Exploring the Impact of Waterfront Street Environments on Human Perception
Abstract
1. Introduction
2. Methods
2.1. Study Area and Street View Image Collection
2.2. Human Perception Acquisition
2.3. Street Physical Features Calculation
2.4. Statistical Analysis
3. Results
3.1. Spatial Heterogeneity Analysis of Human Perceptions
3.2. Integrated Analysis of Human Perception and Physical Features
3.3. Correlation and Regression Analysis
4. Discussion
4.1. Positive Human Perceptions
4.2. Negative Human Perceptions
4.3. Spatial Optimization Strategies
4.4. Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, Y.; Sun, Y.; Liu, Y.; Li, X. Exploring the correlation between waterbodies, green space morphology, and carbon dioxide concentration distributions in an urban waterfront green space: A simulation study based on the carbon cycle. Sustain. Cities Soc. 2023, 98, 104831. [Google Scholar] [CrossRef]
- Sieweke, J. River. Space. Design. Planning Strategies, Methods and Projects for Urban Rivers. J. Landsc. Archit. 2013, 8, 84–85. [Google Scholar] [CrossRef]
- Gan, Z.X. Discussion on several problems of waterfront development. City Plan. Rev. 1998, 2, 42–45. [Google Scholar]
- Wang, Y.; Dewancker, B.J.; Qi, Q. Citizens’ preferences and attitudes towards urban waterfront spaces: A case study of Qiantang riverside development. Environ. Sci. Pollut. Res. 2020, 27, 45787–45801. [Google Scholar] [CrossRef]
- Vian, F.D.; Izquierdo, J.J.P.; Martínez, M.S. River-city recreational interaction: A classification of urban riverfront parks and walks. Urban For. Urban Green. 2021, 59, 127042. [Google Scholar] [CrossRef]
- Hagerman, C. Shaping neighborhoods and nature: Urban political ecologies of urban waterfront transformations in Portland, Oregon. Cities 2007, 24, 285–297. [Google Scholar] [CrossRef]
- Sepe, M. Urban history and cultural resources in urban regeneration: A case of creative waterfront renewal. Plan. Perspect. 2013, 28, 595–613. [Google Scholar] [CrossRef]
- Follmann, A. Urban mega-projects for a ‘world-class’ riverfront—The interplay of informality, flexibility and exceptionality along the Yamuna in Delhi, India. Habitat Int. 2015, 45, 213–222. [Google Scholar] [CrossRef]
- Desfor, G.; Jørgensen, J. Flexible urban governance. The case of Copenhagen’s recent waterfront development. Eur. Plan. Stud 2004, 12, 479–496. [Google Scholar] [CrossRef]
- Che, Y.; Yang, K.; Chen, T.; Xu, Q. Assessing a riverfront rehabilitation project using the comprehensive index of public accessibility. Ecol. Eng. 2012, 40, 80–87. [Google Scholar] [CrossRef]
- Feldman, M. Urban waterfront regeneration and local governance in Tallinn. Eur.-Asia Stud. 2000, 52, 829–850. [Google Scholar] [CrossRef]
- Samant, S. Manifestation of the urban public realm at the water edges in India—A case study of the ghats in Ujjain. Cities 2004, 21, 233–253. [Google Scholar] [CrossRef]
- Yan, C.; Cai, X.; Wu, Y.; Tang, X.; Zhou, Y.; Yang, Q.; Li, F.; Lan, S.; Lin, L. How Do Urban Waterfront Landscape Characteristics Influence People’s Emotional Benefits? Mediating Effects of Water-Friendly Environmental Preferences. Forests 2024, 15, 25. [Google Scholar] [CrossRef]
- Harvey, C. Measuring Streetscape Design for Livability Using Spatial Data and Methods; The University of Vermont and State Agricultural College: Burlington, VT, USA, 2014. [Google Scholar]
- Lyu, M.; Meng, Y.; Gao, W.; Yu, Y.; Ji, X.; Li, Q.; Huang, G.; Sun, D. Measuring the perceptual features of coastal streets: A case study in Qingdao, China. Environ. Res. Commun. 2022, 4, 115002. [Google Scholar] [CrossRef]
- Huang, L.S.; Han, Y.; Ye, Y. Coastal Waterfront Vibrancy: An Exploration from the Perspective of Quantitative Urban Morphology. Buildings 2022, 12, 1585. [Google Scholar] [CrossRef]
- Sairinen, R.; Kumpulainen, S. Assessing social impacts in urban waterfront regeneration. Environ. Impact Assess. Rev. 2006, 26, 120–135. [Google Scholar] [CrossRef]
- Vich, G.; Magadán, J.D.; Miralles-Guasch, C. The composition of green spaces and levels of physical activity of older people in Barcelona. Congr. Int. Ciudad Y Territ. Virtual (CTV) 2019. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the built environment: A meta-analysis. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Bin, J.; Li, L.; Zhang, T. Exploring relationship between urban spatial elements and public health: Using ‘the image of city’ theory as a research framework. Shanghai Urban Plan. Rev. 2017, 3, 63–68. [Google Scholar]
- Liu, W.; Zheng, S.; Hu, X.; Wu, Z.; Chen, S.; Huang, Z.; Zhang, W. Effects of spatial scale on the built environments of community life circles providing health functions and services. Build. Environ. 2022, 223, 109492. [Google Scholar] [CrossRef]
