Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (421)

Search Parameters:
Keywords = river segmentation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 20274 KiB  
Article
Storm-Driven Geomorphological Changes on a Mediterranean Beach: High-Resolution UAV Monitoring and Advanced GIS Analysis
by Marco Luppichini
J. Mar. Sci. Eng. 2025, 13(8), 1568; https://doi.org/10.3390/jmse13081568 - 15 Aug 2025
Viewed by 90
Abstract
Coastal erosion is a growing concern in the Mediterranean region, where the combined effects of anthropogenic pressure, reduced fluvial sediment supply, and climate change-driven sea level rise and extreme storm events threaten the stability of sandy shorelines. This study examines the geomorphological impacts [...] Read more.
Coastal erosion is a growing concern in the Mediterranean region, where the combined effects of anthropogenic pressure, reduced fluvial sediment supply, and climate change-driven sea level rise and extreme storm events threaten the stability of sandy shorelines. This study examines the geomorphological impacts of the exceptional storm surge of 3 November 2023, associated with Storm Ciaran, which affected a vulnerable coastal segment north of the Morto Nuovo River in northern Tuscany (Italy). Using UAV-based photogrammetric surveys and high-resolution morphological analysis, we quantified shoreline retreat, dune toe regression, beach slope changes, and sediment volume loss. The storm induced an average shoreline retreat of over 5 m, with local peaks reaching 30 m, and a dune toe setback of up to 7 m. A net sediment budget deficit of approximately 1800 m3 was recorded, over 50% of the total volume added during soft nourishment interventions performed in the previous decade. Our findings highlight how a single high-energy event can match or exceed the annual average erosion rate, emphasizing the limitations of traditional shoreline-based monitoring and hard defense structures. This study highlights the importance of frequent, high-resolution monitoring focused on individual storm events, which is crucial to better understand their specific geomorphological impacts. Such detailed analyses help clarify whether long-term erosion trends are primarily driven by the cumulative effect of high-energy events. This knowledge is essential for identifying the most effective coastal protection strategies and for improving the design of defense structures. This approach is particularly relevant in the context of climate change, which is expected to increase the frequency and intensity of extreme events, making it imperative to base future planning on accurate, event-driven data. Full article
Show Figures

Figure 1

27 pages, 17901 KiB  
Article
Identification of Dominant Controlling Factors and Susceptibility Assessment of Coseismic Landslides Triggered by the 2022 Luding Earthquake
by Jin Wang, Mingdong Zang, Jianbing Peng, Chong Xu, Zhandong Su, Tianhao Liu and Menghao Li
Remote Sens. 2025, 17(16), 2797; https://doi.org/10.3390/rs17162797 - 12 Aug 2025
Viewed by 208
Abstract
Coseismic landslides are geological events in which slopes, either on the verge of instability or already in a fragile state, experience premature failure due to seismic shaking. On 5 September 2022, an Ms 6.8 earthquake struck Luding County, Sichuan Province, China, triggering numerous [...] Read more.
Coseismic landslides are geological events in which slopes, either on the verge of instability or already in a fragile state, experience premature failure due to seismic shaking. On 5 September 2022, an Ms 6.8 earthquake struck Luding County, Sichuan Province, China, triggering numerous landslides that caused severe casualties and property damage. This study systematically interprets 13,717 coseismic landslides in the Luding earthquake’s epicentral area, analyzing their spatial distribution concerning various factors, including elevation, slope gradient, slope aspect, plan curvature, profile curvature, surface cutting degree, topographic relief, elevation coefficient variation, lithology, distance to faults, epicentral distance, peak ground acceleration (PGA), distance to rivers, fractional vegetation cover (FVC), and distance to roads. The analytic hierarchy process (AHP) was improved by incorporating frequency ratio (FR) to address the subjectivity inherent in expert scoring for factor weighting. The improved AHP, combined with the Pearson correlation analysis, was used to identify the dominant controlling factor and assess the landslide susceptibility. The accuracy of the model was verified using the area under the receiver operating characteristic (ROC) curve (AUC). The results reveal that 34% of the study area falls into very-high- and high-susceptibility zones, primarily along the Moxi segment of the Xianshuihe fault and both sides of the Dadu river valley. Tianwan, Caoke, Detuo, and Moxi are at particularly high risk of coseismic landslides. The elevation coefficient variation, slope aspect, and slope gradient are identified as the dominant controlling factors for landslide development. The reliability of the proposed model was evaluated by calculating the AUC, yielding a value of 0.845, demonstrating high reliability. This study advances coseismic landslide susceptibility assessment and provides scientific support for post-earthquake reconstruction in Luding. Beyond academic insight, the findings offer practical guidance for delineating priority zones for risk mitigation, planning targeted engineering interventions, and establishing early warning and monitoring strategies to reduce the potential impacts of future seismic events. Full article
(This article belongs to the Special Issue Advances in AI-Driven Remote Sensing for Geohazard Perception)
Show Figures

