition, hierarchical amplitude-aware permutation entropy, and optimized improved wavelet threshold denoising. Ocean Eng. 2024, 293, 116629. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Sun, J.; Huang, B.; Zhang, J.; Gao, M. Ultrasound signal processing based on joint GWO-VMD wavelet threshold functions. Measurement 2024, 226, 13. [Google Scholar] [CrossRef]
- Li, G.; Bu, W.; Yang, H. Research on noise reduction method for ship radiated noise based on secondary decomposition. Ocean Eng. 2023, 268, 113412. [Google Scholar] [CrossRef]
- Yang, H.; Yang, X.; Li, G. Dual feature extraction system for ship-radiated noise and its application extension. Ocean Eng. 2023, 285, 115352. [Google Scholar] [CrossRef]
- Li, G.; Liu, F.; Yang, H. Research on Feature Extraction Method of Ship Radiated Noise with K-nearest Neighbor Mutual Information Variational Mode Decomposition, Neural Network Estimation Time Entropy and Self-organizing Map Neural Network. Measurement 2022, 199, 111446. [Google Scholar] [CrossRef]
- Gao, R.; Liang, M.; Dong, H.; Luo, X.; Suganthan, P.N. Underwater Acoustic Signal Denoising Algorithms: A Survey of the State-of-the-art. IEEE Trans. Instrum. Meas. 2025, 74, 6502318. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, J.; Feng, X.; Sun, H.; Li, J.; Kuai, X. On generative-adversarial-network-based underwater acoustic noise modeling. IEEE Trans. Veh. Technol. 2021, 70, 9555–9559. [Google Scholar] [CrossRef]
- Ashraf, H.; Jeong, Y.; Lee, C.H. Underwater ambient-noise removing GAN based on magnitude and phase spectra. IEEE Access 2021, 9, 24513–24530. [Google Scholar] [CrossRef]
- Zhou, A.; Zhang, W.; Xu, G.; Li, X.; Deng, K.; Song, J. DBSA-net: Dual branch self-attention network for underwater acoustic signal denoising. IEEE/ACM Trans. Audio Speech Lang. Process. 2023, 31, 1851–1865. [Google Scholar] [CrossRef]
- Zhou, A.; Zhang, W.; Li, X.; Xu, G.; Zhang, B.; Ma, Y.; Song, J. A novel noise-aware deep learning model for underwater acoustic denoising. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4202813. [Google Scholar] [CrossRef]
- Stojanovic, M. Recent advances in high-speed underwater acoustic communications. IEEE J. Ocean. Eng. 1996, 21, 125–136. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Zakharov, Y.; Li, X.; Li, J. Deep learning based underwater acoustic OFDM communications. Appl. Acoust. 2019, 154, 53–58. [Google Scholar] [CrossRef]
- Li, D.; Liu, F.; Shen, T.; Chen, L.; Zhao, D. Data augmentation method for underwater acoustic target recognition based on underwater acoustic channel modeling and transfer learning. Appl. Acoust. 2023, 208, 109344. [Google Scholar] [CrossRef]
- Li, R.; Wang, L.; Suganthan, P.N.; Sourina, O. Sample-based data augmentation based on electroencephalogram intrinsic characteristics. IEEE J. Biomed. Health Inform. 2022, 26, 4996–5003. [Google Scholar] [CrossRef]
- Wang, X.; Wu, P.; Li, B.; Zhan, G.; Liu, J.; Liu, Z. A self-supervised dual-channel self-attention acoustic encoder for underwater acoustic target recognition. Ocean Eng. 2024, 299, 117305. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, K. A denoising representation framework for underwater acoustic signal recognition. J. Acoust. Soc. Am. 2020, 147, EL377–EL383. [Google Scholar] [CrossRef]
- Zhou, A.; Li, X.; Zhang, W.; Li, D.; Deng, K.; Ren, K.; Song, J. A Novel Cross-Attention Fusion-Based Joint Training Framework for Robust Underwater Acoustic Signal Recognition. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4209516. [Google Scholar] [CrossRef]
- Koh, S.; Chia, C.S.; Tan, B.A. Underwater Signal Denoising Using Deep Learning Approach. In Proceedings of the Global Oceans 2020: Singapore – U.S. Gulf Coast, Biloxi, MI, USA, 5–30 October 2020. [Google Scholar]