- Nogueira, H.; Ferrão, M.; Gama, A.; Mourão, I.; Rosado Marques, V.; Pedez, C. Perceptions of neighborhood environments and childhood obesity: Evidence of harmful gender inequities among Portuguese children. Health Place 2013, 1, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Ruijsbroek, A.; Droomers, M.; Groenewegen, P.P.; Hardyns, W.; Stronks, K. Social safety, self-rated general health and physical activity: Changes in area crime, area safety feelings and the role of social cohesion. Health Place 2015, 31, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, C.; Ayers, C.; Hartz, J.; Adu-Brimpong, J.; Thomas, S.; Mitchell, V.; Peters-Lawrence, M.; Sampson, D.; Brooks, A.T.; Wallen, G.; et al. Examining relationships between perceptions and objective assessments of neighborhood environment and sedentary time: Data from the Washington, DC Cardiovascular Health and Needs Assessment. Prev. Med. Rep. 2018, 9, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Miller, H.J.; Root, E.D.; Hyder, A.; Liu, D. Understanding the role of urban social and physical environment in opioid overdose events using found geospatial data. Health Place 2022, 75, 102792. [Google Scholar] [CrossRef]
- Zeng, Q.; Bao, X.; Dewancker, B.J. Association between built environment on transport and recreational walking in Japan: The case of Kitakyushu. City Built Environ. 2023, 1, 10. [Google Scholar] [CrossRef]
- Villagra, P.; Rojas, C.; Rojas, O.; Alves, S. Spatial interactions between perceived biophilic values and neighborhood typologies in urban wetlands. City Built Environ. 2024, 2, 3. [Google Scholar] [CrossRef]
- Harding, J.; Pribram, E.D. The power of feeling: Locating emotions in culture. Eur. J. Cult. Stud. 2002, 5, 407–426. [Google Scholar] [CrossRef]
- Jacobs, J. The Death and Life of Great American Cities; Random House: New York, NY, USA, 1961. [Google Scholar]
- Alexander, C.; Ishikawa, S.; Silverstein, M. A pattern. Language 1977, 14, 80–81. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Páez, A. A model-based approach to select case sites for walkability audits. Health Place 2012, 18, 1323–1334. [Google Scholar] [CrossRef]
- Lynch, K. The Image of the City; The MIT Press: Cambridge, MA, USA, 1960; ISBN 0-262-62001-4. [Google Scholar]
- Zhou, H.; He, S.; Cai, Y.; Wang, M.; Su, S. Social inequalities in neighborhood visual walkability: Using street view imagery and deep learning technologies to facilitate healthy city planning. Sustain. Cities Soc. 2019, 50, 101605. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Jiang, X.; Han, J.; Wang, Z.; Wu, D.; Lin, Q.; Li, L.; Zhang, S.; Dong, Y. Prediction of riverside greenway landscape aesthetic quality of urban canalized rivers using environmental modeling. J. Clean. Prod. 2022, 367, 133066. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, Y. The neighborhood effect of exposure to blue space on elderly individuals’ mental health: A case study in Guangzhou, China. Health Place 2020, 63, 102348. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Guo, J.; Ma, Z.; Zhao, K. Data-driven approach to assess street safety: Large-scale analysis of the microscopic design. ISPRS Int. J. Geo-Inf. 2022, 11, 537. [Google Scholar] [CrossRef]
- Li, Y.; Yabuki, N.; Fukuda, T. Integrating GIS, deep learning, and environmental sensors for multicriteria evaluation of urban street walkability. Landsc. Urban Plan. 2023, 230, 104603. [Google Scholar] [CrossRef]
- Santosa, H.; Ernawati, J.; Wulandari, L.D. Visual quality evaluation of urban commercial streetscape for the development of landscape visual planning system in provincial street corridors in Malang, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 126, 012202. [Google Scholar] [CrossRef]
- Sun, D.; Ji, X.; Gao, W.; Zhou, F.; Yu, Y.; Meng, Y.; Yang, M.; Lin, J.; Lyu, M. The relation between green visual index and visual comfort in Qingdao coastal streets. Buildings 2023, 13, 457. [Google Scholar] [CrossRef]
- Oliveira, V.; Oliveira, V. The elements of urban form. In Urban Morphology: An Introduction to the Study of the Physical Form of Cities; Springer: Cham, Switzerland, 2016; pp. 7–30. [Google Scholar]
- Moura, F.; Cambra, P.; Gonçalves, A.B. Measuring walkability for distinct pedestrian groups with a participatory assessment method: A case study in Lisbon. Landsc. Urban Plan. 2017, 157, 282–296. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, J.; Cuan, Y.; Zhou, Z. The evolution response of ecosystem cultural services under different scenarios based on system dynamics. Remote Sens. 2020, 12, 418. [Google Scholar] [CrossRef]
- Tennant, R.; Hiller, L.; Fishwick, R.; Platt, S.; Joseph, S.; Weich, S.; Parkinson, J.; Secker, J.; Stewart-Brown, S. The warwick-edinburgh mental well-being scale (WEMWBS): Development and UK validation. Health Qual Life Outcomes 2007, 5, 63. [Google Scholar] [CrossRef]