Graphical abstract

15 pages, 1944 KiB  
Article
Coordination of Hydropower Generation and Export Considering River Flow Evolution Process of Cascade Hydropower Systems
by Pai Li, Hui Lu, Lu Nan and Jiayi Liu
Energies 2025, 18(15), 3917; https://doi.org/10.3390/en18153917 - 23 Jul 2025
Viewed by 195
Abstract
Focusing the over simplification of existing models in simulating river flow evolution process and lack of coordination of hydropower generation and export, this paper proposes a hydropower generation and export coordinated optimal operation model that, at the same time, incorporates dynamic water flow [...] Read more.
Focusing the over simplification of existing models in simulating river flow evolution process and lack of coordination of hydropower generation and export, this paper proposes a hydropower generation and export coordinated optimal operation model that, at the same time, incorporates dynamic water flow delay by finely modeling the water flow evolution process among cascade hydropower stations within a river basin. Specifically, firstly, a dynamic water flow evolution model is built based on the segmented Muskingum method. By dividing the river into sub-segments and establishing flow evolution equation for individual sub-segments, the model accurately captures the dynamic time delay of water flow. On this basis, integrating cascade hydropower systems and the transmission system, a hydropower generation and export coordinated optimal operation model is proposed. By flexibly adjusting the power export, the model balances local consumption and external transmission of hydropower, enhancing the utilization efficiency of hydropower resources and achieving high economic performance. A case study verified the accuracy of the dynamic water flow evolution model and the effectiveness of the proposed hydropower generation and export coordinated optimal operation model. Full article
Show Figures

Figure 1

26 pages, 23038 KiB  
Article
Geometry and Kinematics of the North Karlik Tagh Fault: Implications for the Transpressional Tectonics of Easternmost Tian Shan
by Guangxue Ren, Chuanyou Li, Chuanyong Wu, Kai Sun, Quanxing Luo, Xuanyu Zhang and Bowen Zou
Remote Sens. 2025, 17(14), 2498; https://doi.org/10.3390/rs17142498 - 18 Jul 2025
Viewed by 448
Abstract
Quantifying the slip rate along geometrically complex strike-slip faults is essential for understanding kinematics and strain partitioning in orogenic systems. The Karlik Tagh forms the easternmost terminus of Tian Shan and represents a critical restraining bend along the sinistral strike-slip Gobi-Tian Shan Fault [...] Read more.
Quantifying the slip rate along geometrically complex strike-slip faults is essential for understanding kinematics and strain partitioning in orogenic systems. The Karlik Tagh forms the easternmost terminus of Tian Shan and represents a critical restraining bend along the sinistral strike-slip Gobi-Tian Shan Fault System. The North Karlik Tagh Fault (NKTF) is an important fault demarcating the north boundary of the Karlik Tagh. While structurally significant, it is poorly understood in terms of its late Quaternary tectonic activity. In this study, we analyze the offset geomorphology based on interpretations of satellite imagery, field survey, and digital elevation models derived from structure-from-motion (SfM), and we provide the first quantitative constraints on the late-Quaternary slip rate using the abandonment age of deformed fan surfaces and river terraces constrained by the 10Be cosmogenic dating method. Our results reveal that the NKTF can be divided into the Yanchi and Xiamaya segments based on along-strike variations. The NW-striking Yanchi segment exhibits thrust faulting with a 0.07–0.09 mm/yr vertical slip, while the NE-NEE-striking Xiamaya segment displays left-lateral slip at 1.1–1.4 mm/yr since 180 ka. In easternmost Tian Shan, the interaction between thrust and sinistral strike-slip faults forms a transpressional regime. These left-lateral faults, together with those in the Gobi Altai, collectively facilitate eastward crustal escape in response to ongoing Indian indentation. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