- Tian, S.; Chen, D.; Wang, H.; Liu, J. Deep convolution stack for waveform in underwater acoustic target recognition. Sci. Rep. 2021, 11, 9614. [Google Scholar] [CrossRef]
- Ashraf, H.; Shah, B.; Soomro, A.M.; Safdar, Q.u.A.; Halim, Z.; Shah, S.K. Ambient-noise free generation of clean underwater ship engine audios from hydrophones using generative adversarial networks. Comput. Electr. Eng. 2022, 100, 107970. [Google Scholar] [CrossRef]
- Chengkun, W.; Zhifeng, Z.; Bohua, C.; Yong, Y. Denoise for propeller acoustic signals based on the improved wavelet thresholding algorithm of CEEMDAN. Cogent Eng. 2024, 11, 2327570. [Google Scholar] [CrossRef]
- Kilfoyle, D.B.; Baggeroer, A.B. The state of the art in underwater acoustic telemetry. IEEE J. Ocean. Eng. 2000, 25, 4–27. [Google Scholar] [CrossRef]
- Chitre, M.; Shahabudeen, S.; Stojanovic, M. Underwater Acoustic Communications and Networking: Recent Advances and Future Challenges. Mar. Technol. Soc. J. 2008, 42, 103–116. [Google Scholar] [CrossRef]
- Ren, Q.; Cheng, X. Latency-optimized and energy-efficient MAC protocol for underwater acoustic sensor networks: A cross-layer approach. EURASIP J. Wirel. Commun. Netw. 2010, 2010, 323151. [Google Scholar] [CrossRef]
- Alraie, H.; Alahmad, R.; Ishii, K. Double the data rate in underwater acoustic communication using OFDM based on subcarrier power modulation. J. Mar. Sci. Technol. 2024, 29, 457–470. [Google Scholar] [CrossRef]
- Kumara, S.; Vatsb, C. Underwater communication: A detailed review. In Proceedings of the CEUR Workshop Proceedings, Kharkiv, Ukraine, 20–21 September 2021. [Google Scholar]
- Bhagya Sri, K.N.K.; Mukherjee, S.; Chakraborty, U. An investigation on a four-channel 3D network model for underwater RF communication. In Proceedings of the 2023 8th International Conference on Computers and Devices for Communication (CODEC), Kolkata, India, 14–16 December 2023. [Google Scholar]
- Farkhadov, M.; Kuprikov, O.; Komanich, D. Underwater Wireless Communications Researching, Analysis and Comparison. In Proceedings of the 2023 5th International Conference on Problems of Cybernetics and Informatics (PCI), Baku, Azerbaijan, 28–30 August 2023. [Google Scholar]
- Gussen, C.M.G.; Diniz, P.S.R.; Campos, M.L.R.; Martins, W.A.; Gois, J.N. A Survey of Underwater Wireless Communication Technologies. J. Commun. Inf. Syst. 2016, 31, 242–255. [Google Scholar] [CrossRef]
- Dowden, R.L.; Holzworth, R.H.; Rodger, C.J.; Lichtenberger, J.; Thomson, N.R.; Jacobson, A.R.; Lay, E.; Brundell, J.B.; Lyons, T.J.; O’Keefe, S. World-Wide Lightning Location Using VLF Propagation in the Earth-Ionosphere Waveguide. IEEE Antennas Propag. Mag. 2008, 50, 40–60. [Google Scholar] [CrossRef]
- PSS, P.G.; Venkataraman, H. 3D E-CRUSE: Energy-based throughput analysis of three dimensional underwater network using RF communication. J. Ocean Eng. Sci. 2022, 7, 155–162. [Google Scholar] [CrossRef]
- Che, X.; Wells, I.; Dickers, G.; Kear, P.; Gong, X. Re-evaluation of RF electromagnetic communication in underwater sensor networks. IEEE Commun. Mag. 2010, 48, 143–151. [Google Scholar] [CrossRef]
- Han, S.; Noh, Y.; Lee, U.; Gerla, M. Optical-acoustic Hybrid Network Toward Real-time Video Streaming for Mobile Underwater Sensors. Ad Hoc Netw. 2018, 83, 1–7. [Google Scholar] [CrossRef]
- Duntley, S.Q. Light in the Sea. J. Opt. Soc. Am. 1963, 53, 214–233. [Google Scholar] [CrossRef]
- Vali, Z.; Gholami, A.; Ghassemlooy, Z.; Omoomi, M.; Michelson, D. Experimental study of the turbulence effect on underwater optical wireless communications. Appl. Opt. 2018, 57, 8314–8319. [Google Scholar] [CrossRef]