- Furukawa, T.A.; Kawakami, N.; Saitoh, M.; Ono, Y.; Nakane, Y.; Nakamura, Y.; Tachimori, H.; Iwata, N.; Uda, H.; Nakane, H.; et al. The performance of the Japanese version of the K6 and K10 in the World Mental Health Survey Japan. Int. J. Methods Psychiatr. Res. 2008, 17, 152–158. [Google Scholar] [CrossRef]
- Fernández-Gavilanes, M.; Costa-Montenegro, E.; García-Méndez, S.; González-Castaño, F.J.; Juncal-Martínez, J. Evaluation of online emoji description resources for sentiment analysis purposes. Expert Syst. Appl. 2021, 184, 115279. [Google Scholar] [CrossRef]
- Ahanin, Z.; Ismail, M.A. A multi-label emoji classification method using balanced pointwise mutual information-based feature selection. Comput. Speech Lang. 2022, 73, 101330. [Google Scholar] [CrossRef]
- Chen, Z. Assessing the impact of high-density high-heterogeneity urban district landscape on psychological health and optimizing via evidence-based design. Landsc. Archit. 2018, 25, 106–111. [Google Scholar]
- Sv, P.; Ittamalla, R. Analyzing Indian citizen’s perspective towards government using wearable sensors to tackle COVID-19 crisis—A text analytics study. Health Policy Technol. 2021, 10, 100521. [Google Scholar] [CrossRef]
- Wang, X.; Li, A.F. The influence of buildt environment on residents’s positive emotions in high-density urban blocks: A case study of Beijing. Urban Dev. Stud. 2023, 30, 89–96. [Google Scholar]
- Lynch, K. The Image of the City. Publication of the Joint Center for Urban Studies; MIT Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Montello, D.R.; Goodchild, M.F.; Gottsegen, J.; Fohl, P. Where’s downtown?: Behavioral methods for determining referents of vague spatial queries. In Spatial Vagueness, Uncertainty, Granularity; Psychology Press: London, UK, 2017; pp. 185–204. [Google Scholar]
- Cao, J.; Wang, J.; Wu, X.; Ding, C.; Wang, W.; Wang, H. Post-evaluation of urban river open space landscape restoration: A case study of the eastern part of the Inner Qinhuai River in Nanjing. J. Nanjing For. Univ. 2020, 44, 195. [Google Scholar]
- Li, Y.; Yabuki, N.; Fukuda, T. Measuring visual walkability perception using panoramic street view images, virtual reality, and deep learning. Sustain. Cities Soc. 2022, 86, 104140. [Google Scholar] [CrossRef]
- Biljecki, F.; Ito, K. Street view imagery in urban analytics and GIS: A review. Landsc. Urban Plan. 2021, 215, 104217. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Gao, S.; Gong, L.; Kang, C.; Zhi, Y.; Chi, G.; Shi, L. Social sensing: A new approach to understanding our socioeconomic environments. Ann. Assoc. Am. Geogr. 2015, 105, 512–530. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the built environment: A synthesis. Transp. Res. Rec 2001, 1780, 87–114. [Google Scholar] [CrossRef]
- Sun, D.; Li, Q.; Gao, W.; Huang, G.; Tang, N.; Lyu, M.; Yu, Y. On the relation between visual quality and landscape characteristics: A case study application to the waterfront linear parks in Shenyang, China. Environ. Res. Commun. 2021, 3, 115013. [Google Scholar] [CrossRef]
- Xu, L.; Kang, Q. The relationship between pedestrian behaviors and the spatial features along the ground-floor commercial street: The case of West Nanjing road in Shanghai. Urban Plan. Forum 2014, 3, 104–111. [Google Scholar]
- Long, Y.; Zhou, Y. Quantitative evaluation on street vibrancy and its impact factors: A case study of Chengdu. New Archit. 2016, 1, 52–57. [Google Scholar]
- Wu, C.; Peng, N.; Ma, X.; Li, S.; Rao, J. Assessing multiscale visual appearance characteristics of neighbourhoods using geographically weighted principal component analysis in Shenzhen, China. Comput. Environ. Urban Syst. 2020, 84, 101547. [Google Scholar] [CrossRef]
- Ye, Y.; Richards, D.; Lu, Y.; Song, S.; Zhuang, Y.; Zeng, W.; Zhong, T. Measuring daily accessed street greenery: A human-scale approach for informing better urban planning practices. Landsc. Urban Plan. 2019, 191, 103434. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, B.; Liu, L.; Liu, Y.; Fung, H.H.; Lin, H.; Ratti, C. Measuring human perceptions of a large-scale urban region using machine learning. Landsc. Urban Plan. 2018, 180, 148–160. [Google Scholar] [CrossRef]
- Gupta, J.; Pathak, S.; Kumar, G. Deep learning (CNN) and transfer learning: A review. J. Phys. 2022, 2273, 012029. [Google Scholar] [CrossRef]
- Gao, F.; Chen, X.; Liao, S.; Chen, W.; Feng, L.; Wu, J.; Zhou, Q.; Zheng, Y.; Li, G.; Li, S. Crafting a jogging-friendly city: Harnessing big data to evaluate the runnability of urban streets. J. Transp. Geogr. 2024, 121, 104015. [Google Scholar] [CrossRef]
- Gonzalez, D.; Rueda-Plata, D.; Acevedo, A.B.; Duque, J.C.; Ramos-Pollán, R.; Betancourt, A.; García, S. Automatic detection of building typology using deep learning methods on street level images. Build. Environ. 2020, 177, 106805. [Google Scholar] [CrossRef]