23 pages, 72638 KiB  
Article
Spatiotemporal Distribution and Heritage Corridor Construction of Vernacular Architectural Heritage in the Cao’e River, Jiaojiang River, and Oujiang River Basin
by Liwen Jiang, Jun Cai and Yilun Fan
Land 2025, 14(7), 1484; https://doi.org/10.3390/land14071484 - 17 Jul 2025
Viewed by 466
Abstract
The Cao’e-Jiaojiang-Oujiang River Basin possesses abundant vernacular architectural heritage with significant historical–cultural value. However, challenges like dispersed distribution and inconsistent conservation hinder its systematic protection and utilization within territorial spatial planning, necessitating a deeper understanding of its spatiotemporal patterns. Utilizing 570 identified heritage [...] Read more.
The Cao’e-Jiaojiang-Oujiang River Basin possesses abundant vernacular architectural heritage with significant historical–cultural value. However, challenges like dispersed distribution and inconsistent conservation hinder its systematic protection and utilization within territorial spatial planning, necessitating a deeper understanding of its spatiotemporal patterns. Utilizing 570 identified heritage sites, this study employed ArcGIS spatial analysis (Kernel Density Estimation, Nearest Neighbor Index), correlation analysis with DEM data, and suitability analysis (Minimum Cumulative Resistance model, Gravity Model) to systematically examine spatial distribution characteristics, their evolution, and relationships with the geographical environment and historical context. Results revealed a distinct “four cores and three belts” spatial pattern. Temporally, distribution evolved from “discrete” (Song-Yuan) to “aggregated” (Ming-Qing) and then “diffused” (Modern era). Spatially, heritage showed density in plains, preference for low slopes, and settlement along waterways. Suitability analysis indicated higher corridor potential in the northern section (Cao’e-Jiaojiang) than the south (Oujiang), leading to the identification of a “Northern Segment (Shaoxing-Ningbo-Shengzhou-Taizhou)” and “Southern Segment (Wenzhou-Lishui)” corridor structure. This research provides a scientific basis for systematic conservation and integrated heritage corridor construction of vernacular architectural heritage in the basin, supporting Zhejiang’s Poetry Road Cultural Belt initiatives and cultural heritage protection within territorial spatial planning. Full article
(This article belongs to the Special Issue Urban Landscape Transformation vs. Memory)
Show Figures

Figure 1

24 pages, 18258 KiB  
Article
An Integrated Approach for Emergency Response and Long-Term Prevention for Rainfall-Induced Landslide Clusters
by Wenxin Zhao, Yajun Li, Yunfei Huang, Guowei Li, Fukang Ma, Jun Zhang, Mengyu Wang, Yan Zhao, Guan Chen, Xingmin Meng, Fuyun Guo and Dongxia Yue
Remote Sens. 2025, 17(14), 2406; https://doi.org/10.3390/rs17142406 - 12 Jul 2025
Viewed by 357
Abstract
Under the background of global climate change, shallow landslide clusters induced by extreme rainfall are occurring with increasing frequency, causing severe casualties and economic losses. To address this challenge, this study proposes an integrated approach to support both emergency response and long-term mitigation [...] Read more.
Under the background of global climate change, shallow landslide clusters induced by extreme rainfall are occurring with increasing frequency, causing severe casualties and economic losses. To address this challenge, this study proposes an integrated approach to support both emergency response and long-term mitigation for rainfall-induced shallow landslides. The workflow includes (1) rapid landslide detection based on time-series image fusion and threshold segmentation on the Google Earth Engine (GEE) platform; (2) numerical simulation of landslide runout using the R.avaflow model; (3) landslide susceptibility assessment based on event-driven inventories and machine learning; and (4) delineation of high-risk slopes by integrating simulation outputs, susceptibility results, and exposed elements. Applied to Qugaona Township in Zhouqu County, Bailong River Basin, the framework identified 747 landslides. The R.avaflow simulations captured the spatial extent and depositional features of landslides, assisting post-disaster operations. The Gradient Boosting-based susceptibility model achieved an accuracy of 0.870, with 8.0% of the area classified as highly susceptible. In Cangan Village, high-risk slopes were delineated, with 31.08%, 17.85%, and 22.42% of slopes potentially affecting buildings, farmland, and roads, respectively. The study recommends engineering interventions for these areas. Compared with traditional methods, this approach demonstrates greater applicability and provides a more comprehensive basis for managing rainfall-induced landslide hazards. Full article
Show Figures