- Nakamura, K.; Mizukoshi, I.; Hanawa, M. Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel. Opt. Express 2015, 23, 1558–1566. [Google Scholar] [CrossRef]
- Xiaoyan, L.; Suyu, Y.; Xiaolin, Z.; Zhilai, F.; Zhi-Jun, Q.; Laigui, H.; Chunxiao, C.; Lirong, Z.; Ran, L.; Pengfei, T. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation. Opt. Express 2017, 25, 27937–27947. [Google Scholar]
- Wang, J.; Lu, C.; Li, S.; Xu, Z. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode. Opt. Express 2019, 27, 12171. [Google Scholar] [CrossRef]
- Duan, Y.; Zhou, H.; Jiang, Z.; Ramakrishnan, M.; Su, X.; Ko, W.; Zuo, Y.; Lian, H.; Zeng, R.; Wang, Y. Demonstration of an 8-Gbit/s quadrature-phase-shift-keying coherent underwater wireless optical communication link using coherent heterodyne detection under scattering conditions. Opt. Lett. 2024, 49, 123–126. [Google Scholar] [CrossRef]
- Baykal, Y.; Ata, Y.; Gokce, M.C. Underwater turbulence, its effects on optical wireless communication and imaging: A review. Opt. Laser Technol. 2022, 156, 108624. [Google Scholar] [CrossRef]
- El-Mottaleb, S.A.A.; Singh, M.; Atieh, A.; Aly, M.H. OCDMA transmission-based underwater wireless optical communication system: Performance analysis. Opt. Quantum Electron. 2023, 55, 465. [Google Scholar] [CrossRef]
- Shen, C.; Guo, Y.; Oubei, H.M.; Ng, T.K.; Ooi, B.S. 20-m underwater wireless optical communication link with 15 Gbps data rate. Opt. Express 2016, 24, 25502. [Google Scholar] [CrossRef]
- Zeng, Z.; Fu, S.; Zhang, H.; Dong, Y.; Cheng, J. A Survey of Underwater Optical Wireless Communications. IEEE Commun. Surv. Tutor. 2017, 19, 204–238. [Google Scholar] [CrossRef]
- Oubei, H.M.; Duran, J.R.; Janjua, B.; Wang, H.Y.; Tsai, C.T. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication. Opt. Express 2015, 23, 23302. [Google Scholar] [CrossRef]
- Doniec, M.; Vasilescu, I.; Chitre, M.; Detweiler, C.; Hoffmann-Kuhnt, M.; Rus, D. AquaOptical: A lightweight device for high-rate long-range underwater point-to-point communication. In Proceedings of the Oceans, Sydney, Australia, 24–27 May 2010. [Google Scholar]
- Xu, J.; Kong, M.; Lin, A.; Song, Y.; Deng, N. OFDM-based broadband underwater wireless optical communication system using a compact blue LED. Opt. Commun. 2016, 369, 100–105. [Google Scholar] [CrossRef]
- Xu, J.; Song, Y.; Yu, X.; Lin, A.; Kong, M.; Han, J.; Deng, N. Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser. Opt. Express 2016, 24, 8097–8109. [Google Scholar] [CrossRef]
- Oubei, H.M.; Li, C.; Park, K.H.; Ng, T.K.; Alouini, M.S.; Ooi, B.S. 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode. Opt. Express 2015, 23, 20743–20748. [Google Scholar] [CrossRef]
- Anguita, D.; Brizzolara, D.; Parodi, G.; Hu, Q. Optical wireless underwater communication for AUV: Preliminary simulation and experimental results. In Proceedings of the OCEANS 2011 IEEE-Spain, Santander, Spain, 6–9 June 2011. [Google Scholar]
- Li, B.; Zhou, S.; Huang, J.; Willett, P. Scalable OFDM design for underwater acoustic communications. In Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 31 March–4 April 2008. [Google Scholar]
- Palmeiro, A.; Martín, M.; Crowther, I.; Rhodes, M. Underwater radio frequency communications. In Proceedings of the OCEANS 2011 IEEE-Spain, Santander, Spain, 6–9 June 2011. [Google Scholar]
- Stojanovic, M.; Catipovic, J.; Proakis, J.G. Adaptive multichannel combining and equalization for underwater acoustic communications. J. Acoust. Soc. Am. 1993, 94, 1621–1631. [Google Scholar] [CrossRef]