- Nagata, S.; Nakaya, T.; Hanibuchi, T.; Amagasa, S.; Kikuchi, H.; Inoue, S. Objective scoring of streetscape walkability related to leisure walking: Statistical modeling approach with semantic segmentation of google street view images. Health Place 2020, 66, 102428. [Google Scholar] [CrossRef]
- Wang, L.; Han, X.; He, J.; Jung, T. Measuring residents’ perceptions of city streets to inform better street planning through deep learning and space syntax. ISPRS J. Photogramm. Remote Sens. 2022, 190, 215–230. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, B.; Luo, S.; Wang, M.; Miao, J.; Jia, Q. Integrating Streetscape Images, Machine Learning, and Space Syntax to Enhance Walkability: A Case Study of Seongbuk District, Seoul. Land 2024, 13, 1591. [Google Scholar] [CrossRef]
- Jeon, J.; Woo, A. Deep learning analysis of street panorama images to evaluate the streetscape walkability of neighborhoods for subsidized families in Seoul, Korea. Landsc. Urban Plan. 2023, 230, 104631. [Google Scholar] [CrossRef]
- Fan, R.; Chen, Y.; Yocom, K.P. A New Approach to Landscape Visual Quality Assessment from a Fine-Tuning Perspective. Land 2024, 13, 673. [Google Scholar] [CrossRef]
- Sun, D.; Ji, X.; Lyu, M.; Fu, Y.; Gao, W. Evaluation and diagnosis for the pedestrian quality of service in urban riverfront streets. J. Clean. Prod. 2024, 452, 142090. [Google Scholar] [CrossRef]
- Adams, M.A.; Ryan, S.; Kerr, J.; Sallis, J.F.; Patick, K.; Frank, L.D.; Norman, G.J. Validation of the Neighborhood Environment Walkability Scale (NEWS) items using geographic information systems. J. Phys. Act. Health 2009, 6, S113–S123. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Dong, R.; Deng, H.; Fu, X.; Wang, C.; Yu, T.; Jia, T.; Zhao, J. Quantifying physical and psychological perceptions of urban scenes using deep learning. Land Use Policy 2021, 111, 105762. [Google Scholar] [CrossRef]
- Dubey, A.; Naik, N.; Parikh, D.; Raskar, R.; Hidalgo, C.A. Deep learning the city: Quantifying urban perception at a global scale. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14. Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 196–212. [Google Scholar]
- Wang, Z.; Ito, K.; Biljecki, F. Assessing the equity and evolution of urban visual perceptual quality with time series street view imagery. Cities 2024, 145, 104704. [Google Scholar] [CrossRef]
- Rossetti, T.; Lobel, H.; Rocco, V.; Hurtubia, R. Explaining subjective perceptions of public spaces as a function of the built environment: A massive data approach. Landsc. Urban Plan. 2019, 181, 169–178. [Google Scholar] [CrossRef]
- Yang, C.; Xu, F.N.; Jiang, L.; Wang, R.F.; Yin, L.; Zhao, M.W.; Zhang, X.X. Approach to quantify spatial comfort of urban roads based on street view images. Geo-Inf. Sci 2021, 23, 785–801. [Google Scholar]
- Lu, Y.; Chen, H.M. Using google street view to reveal environmental justice: Assessing public perceived walkability in macroscale city. Landsc. Urban Plan. 2024, 244, 104995. [Google Scholar] [CrossRef]
- Ma, Z. Deep exploration of street view features for identifying urban vitality: Acase study of Qingdao city. Int. J. Appl. Earth Obs. Geoinf. 2023, 123, 103476. [Google Scholar] [CrossRef]
- Moreno-Vera, F.; Lavi, B.; Poco, J. Urban Perception: Can we understand why a street is safe? In Mexican International Conference on Artificial Intelligence; Springer International Publishing: Cham, Switzerland, 2021; pp. 277–288. [Google Scholar]
- Qiu, W.; Zhang, Z.; Liu, X.; Li, W.; Li, X.; Xu, X.; Huang, X. Subjective or objective measures of street environment, which are more effective in explaining housing prices? Landsc. Urban Plan. 2022, 221, 104358. [Google Scholar] [CrossRef]
- Zhang, F.; Zu, J.; Hu, M.; Zhu, D.; Kang, Y.; Gao, S.; Zhang, Y.; Huang, Z. Uncovering inconspicuous places using social media check-ins and street view images. Comput. Environ. Urban Syst. 2020, 81, 101478. [Google Scholar] [CrossRef]
- Larkin, A.; Gu, X.; Chen, L.; Hystad, P. Predicting perceptions of the built environment using GIS satellite and street view image approaches. Landsc. Urban Plan. 2021, 216, 104257. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Y.; Lu, Y.; Yuan, Y.; Zhang, J.; Liu, P.; Yao, Y. The linkage between the perception of neighbourhood and physical activity in Guangzhou, China: Using street view imagery with deep learning techniques. Int. J. Health Geogr. 2019, 18, 18. [Google Scholar] [CrossRef]
- Ordonez, V.; Berg, T.L. Learning high-level judgments of urban perception. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part VI 13. Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 494–510. [Google Scholar]