Figure 1

15 pages, 3581 KiB  
Article
eDNA Metabarcoding Reveals Homogenization of Fish in Fujiang Segments Isolated by Cascading Hydroelectric Stations
by Chao Deng, Shixia Huang, Bolin Chen, Rong Huang, Jiaqi Zhang, Zhihui Xiao, Chengcheng Ma, Zhijian Wang and Xiaohong Liu
Animals 2025, 15(14), 2031; https://doi.org/10.3390/ani15142031 - 10 Jul 2025
Viewed by 341
Abstract
Background: The Fujiang River, a first-order branch of Jialing River, has for years been separated into six segments by six cascading hydropower stations in its downstream. However, the impact of cascading hydropower stations on its aquatic biota communities remains unclear. Methods: eDNA samples [...] Read more.
Background: The Fujiang River, a first-order branch of Jialing River, has for years been separated into six segments by six cascading hydropower stations in its downstream. However, the impact of cascading hydropower stations on its aquatic biota communities remains unclear. Methods: eDNA samples were collected in the upper, middle, and lower reaches of each river fragment during March, May, July, and December 2023, and after species identification, various statistical analyses including β-diversity, NMDS and MantelTest were performed using the R platform. Results: A total of 82 fish species belonging to 15 families were identified. The fish communities in the six fragments of the downstream Fujiang River showed a high degree of overlap, and a notable aggregation of fish communities between the upper, middle, and lower areas within each river section was also observed. Flow velocity (FV) and water temperature (TEMP) were found to be important factors in shaping fish distribution. Conclusion: Fish composition and distribution trend towards homogenization in the downstream of the Fujiang River. Full article
Show Figures

Figure 1

30 pages, 3796 KiB  
Article
Applying Deep Learning Methods for a Large-Scale Riparian Vegetation Classification from High-Resolution Multimodal Aerial Remote Sensing Data
by Marcel Reinhardt, Edvinas Rommel, Maike Heuner and Björn Baschek
Remote Sens. 2025, 17(14), 2373; https://doi.org/10.3390/rs17142373 - 10 Jul 2025
Viewed by 378
Abstract
The unique vegetation in riparian zones is fundamental for various ecological and socio-economic functions in these transitional areas. Sustainable management requires detailed spatial information about the occurring flora. Here, we present a Deep Learning (DL)-based approach for processing multimodal high-resolution remote sensing data [...] Read more.
The unique vegetation in riparian zones is fundamental for various ecological and socio-economic functions in these transitional areas. Sustainable management requires detailed spatial information about the occurring flora. Here, we present a Deep Learning (DL)-based approach for processing multimodal high-resolution remote sensing data (aerial RGB and near-infrared (NIR) images and elevation maps) to generate a classification map of the tidal Elbe and a section of the Rhine River (Germany). The ground truth was based on existing mappings of vegetation and biotope types. The results showed that (I) despite a large class imbalance, for the tidal Elbe, a high mean Intersection over Union (IoU) of about 78% was reached. (II) At the Rhine River, a lower mean IoU was reached due to the limited amount of training data and labelling errors. Applying transfer learning methods and labelling error correction increased the mean IoU to about 60%. (III) Early fusion of the modalities was beneficial. (IV) The performance benefits from using elevation maps and the NIR channel in addition to RGB images. (V) Model uncertainty was successfully calibrated by using temperature scaling. The generalization ability of the trained model can be improved by adding more data from future aerial surveys. Full article
Show Figures