- Chen, T.; He, H.; Xie, G. BECS-II: An updated bio-inspired electrocommunication system for small underwater robots. Bioinspir. Biomimetics 2023, 18, 066004. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Xie, G.; Wen, L.; Zhang, J. A bio-inspired electrocommunication system for small underwater robots. Bioinspir. Biomimetics 2017, 12, 036002. [Google Scholar] [CrossRef]
- Pavan, A.; Kumar, A.; Sharma, D. Design and Evaluation of a Hybrid RF-Acoustic Underwater Communication System for Short-Range Sensor Networks. In Proceedings of the ACM International Conference on Underwater Networks and Systems (WUWNet), Boston, MA, USA, 14–16 November 2022. [Google Scholar]
- Sun, B.; Li, W.; Wang, Z.; Zhu, Y.; He, Q.; Guan, X.; Dai, G.; Yuan, D.; Li, A.; Cui, W.; et al. Recent progress in modeling and control of bio-inspired fish robots. J. Mar. Sci. Eng. 2022, 10, 773. [Google Scholar] [CrossRef]
- Li, J.; Li, W.; Liu, Q.; Luo, B.; Cui, W. Current Status and Technical Challenges in the Development of Biomimetic Robotic Fish-Type Submersible. Ocean-Land-Atmos. Res. 2024, 3, 0036. [Google Scholar] [CrossRef]
- Jiang, W.; Yang, X.; Tong, F.; Yang, Y.; Zhou, T. A low-complexity underwater acoustic coherent communication system for small AUV. Remote Sens. 2022, 14, 3405. [Google Scholar] [CrossRef]
- Ayaz, M.; Baig, I.; Abdullah, A.; Faye, I. Hybrid acoustic-optical underwater wireless sensor networks: A review. Ad Hoc Netw. 2022, 132, 103088. [Google Scholar]
- Yuan, D.; Wang, X.; Zhang, L. A novel RF-assisted underwater IoUT architecture for short-range high-throughput applications. In Proceedings of the OCEANS 2022-Marseille, Marseille, France, 13–14 June 2022. [Google Scholar]
- Li, B.; Zhang, R.; Wang, X. Cross-medium communication in underwater wireless sensor networks: A survey. IEEE Access 2022, 10, 31455–31475. [Google Scholar]
- Ismail, A.; Alouini, M. Internet of underwater things communication: Architecture, technologies, research challenges, and future opportunities. Ad Hoc Netw. 2022, 130, 102933. [Google Scholar]
- Bicen, A.; Akyildiz, I. Cross-medium underwater wireless communication and networking: A new paradigm. In Proceedings of the OCEANS 2022-Chennai, Chennai, India, 21–24 February 2022. [Google Scholar]
- Mohanraju M, A.S.; Lokam, A. Internet of Underwater Things: Challenges and Applications. In Proceedings of the 2022 IEEE International Symposium on Smart Electronic Systems (iSES), Warangal, India, 18–22 December 2022; pp. 615–618. [Google Scholar]
- Yang, F.; Zhang, Q.; Cui, J.H. Intelligent underwater acoustic communication using deep reinforcement learning. IEEE Commun. Mag. 2020, 58, 74–79. [Google Scholar]
Signal Decomposition | Denoising | Grouping | Reference |
---|---|---|---|
DWT | Wavelet Thresholding | NA | [26] |
EMD | Evolutionary filtering | Entropy | [6] |
EMD | Wavelet Thresholding | Entropy | [27] |
VMD | Wavelet Thresholding | Correlation | [1] |
DWT, VMD | Wavelet Thresholding | NA | [28] |
VMD | Discard noisy IMFs | Entropy | [29] |
VMD | Grey relation analysis and thresholding | Frequency | [30] |
Architecture | Input | Training Logic | Hyper-Parameters Tuning | Reference |
---|---|---|---|---|
MLP and CNN | Original UAS | Unsupervised | Manually | [43] |
CNN | Original UAS | Supervised | Manually | [44] |
CNN and RNN | Original UAS | Unsupervised | Manually | [32] |
RNN and Transformer | STFT | Unsupervised | Manually | [45] |
RNN and Transformer | STFT | Supervised | Manually | [45] |
MLP | Mel-frequency cepstral coefficients | Unsupervised | Manually | [46] |
CNN and GAN | Original signal | Unsupervised | Manually | [20] |
GAN | STFT | Unsupervised | Manually | [35] |
Band | Frequency Range | Wavelength (Free Space) | Distance in Seawater | Data Rate |