- Yao, Y.; Wang, J.; Hong, Y.; Qian, C.; Guan, Q.; Liang, X.; Dai, L.; Zhang, J. Discovering the homogeneous geographic domain of human perceptions from street view images. Landsc. Urban Plan. 2021, 212, 104125. [Google Scholar] [CrossRef]
- Lyu, M.; Lin, J.; Zhou, F.; Niu, J.; Sun, D.; Meng, Y.; Ji, X. A method for evaluating the visual quality of wetland park landscapes: A case study of qianlu lake wetland park in Wuping, China. Environ. Res. Commun. 2024, 6, 105024. [Google Scholar] [CrossRef]
- Gong, F.Y.; Zeng, Z.C.; Zhang, F.; Li, X.; Ng, E.; Norford, L.K. Mapping sky, tree, and building view factors of street canyons in a high-density urban environment. Build. Environ. 2018, 134, 155–167. [Google Scholar] [CrossRef]
- He, T.; Li, X. Image quality recognition technology based on deep learning. J. Vis. Commun. Image Represent. 2019, 65, 102654. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Y.; Lu, Y.; Zhang, J.; Yao, Y.; Grekousis, G. Perceptions of built environment and health outcomes for older Chinese in Beijing: A big data approach with street view images and deep learning technique. Comput. Environ. Urban Syst. 2019, 78, 101386. [Google Scholar] [CrossRef]
- He, N.; Li, G. Urban neighbourhood environment assessment based on street view image processing: A review of research trends. Environ. Chall. 2021, 4, 100090. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, H.; Puig, X.; Xiao, T.; Fidler, S.; Barriuso, A.; Torralba, A. Semantic understanding of scenes through the ade20k dataset. Int. J. Comput. Vis. 2019, 127, 302–321. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.; Torralba, A. Scene parsing through ade20k dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 633–641. [Google Scholar]
- Ewing, R.; Handy, S. Measuring the unmeasurable: Urban design qualities related to walkability. J. Urban Des. 2009, 14, 65–84. [Google Scholar] [CrossRef]
- Dai, L.; Zheng, C.; Dong, Z.; Yao, Y.; Wang, R.; Zhang, X.; Ren, S.; Zhang, J.; Song, X.; Guan, Q. Analyzing the correlation between visual space and residents’ psychology in Wuhan, China using street-view images and deep-learning technique. City Environ. Interact. 2021, 11, 100069. [Google Scholar] [CrossRef]
- Zhou, L.; Hsieh, C.M. A multiscale walkability assessment approach creating walkable streets: A case study of high-density city, Macau. Res. Transp. Bus. Manag. 2024, 57, 101217. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, X.; White, M. A study on street walkability for older adults with different mobility abilities combining street view image recognition and deep learning-The case of Chengxianjie Community in Nanjing (China). Comput. Environ. Urban Syst. 2024, 112, 102151. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, L.; Lan, M.; Zhu, W.; Song, G.; Jing, F.; Zhong, Y.; Su, Z.; Gu, X. Using Google Street View imagery to capture micro built environment characteristics in drug places, compared with street robbery. Comput. Environ. Urban Syst. 2021, 88, 101631. [Google Scholar] [CrossRef]
- Keralis, J.M.; Javanmardi, M.; Khanna, S.; Dwivedi, P.; Huang, D.; Tasdizen, T.; Nguyen, Q.C. Health and the built environment in United States cities: Measuring associations using Google Street View-derived indicators of the built environment. BMC Public Health 2020, 20, 215. [Google Scholar] [CrossRef]
- Wang, R.; Lu, Y.; Zhang, J.; Liu, P.; Yao, Y.; Liu, Y. The relationship between visual enclosure for neighbourhood street walkability and elders’ mental health in China: Using street view images. J. Transp. Health 2019, 13, 90–102. [Google Scholar] [CrossRef]
- Othman, A.; Al-Hagla, K.; Hasan, A.E. The impact of attributes of waterfront accessibility on human well-being: Alexandria Governorate as a case study. Ain Shams Eng. J. 2021, 12, 1033–1047. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, F.; Xu, Z. Evaluating the accessibility of urban parks and waterfronts through online map services: A case study of Shaoxing, China. Urban For. Urban Green. 2022, 77, 127731. [Google Scholar] [CrossRef]
- Zhou, X.; Cen, Q.; Qiu, H. Effects of urban waterfront park landscape elements on visual behavior and public preference: Evidence from eye-tracking experiments. Urban For. Urban Green. 2023, 82, 127889. [Google Scholar] [CrossRef]
- Ji, G.; Sun, H. Assessing urban river landscape visual quality with extreme learning machines: A case study of the yellow river in ningxia hui autonomous region, China. Ecol. Indic. 2024, 165, 112173. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, Y.; Zhou, X.; An, J.; Yan, D. Numerical study on the coupling effect of river attributes and riverside building forms on the urban microclimate: A case study in Nanjing, China. Sustain. Cities Soc. 2024, 107, 105459. [Google Scholar] [CrossRef]