Figure 1

26 pages, 8827 KiB  
Article
Three-Dimensional Refined Numerical Modeling of Artificial Ground Freezing in Metro Cross-Passage Construction: Thermo-Mechanical Coupling Analysis and Field Validation
by Qingzi Luo, Junsheng Li, Wei Huang, Wanying Wang and Bingxiang Yuan
Buildings 2025, 15(13), 2356; https://doi.org/10.3390/buildings15132356 - 4 Jul 2025
Viewed by 324
Abstract
The artificial ground freezing method (AGF) is widely used in underground construction to reinforce the ground and ensure construction safety. This study systematically evaluates the implementation of the artificial ground freezing method in the construction of a metro tunnel cross-passage, with a focus [...] Read more.
The artificial ground freezing method (AGF) is widely used in underground construction to reinforce the ground and ensure construction safety. This study systematically evaluates the implementation of the artificial ground freezing method in the construction of a metro tunnel cross-passage, with a focus on analyzing the soil’s thermo-mechanical behavior and assessing safety performance throughout the construction process. A combined approach integrating field monitoring and refined three-dimensional numerical simulation using FLAC3D is adopted, considering critical factors, such as freezing pipe inclination, thermo-mechanical coupling, and ice–water phase transitions. Both field data and simulation results demonstrate that increasing the density of freezing pipes accelerates temperature reduction and intensifies frost heave-induced displacements near the pipes. After 45 days of active freezing, the freezing curtain reaches a thickness of 3.7 m with an average temperature below −10 °C. Extending the freezing duration beyond this period yields negligible improvement in curtain performance. Frost heave deformation develops rapidly during the initial phase and stabilizes after approximately 25 days, with maximum vertical displacements reaching 12 cm. Significant stress concentrations occur in the soil adjacent to the freezing pipes, with shield tunnel segments experiencing up to 5 MPa of stress. Thaw settlement is primarily concentrated in areas previously affected by frost heave, with a maximum settlement of 3 cm. Even after 45 days of natural thawing, a frozen curtain approximately 3.3 m thick remains intact, maintaining sufficient structural strength. The refined numerical model accurately captures the mechanical response of soil during the freezing and thawing processes under realistic engineering conditions, with field monitoring data validating its effectiveness. This research provides valuable guidance for managing construction risks and ensuring safety in similar cross-passage and cross-river tunnel projects, with broader implications for underground engineering requiring precise control of frost heave and thaw settlement. Full article
Show Figures

Figure 1

23 pages, 2732 KiB  
Article
Impacts of Low-Order Stream Connectivity Restoration Projects on Aquatic Habitat and Fish Diversity
by Xinfeng Li, Xuan Che, Xiaolong Chen, Changfeng Tian and Jiahua Zhang
Fishes 2025, 10(7), 321; https://doi.org/10.3390/fishes10070321 - 2 Jul 2025
Viewed by 322
Abstract
River barriers constitute a key factor that is degrading river connectivity and represent a critical research focus in riverine ecosystem conservation. Management authorities and river restoration agencies globally have increasingly employed barrier removal or modification for connectivity restoration projects in recent years, practices [...] Read more.
River barriers constitute a key factor that is degrading river connectivity and represent a critical research focus in riverine ecosystem conservation. Management authorities and river restoration agencies globally have increasingly employed barrier removal or modification for connectivity restoration projects in recent years, practices that are widely discussed and empirically supported in academia. However, existing research predominantly focuses on large dams in primary rivers, overlooking the more severe fragmentation caused by low-head barriers within low-order streams. This study targets the Yanjing River (total length: 70 km), a third-order tributary of the Yangtze River basin, implementing culvert modification and complete removal measures, respectively, for two river barriers distributed within its terminal 9 km reach. Using differential analysis, principal component analysis (PCA), cluster analysis, Mantel tests, and structural equation modeling (SEM), we systematically examined the mechanisms by which connectivity restoration projects influences aquatic habitat and fish diversity, the evolution of reach heterogeneity, and intrinsic relationships between aquatic environmental factors and diversity metrics. Results indicate that (1) the post-restoration aquatic habitat significantly improved with marked increases in fish diversity metrics, where hydrochemical factors and species diversity exhibited the highest sensitivity to connectivity changes; (2) following restoration, the initially barrier-fragmented river segments (upstream, middle, downstream) exhibited significantly decreased differences in aquatic habitat and fish diversity, demonstrating progressive homogenization across reaches; (3) hydrological factors exerted stronger positive effects on fish diversity than hydrochemical factors did, particularly enhancing species diversity, with a significant positive synergistic effect observed between species diversity and functional diversity. These studies demonstrate that “culvert modification and barrier removal” represent effective project measures for promoting connectivity restoration in low-order streams and eliciting positive ecological effects, though they may reduce the spatial heterogeneity of short-reach rivers in the short term. It is noteworthy that connectivity restoration projects should prioritize the appropriate improvement of hydrological factors such as flow velocity, water depth, and water surface width. Full article
(This article belongs to the Special Issue Biodiversity and Spatial Distribution of Fishes, Second Edition)
Show Figures