---|---|---|---|---|
ELF | 3 Hz–300 Hz | km– km | Hundreds of km | <10 bps |
SLF/ULF | 300 Hz–3 kHz | km–100 km | Tens of km | 1–10 bps |
VLF | 3 kHz–30 kHz | 100 km–10 km | 10–100 m | 100–500 bps |
LF | 30 kHz–300 kHz | 10 km–1 km | 1–10 m | ∼kbps |
MF/HF | 300 kHz–30 MHz | 1 km–10 m | 0.01–1 m | ∼Mbps |
UHF/SHF | 300 MHz–300 GHz | 1 m–1 mm | <0.1 m | Mbps–Gbps |
Water Types | () | () | () |
---|---|---|---|
Pure sea water | 0.041 | 0.003 | 0.044 |
Clear ocean water | 0.114 | 0.037 | 0.151 |
Coastal ocean water | 0.179 | 0.219 | 0.398 |
Turbid harbour water | 0.366 | 1.824 | 2.190 |
Modulation Scheme | Light Source | Data Rate | Transmission Distance | Reference |
---|---|---|---|---|
OOK | 450 nm LD | 15 Gbps | 20 m | [67] |
NRZ-OOK | 520 nm LD | 2.70 Gbps | 34.5 m | [62] |
IM/DD-OFDM | 405 nm LD | 1.45 Gbps | 4.8 m | [61] |
NRZ-OOK | 520 nm LD | 500 Mbps | 100 m | [63] |
QPSK | 532 nm LD | 8 Gbps | 0.6 m (scattering conditions) | [64] |
16-QAM-OFDM | 450 nm LD | 4.8 Gbps | 5.4 m | [69] |
DPIM | 470 nm LED | 0.6 Mbps | 9 m | [70] |
16-QAM-OFDM | 450 nm LED | 161.3 Mbps | 2 m | [71] |
128-QAM OFDM | 685 nm LD | 1.324 Gbps | 6 m | [72] |
32-QAM OFDM | 685 nm LD | 4.883 Gbps | 6 m | [72] |
OOK-NRZ | 520 nm LD | 2.3Gbps | 7 m | [73] |
Category | Acoustic | Optic | RF |
---|---|---|---|
Main influencing factors | Depth | Turbidity/Flow | Salinity |
Application environment | Shallow water/Deep water | Clean water (harbor/deep sea) | Fresh water/Sea water (fresh water is better) [74] |
Main defects | High latency and high signal-to-noise ratio | Greatly affected by water quality and turbulence | High attenuation over short distances |
Advantages | Long range | High speed | Cross media transmission |
Transmitting range | Few kilometers | Within 100 m | Within 10 m |
Data rate (short range) | 500 m–50 Kbps [75] | 0.6 m–8 Gbps [64] | 2 m–1 Mbps [76] |
Data rate (long range) | 3.8 km–600 bps [77] | 100 m–600 Mbps [63] | 10 m–50 Kbps [76] |
Modality | System Type | Example | Data Rate | Range | Notes |
---|---|---|---|---|---|
Acoustic | Commercial | EvoLogics S2C R | 6–13.9 kbps | Up to 6000 m | Reliable; widely deployed; limited bandwidth |
Acoustic | Research | OFDM-SPM [50] | ~25 kbps | ~3000 m | Higher throughput using subcarrier power modulation |
Optical | Commercial | Hydromea Luma X | 10 Mbps | ~30 m | LED-based modem for compact AUVs |
Optical | Research | LD-QPSK [17] | 8 Gbps | ~0.6 m (scattering) | Coherent system, high-fidelity in turbulence |
RF | Commercial | Seatooth S100 | ~100 kbps | 5–10 m | Asset tracking, diver-AUV communication |
RF | Research | Multi-band OFDM [80] | 1 Mbps | ~15 m | Adaptive modulation, energy-efficient design |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, W.; Sun, K.; Fan, D.; Cui, W. Recent Progress on Underwater Wireless Communication Methods and Applications. J. Mar. Sci. Eng. 2025, 13, 1505. https://doi.org/10.3390/jmse13081505
Li Z, Li W, Sun K, Fan D, Cui W. Recent Progress on Underwater Wireless Communication Methods and Applications. Journal of Marine Science and Engineering. 2025; 13(8):1505. https://doi.org/10.3390/jmse13081505
Chicago/Turabian StyleLi, Zhe, Weikun Li, Kai Sun, Dixia Fan, and Weicheng Cui. 2025. "Recent Progress on Underwater Wireless Communication Methods and Applications" Journal of Marine Science and Engineering 13, no. 8: 1505. https://doi.org/10.3390/jmse13081505
APA StyleLi, Z., Li, W., Sun, K., Fan, D., & Cui, W. (2025). Recent Progress on Underwater Wireless Communication Methods and Applications. Journal of Marine Science and Engineering, 13(8), 1505. https://doi.org/10.3390/jmse13081505