- Jiang, J.; Pan, W.; Zhang, R.; Hong, Y.; Wang, J. Thermal comfort study of urban waterfront spaces in cold regions: Waterfront skyline control based on thermal comfort objectives. Build. Environ. 2024, 256, 111515. [Google Scholar] [CrossRef]
- Ma, X.; Ma, C.; Wu, C.; Xi, Y.; Yang, R.; Peng, N.; Zhang, C.; Ren, F. Measuring human perceptions of streetscapes to better inform urban renewal: A perspective of scene semantic parsing. Cities 2021, 110, 103086. [Google Scholar] [CrossRef]
- Naik, N.; Philipoom, J.; Raskar, R.; Hidalgo, C. Streetscore-predicting the perceived safety of one million streetscapes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 779–785. [Google Scholar]
- He, J.; Zhang, J.; Yao, Y.; Li, X. Extracting human perceptions from street view images for better assessing urban renewal potential. Cities 2023, 134, 104189. [Google Scholar] [CrossRef]
- Deng, M.; Yang, W.; Chen, C.; Liu, C. Exploring associations between streetscape factors and crime behaviors using Google Street View images. Front. Comput. Sci. 2022, 16, 164316. [Google Scholar] [CrossRef]
- Yuan, M.; Yin, C.; Sun, Y.; Chen, W. Examining the associations between urban built environment and noise pollution in high-density high-rise urban areas: A case study in Wuhan, China. Sustain. Cities Soc. 2019, 50, 101678. [Google Scholar] [CrossRef]
- Gore, N.; Dave, S.; Shah, J.; Jain, M.; Rathva, D.; Garg, V. Comparative analysis of pedestrian walking speed on sidewalk and carriageway. In Transportation Research: Proceedings of CTRG 2017; Springer: Singapore, 2020; pp. 65–76. [Google Scholar]
- Nasar, J.L. Urban design aesthetics: The evaluative qualities of building exteriors. Environ. Behav. 1994, 26, 377–401. [Google Scholar] [CrossRef]
- Li, F.; Wang, R.; Paulussen, J.; Liu, X. Comprehensive concept planning of urban greening based on ecological principles: A case study in Beijing, China. Landsc. Urban Plan. 2005, 72, 325–336. [Google Scholar] [CrossRef]
- Aghaabbasi, M.; Moeinaddini, M.; Shah, M.Z.; Asadi-shekari, Z. A new assessment model to evaluate the microscale sidewalk design factors at the neighbourhood level. J. Transp. Health 2017, 5, 97–112. [Google Scholar] [CrossRef]
- Held, D. Urban Landscape Entomology; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Ye, Y.; Li, D.; Liu, X. How block density and typology affect urban vitality: An exploratory analysis in Shenzhen, China. Urban Geogr. 2018, 39, 631–652. [Google Scholar] [CrossRef]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Wohlwill, J.F. Environmental aesthetics: The environment as a source of affect. Hum. Behav. Environ. Adv. Theory Res. 1976, 1, 37–86. [Google Scholar]
- Kerebel, A.; Gélinas, N.; Déry, S.; Voigt, B.; Munson, A. Landscape aesthetic modelling using Bayesian networks: Conceptual framework and participatory indicator weighting. Landsc. Urban Plan. 2019, 185, 258–271. [Google Scholar] [CrossRef]
- Poledniková, Z.; Galia, T. Photo simulation of a river restoration: Relationships between public perception and ecosystem services. River Res. Appl. 2021, 37, 44–53. [Google Scholar] [CrossRef]
- Row, A.T. The Death and Life of Great American Cities; Cape: London, UK, 1962. [Google Scholar]
- Rahnema, S.; Sedaghathoor, S.; Allahyari, M.S.; Damalas, C.A.; El Bilali, H. Preferences and emotion perceptions of ornamental plant species for green space designing among urban park users in Iran. Urban For. Urban Green. 2019, 39, 98–108. [Google Scholar] [CrossRef]
- Tomitaka, M.; Uchihara, S.; Goto, A.; Sasaki, T. Species richness and flower color diversity determine aesthetic preferences of natural-park and urban-park visitors for plant communities. Environ. Sustain. Indic. 2021, 11, 100130. [Google Scholar] [CrossRef]
- Steinwender, A.; Gundacker, C.; Wittmann, K.J. Objective versus subjective assessments of environmental quality of standing and running waters in a large city. Landsc. Urban Plan. 2008, 84, 116–126. [Google Scholar] [CrossRef]
- Park, K.; Ewing, R.; Sabouri, S.; Larsen, J. Street life and the built environment in an auto-oriented US region. Cities 2019, 88, 243–251. [Google Scholar] [CrossRef]
- Xu, J.; Xiong, Q.; Jing, Y.; Xing, L.; An, R.; Tong, Z.; Liu, Y.; Liu, Y. Understanding the nonlinear effects of the street canyon characteristics on human perceptions with street view images. Ecol. Indic. 2023, 154, 110756. [Google Scholar] [CrossRef]
- Taylor, R.B.; Gottfredson, S.D.; Brower, S. Block crime and fear: Defensible space, local social ties, and territorial functioning. J. Res. Crime Delinq. 1984, 21, 303–331. [Google Scholar] [CrossRef]
- Han, J. The visual quantitative analysis and empirical research of commercial pedestrian streetscape. J. Theor. Appl. Inf. Technol. 2013, 50, 76–83. [Google Scholar]
- Ding, J.; Luo, L.; Shen, X.; Xu, Y. Influence of built environment and user experience on the waterfront vitality of historical urban areas: A case study of the Qinhuai River in Nanjing, China. Front. Archit. Res. 2023, 12, 820–836. [Google Scholar] [CrossRef]