Graphical abstract

35 pages, 9246 KiB  
Article
Risk Assessment and Management Strategy of Coastal Erosion in the Red River Delta, Vietnam
by Thi Hong Hanh Nguyen, Guanxun Wang, Wenyue Chen, Jing Yu, Ruonan Liu, Xu Huang, Xun Jiang, Van Vuong Bui, Dinh Nam Le and Van Phach Phung
Land 2025, 14(6), 1247; https://doi.org/10.3390/land14061247 - 11 Jun 2025
Viewed by 998
Abstract
Climate change poses substantial threats to natural ecosystems and human livelihoods, particularly in coastal regions, by intensifying coastal erosion. This process leads to land loss, infrastructure damage, and habitat destruction while amplifying challenges such as sea-level rise, flooding, desertification, and salinization. In Vietnam’s [...] Read more.
Climate change poses substantial threats to natural ecosystems and human livelihoods, particularly in coastal regions, by intensifying coastal erosion. This process leads to land loss, infrastructure damage, and habitat destruction while amplifying challenges such as sea-level rise, flooding, desertification, and salinization. In Vietnam’s Red River Delta (RRD), the dynamic interplay between erosion and accretion presents a highly complex challenge, necessitating effective risk assessment and management to safeguard communities and resources. Using the principles of natural disaster risk assessment and comprehensive analysis, this study develops a coastal erosion risk assessment framework incorporating hazard, exposure, and vulnerability dimensions. The framework integrates 17 indicators, including human activities, socioeconomic factors, shoreline type, and vegetation cover, with indicator weights determined through expert evaluation and the analytic hierarchy process. The application of this framework reveals that coastal erosion risk in the RRD is relatively high, with greater risk concentrated in the central and northern segments of the coastline compared to the flanking areas. This framework offers valuable insights for coastal erosion prevention, mitigation strategies, and the optimization of coastal spatial planning. The application of coastal erosion risk assessment methods provides a relatively complete foundation for developing comprehensive prevention and adaptation solutions in the future. Through the system of parameters and corresponding weights, it provides an overview of potential responses to future impacts while identifying current high-risk zones specifically and accurately, thereby assessing the importance of each parameter on that impact. Based on specific analysis of assessment results, a reasonable resource use and management policy can be developed to minimize related natural disasters. Therefore, two main groups of solutions proposed under the “Protection—Adaptation” strategy are proposed to prevent natural disasters, minimize risks and sustainably develop the coastal area of the RRD. Full article
Show Figures

Figure 1

18 pages, 5816 KiB  
Article
Research on the Gradient of Aquatic Ecological Integrity of Phytoplankton in Regional River Segments of Jiangsu Province and Its Driving Mechanism
by Yiqian Zou, Ling Liu, Yanhua Jiang and Chenjun Yang
Water 2025, 17(11), 1645; https://doi.org/10.3390/w17111645 - 29 May 2025
Viewed by 418
Abstract
To study the structure and distribution characteristics of the phytoplankton community in the Huaihe River Basin, Yangtze River Basin, and Taihu Lake Basin in Jiangsu Province, 126 sampling sites were set up in 35 rivers in the region, and samples were collected during [...] Read more.
To study the structure and distribution characteristics of the phytoplankton community in the Huaihe River Basin, Yangtze River Basin, and Taihu Lake Basin in Jiangsu Province, 126 sampling sites were set up in 35 rivers in the region, and samples were collected during the wet season (August–September) in 2023. Based on the monitoring results of phytoplankton, the study selected 20 candidate indicators and conducted range screening, discriminative ability analysis, and correlation analysis. Finally, seven core indicators were determined to construct the Phytoplankton Biological Integrity Index (P-IBI) evaluation system. The rating standards were determined by the ratio method, and the phytoplankton integrity of Jiangsu Province was evaluated. The differences were analyzed. As the results showed, the overall health status of rivers in Jiangsu Province was general. From the point of view of the basin scope, the Huaihe River Basin and the Yangtze River Basin were in sub-healthy state, and the Taihu Lake Basin was general. There were significant differences in the phytoplankton density community structure in the Yangtze River, Huaihe River, and Taihu Lake Basins. Phytoplankton integrity was positively correlated with total nitrogen and nitrate nitrogen, but not with other environmental factors. Nitrogen is the main factor affecting the integrity of river phytoplankton in Jiangsu Province. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