- Van Herzele, A.; De Vries, S. Linking green space to health: A comparative study of two urban neighbourhoods in Ghent, Belgium. Popul. Environ. 2012, 34, 171–193. [Google Scholar] [CrossRef]
- Grote, R.; Samson, R.; Alonso, R.; Amorim, J.H.; Cariñanos, P.; Churkina, G.; Fares, S.; Le Thiec, D.; Niinemets, Ü.; Mikkelsen, T.N.; et al. Functional traits of urban trees: Air pollution mitigation potential. Front. Ecol. Environ. 2016, 14, 543–550. [Google Scholar] [CrossRef]
- Mei, S.J.; Hu, J.T.; Liu, D.; Zhao, F.Y.; Li, Y.; Wang, Y.; Wang, H.Q. Wind driven natural ventilation in the idealized building block arrays with multiple urban morphologies and unique package building density. Energy Build. 2017, 155, 324–338. [Google Scholar] [CrossRef]
- Shi, G.Y.; Zhou, Y.; Sang, Y.Q.; Huang, H.; Zhang, J.S.; Meng, P.; Cai, L.L. Modeling the response of negative air ions to environmental factors using multiple linear regression and random forest. Ecol. Inform. 2021, 66, 101464. [Google Scholar] [CrossRef]
- Jiang, B.; Li, D.; Larsen, L.; Sullivan, W.C. A dose-response curve describing the relationship between urban tree cover density and self-reported stress recovery. Environ. Behav. 2016, 48, 607–629. [Google Scholar] [CrossRef]
- Pouso, S.; Borja, A.; Fleming, L.E.; Gómez-Baggethun, E.; White, M.P.; Uyarra, M.C. Maintaining contact with blue-green spaces during the COVID-19 pandemic associated with positive mental health. Sci. Total Environ. 2020, 20, 143984. [Google Scholar]
- Asgarzadeh, M.; Koga, T.; Hirate, K.; Farvid, M.; Lusk, A. Investigating oppressiveness and spaciousness in relation to building, trees, sky and ground surface: A study in Tokyo. Landsc. Urban Plan. 2014, 131, 36–41. [Google Scholar] [CrossRef]
- Perini, K.; Ottelé, M. Vertical greening systems: Contribution to thermal behaviour on the building envelope and environmental sustainability. WIT Trans. Ecol. Environ. 2012, 165, 239–250. [Google Scholar]
- Xia, C.; Yeh, A.G.O.; Zhang, A. Analyzing spatial relationships between urban land use intensity and urban vitality at street block level: A case study of five Chinese megacities. Landsc. Urban Plan. 2020, 193, 103669. [Google Scholar] [CrossRef]
Safety (P) | Vitality (P) | Boredom (P) | Beauty (P) | Wealth (P) | Depression (P) | |
---|---|---|---|---|---|---|
Safety (S) | 0.720 ** | 0.521 ** | −0.533 ** | 0.681 ** | 0.714 ** | −0.711 ** |
Vitality (S) | 0.564 ** | 0.843 ** | −0.814 ** | 0.461 ** | 0.681 ** | −0.555 ** |
Boredom (S) | −0.490 ** | −0.677 ** | 0.727 ** | −0.443 ** | −0.547 ** | 0.505 ** |
Beauty (S) | 0.713 ** | 0.462 ** | −0.572 ** | 0.749 ** | 0.680 ** | −0.759 ** |
Wealth (S) | 0.731 ** | 0.728 ** | −0.700 ** | 0.655 ** | 0.781 ** | −0.717 ** |
Depression (S) | −0.573 ** | −0.443 ** | 0.510 ** | −0.560 ** | −0.579 ** | 0.594 ** |
Physical Features | Formula or Source | Expression | Definition |
---|---|---|---|
Greenness | represents the proportion of tree pixels, represents the proportion of plant pixels, and represents the proportion of grass pixels. | It refers to the ratio of tree, plant, and grass pixels to the overall pixels. | |
Building view ratio | represents the proportion of building pixels. | It refers to the ratio of building pixels to the overall pixels. | |
Blueness | represents the proportion of water pixels. | It refers to the ratio of water pixels to the overall pixels. | |
Openness | represents the proportion of sky pixels. | It refers to the ratio of sky pixels to the overall pixels. | |
Walkability | is the percentage of pavement pixels, is the percentage of street fence pixels, and is the percentage of road pixels. | It refers to the ratio of walkable street pixels to the overall pixels. | |
Enclosure | represents the proportion of building pixels and represents the proportion of tree pixels. | It refers to the extent to which street space is enclosed by street elements in a vertical interface. | |
Spatial indicator | represents the proportion of traffic light pixels and represents the proportion of traffic sign pixels. | It refers to the ratio of light and traffic sign pixels to the overall street space pixels. | |
Environmental color diversity | represents the number of j street element color pixels in an i image and j represents the total number of environment colors in an i image. | It refers to the richness degree of the environment colors that be observed in the streets. | |
Natural-to-artificial ratio | represents the proportion of tree pixels, represents the proportion of plant pixels, represents the proportion of grass pixels, represents the proportion of water pixels, is the percentage of building pixels, is the percentage of road pixels, and is the percentage of pavement pixels. | It refers to the ratio of the natural pixels to the artificial pixels in the overall pixels. |