21 pages, 4767 KiB  
Article
Mapping the Distribution and Discharge of Plastic Pollution in the Ganga River
by Ekta Sharma, Aishwarya Ramachandran, Pariva Dobriyal, Srishti Badola, Heather Koldewey, Syed Ainul Hussain and Ruchi Badola
Sustainability 2025, 17(11), 4932; https://doi.org/10.3390/su17114932 - 27 May 2025
Viewed by 1298
Abstract
The Ganga River, a lifeline for millions and a critical freshwater ecosystem, is under threat from escalating plastic pollution driven by widespread usage and inadequate disposal practices. While marine ecosystems have garnered extensive research attention, freshwater systems—particularly in the Global South—remain underexplored, leaving [...] Read more.
The Ganga River, a lifeline for millions and a critical freshwater ecosystem, is under threat from escalating plastic pollution driven by widespread usage and inadequate disposal practices. While marine ecosystems have garnered extensive research attention, freshwater systems—particularly in the Global South—remain underexplored, leaving critical gaps in understanding plastic pollution’s sources and pathways. Addressing these gaps, the study documents the prevalence and typology of plastic debris in urban and underexplored rural communities along the Ganga River, India, aiming to suggest mechanisms for a reduction in source-based pollution. A stratified random sampling approach was used to select survey sites and plastic debris was quantified and categorised through transect surveys. A total of 37,730 debris items were retrieved, dominated by packaging debris (52.46%), fragments (23.38%), tobacco-related debris (5.03%), and disposables (single-use plastic cutleries) (4.73%) along the surveyed segments with varying abundance trends. Floodplains displayed litter densities nearly 28 times higher than river shorelines (6.95 items/m2 vs. 0.25 items/m2), with minor variations between high- and low-population-density areas (7.14 items/m vs. 6.7 items/m2). No significant difference was found between rural and urban areas (V = 41, p = 0.19), with mean densities of 0.87 items/m2 and 0.81 items/m2, respectively. Seasonal variations were insignificant (V = 13, p = 0.30), but treatment sites displayed significant variance (Chi2 = 10.667, p = 0.004) due to flood impacts. The findings underscore the urgent need for tailored waste management strategies integrating industrial reforms, decentralised governance, and community-driven efforts. Enhanced baseline information and coordinated multi-sectoral efforts, including Extended Producer Responsibility (EPR), are crucial for mitigating plastic pollution and protecting freshwater ecosystems, given rivers’ significant contribution to ocean pollution. Full article
Show Figures