Safety | Vitality | Wealth | Beauty | Boredom | Depression | |
---|---|---|---|---|---|---|
Mean value | 0.296 | 0.274 | 0.341 | 0.273 | 0.610 | 0.635 |
Standard deviation | 0.116 | 0.142 | 0.092 | 0.128 | 0.079 | 0.080 |
Overall Murasaki River Waterfront Street | Northern Street Section | Central Street Section | Southern Street Section | |
---|---|---|---|---|
Safety | 0.296 | 0.308 | 0.274 | 0.308 |
Vitality | 0.274 | 0.343 | 0.240 | 0.227 |
Wealth | 0.341 | 0.356 | 0.324 | 0.343 |
Beauty | 0.273 | 0.271 | 0.259 | 0.293 |
Boredom | 0.610 | 0.575 | 0.625 | 0.638 |
Depression | 0.635 | 0.631 | 0.646 | 0.629 |
Greenness | 0.074 | 0.059 | 0.061 | 0.112 |
Blueness | 0.095 | 0.093 | 0.104 | 0.090 |
Natural-to-artificial ratio | 0.576 | 0.424 | 0.557 | 0.817 |
Openness | 0.362 | 0.334 | 0.367 | 0.388 |
Enclosure | 0.144 | 0.168 | 0.116 | 0.147 |
Building visual ratio | 0.075 | 0.110 | 0.063 | 0.044 |
Walkability | 0.041 | 0.074 | 0.025 | 0.018 |
Environmental color diversity | 11.040 | 12.275 | 10.378 | 9.872 |
Spatial indicator | 0.001 | 0.002 | 0.001 | 0.001 |
Model | Unstandardized Coefficients | Standardized Coefficients | Sig. | VIF | R2 | F. Sig | |||
---|---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | t | ||||||
Safety | (Constant) | 0.005 | 0.014 | 0.339 | 0.735 | 0.936 | 0 | ||
Greenness | 0.313 | 0.037 | 0.314 | 8.438 | 0 | 7.042 | |||
Openness | −0.54 | 0.018 | −0.54 | −30.185 | 0 | 1.635 | |||
Walkability | 0.096 | 0.015 | 0.096 | 6.451 | 0 | 1.135 | |||
Building visual ratio | −0.415 | 0.037 | −0.416 | −11.123 | 0 | 7.121 | |||
Enclosure | 0.377 | 0.039 | 0.378 | 9.616 | 0 | 7.868 | |||
Environmental color diversity | 0.044 | 0.016 | 0.044 | 2.712 | 0.007 | 1.319 | |||
Vitality | (Constant) | 0.003 | 0.014 | 0.201 | 0.841 | 0.935 | 0 | ||
Openness | −0.617 | 0.017 | −0.616 | −35.402 | 0 | 1.522 | |||
Enclosure | 0.17 | 0.04 | 0.17 | 4.293 | 0 | 7.867 | |||
Building visual ratio | 0.321 | 0.037 | 0.32 | 8.66 | 0 | 6.875 | |||
Walkability | 0.139 | 0.015 | 0.138 | 9.296 | 0 | 1.115 | |||
Greenness | 0.136 | 0.037 | 0.136 | 3.64 | 0 | 7.042 | |||
Wealth | (Constant) | 0.008 | 0.014 | 0.592 | 0.555 | 0.937 | 0 | ||
Openness | −0.697 | 0.015 | −0.702 | −46.956 | 0 | 1.149 | |||
Greenness | 0.524 | 0.016 | 0.528 | 32.35 | 0 | 1.369 | |||
Walkability | 0.044 | 0.015 | 0.044 | 3.005 | 0.003 | 1.116 | |||
Natural-to- artificial ratio | −0.044 | 0.016 | −0.044 | −2.753 | 0.006 | 1.321 | |||
Beauty | (Constant) | 0.003 | 0.014 | 0.253 | 0.8 | 0.939 | 0 | ||
Greenness | 0.31 | 0.037 | 0.31 | 8.469 | 0 | 7.141 | |||
Openness | −0.545 | 0.017 | −0.545 | −31.916 | 0 | 1.544 | |||
Building visual ratio | −0.474 | 0.037 | −0.474 | −12.896 | 0 | 7.212 | |||
Enclosure | 0.35 | 0.039 | 0.35 | 9.087 | 0 | 7.921 | |||
Blueness | 0.106 | 0.014 | 0.106 | 7.622 | 0 | 1.037 | |||
Environmental color diversity | 0.035 | 0.016 | 0.035 | 2.262 | 0.024 | 1.295 | |||
Boredom | (Constant) | 0.019 | 0.01 | 2.008 | 0.045 | 0.966 | 0 | ||
Openness | 0.579 | 0.012 | 0.616 | 48.766 | 0 | 1.531 | |||
Building visual ratio | −0.281 | 0.025 | −0.299 | −11.048 | 0 | 7.006 | |||
Enclosure | −0.13 | 0.027 | −0.138 | −4.801 | 0 | 7.955 | |||
Walkability | −0.231 | 0.01 | −0.246 | −22.272 | 0 | 1.166 | |||
Blueness | −0.192 | 0.01 | −0.204 | −19.279 | 0 | 1.079 | |||
Greenness | −0.127 | 0.026 | −0.136 | −4.965 | 0 | 7.142 | |||
Depression | (Constant) | 0.02 | 0.01 | 1.955 | 0.051 | 0.962 | 0 | ||
Greenness | −0.244 | 0.027 | −0.261 | −9.016 | 0 | 7.142 | |||
Openness | 0.545 | 0.013 | 0.582 | 43.436 | 0 | 1.531 | |||
Blueness | −0.104 | 0.011 | −0.111 | −9.846 | 0 | 1.079 | |||
Walkability | −0.119 | 0.011 | −0.128 | −10.897 | 0 | 1.166 | |||
Building visual ratio | 0.404 | 0.027 | 0.432 | 15.046 | 0 | 7.006 | |||
Enclosure | −0.344 | 0.029 | −0.368 | −12.035 | 0 | 7.955 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Huang, G.; Sun, D.; Lyu, M.; Bart, D. Exploring the Impact of Waterfront Street Environments on Human Perception. Buildings 2025, 15, 1678. https://doi.org/10.3390/buildings15101678
Yu Y, Huang G, Sun D, Lyu M, Bart D. Exploring the Impact of Waterfront Street Environments on Human Perception. Buildings. 2025; 15(10):1678. https://doi.org/10.3390/buildings15101678
Chicago/Turabian StyleYu, Yiqing, Gonghu Huang, Dong Sun, Mei Lyu, and Dewancker Bart. 2025. "Exploring the Impact of Waterfront Street Environments on Human Perception" Buildings 15, no. 10: 1678. https://doi.org/10.3390/buildings15101678
APA StyleYu, Y., Huang, G., Sun, D., Lyu, M., & Bart, D. (2025). Exploring the Impact of Waterfront Street Environments on Human Perception. Buildings, 15(10), 1678. https://doi.org/10.3390/buildings15101678