Figure 1

22 pages, 2748 KiB  
Article
Effects of Green Infrastructure Practices on Runoff and Water Quality in the Arroyo Colorado Watershed, Texas
by Pamela Mugisha and Tushar Sinha
Water 2025, 17(11), 1565; https://doi.org/10.3390/w17111565 - 22 May 2025
Viewed by 745
Abstract
Continuous use of agricultural chemicals and fertilizers, sporadic sewer overflow events, and an increase in urbanization have led to significant nutrient/pollutant loadings into the semi-arid Arroyo Colorado River basin, which is located in South Texas, U.S. Priority nutrients that require reduction include phosphorus [...] Read more.
Continuous use of agricultural chemicals and fertilizers, sporadic sewer overflow events, and an increase in urbanization have led to significant nutrient/pollutant loadings into the semi-arid Arroyo Colorado River basin, which is located in South Texas, U.S. Priority nutrients that require reduction include phosphorus and nitrogen and to mitigate issues of low dissolved oxygen, in some of its river segments. Consequently, the river’s potential to support aquatic life has been significantly reduced, thus highlighting the need for restoration. To achieve this restoration, a watershed protection plan was developed, comprising several preventive mitigation measures, including installing green infrastructure (GI) practices. However, for effective reduction of excessive nutrient loadings, there is a need to study the effects of different combinations of GI practices under current and future land use scenarios to guide decisions in implementing the cost-effective infrastructure while considering factors such as the existing drainage system, topography, land use, and streamflow. Therefore, this study coupled the Soil and Water Assessment Tool (SWAT) model with the System for Urban Stormwater Treatment and Analysis Integration (SUSTAIN) model to determine the effects of different combinations of GI practices on the reduction of nitrogen and phosphorus under changing land use conditions in three selected Arroyo Colorado subwatersheds. Two land use maps from the U.S. Geological Survey (USGS) Forecasting Scenarios of land use (FORE-SCE) model for 2050, namely, A1B and B1, were implemented in the coupled SWAT-SUSTAIN model in this study, where the urban area is projected to increase by 6% and 4%, respectively, with respect to the 2018 land use scenario. As expected, runoff, phosphorus, and nitrogen slightly increased with imperviousness. The modeling results showed that implementing either vegetated swales or wet ponds reduces flow and nutrients to meet the Total Maximum Daily Loads (TMDLs) targets, which cost about USD 1.5 million under current land use (2018). Under the 2050 future projected land use changes (A1B scenario), the cost-effective GI practice was implemented in vegetated swales at USD 1.5 million. In contrast, bioretention cells occupied the least land area to achieve the TMDL targets at USD 2 million. Under the B1 scenario of 2050 projected land use, porous pavements were most cost effective at USD 1.5 million to meet the TMDL requirements. This research emphasizes the need for collaboration between stakeholders at the watershed and farm levels to achieve TMDL targets. This study informs decision-makers, city planners, watershed managers, and other stakeholders involved in restoration efforts in the Arroyo Colorado basin. Full article
(This article belongs to the Special Issue Urban Stormwater Control, Utilization, and Treatment)
Show Figures

Figure 1

24 pages, 7031 KiB  
Article
Exploring the Impact of Waterfront Street Environments on Human Perception
by Yiqing Yu, Gonghu Huang, Dong Sun, Mei Lyu and Dewancker Bart
Buildings 2025, 15(10), 1678; https://doi.org/10.3390/buildings15101678 - 16 May 2025
Viewed by 732
Abstract
Urban waterfront streets are important mediators that reflect a city’s image and characteristics. They play a positive role in enhancing residents’ cohesion, mental and physical health, and social interactions. Human perceptions represent individuals’ psychological experiences and feelings toward the surrounding environment. Previous studies [...] Read more.
Urban waterfront streets are important mediators that reflect a city’s image and characteristics. They play a positive role in enhancing residents’ cohesion, mental and physical health, and social interactions. Human perceptions represent individuals’ psychological experiences and feelings toward the surrounding environment. Previous studies have explored the impact of urban street-built environmental factors on perceptions; however, research focusing on waterfront street environments and their impacts on human perceptions remains limited. Therefore, exploring the specific impact of waterfront street environmental characteristics on different dimensions of human perception is essential for guiding the development of livable cities. Based on Street View images (SVIs), this study applied artificial neural networks and machine learning semantic segmentation techniques to obtain physical feature data and human perception data of the Murasaki River waterfront line spaces in Kitakyushu, Japan. In addition, correlation and regression analyses were conducted to explore the specific impact of physical features on different dimensions of human perception in waterfront line spaces, and corresponding optimization strategies were proposed. The results show that street greenness significantly enhances perceptions of safety, wealth, and beauty, while effectively reducing boredom and depression. Furthermore, the building visual ratio contributes to increased street vitality. On the other hand, physical features such as openness, spatial indicators, and environmental color diversity have negative effects on positive perceptions, including safety and vitality. In particular, openness significantly increases boredom and depression. This study advances the exploration of urban waterfront street environments from the perspective of human perception, providing a theoretical foundation for improving the spatial quality of waterfront streets and offering references for human-centered urban planning and construction. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop